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Temporary resolved resolution
• Particles can adapt dynamically

Mixed models
• Still fast, more accurate
• Hamiltonian exchange
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• START: Random placement of fine-grained 
particles within sphere centered at CG bead

• SA: Simulated annealing slowly decreasing 
temperature, using a harmonic restraining 
potential

• EQ: Molecular dynamics with restrained potentials

• RELAX: Relaxation with normal fine-grained 
potentials
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Resolution Transformation  
  Testing on small peptide: generation of proper ensemble

Reconstruction algorithm generates 
proper ensemble !

Idea: use it to test validity of
atomistic forcefield
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• Configurations which are high 
energy but remain trapped

 >>  block certain dihedral angles

• Multiple molecules mapped to 
single bead

 >> add special restraining 
potential

Resolution Transformation  
  Special cases
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Polarizable coarse-grained model

Criteria for parametrization:
• Density close to that of  real water
• Dielectric constant e close to 78 at 300 K
• Same partitioning ΔG’s as standard MARTINI
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Electrostatic potential & field
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Polarizable coarse-grained model
 Improved electrostatic response



(similar to
atomistic simulations

by Tieleman)

Polarizable coarse-grained model
 Electroporation of an octane slab



   

 

t = 0 ns t = 0.5 ns t = 1 ns

t = 80 nst = 50 nst = 20 ns

E ≈ 2 V/nm
 

(very similar to atomistic work by the group of Vattulainen)
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At lower field strengths: ion leakage through ‘water finger’
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More realistic screening in
 inhomogeneous systems

Factor 3 slower

Water/vapor surface tension
only marginally improved

Not well tested (yet)

Electroporation - Electrofusion .... 

Voltage gated channels - Antimicrobial peptides 

Polarizable coarse-grained model
 Advantages & Drawbacks
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Complete lipid database
(SM, PS, PG, glycolipids ...)

Softer potentials (LJ 9-6)

Multiscaling 
(Hamiltonian exchange, 
hybrid simulations)

Nucleotides (DNA, RNA)

Polarizable Martini

Secondary structure changes 


