NARTINI2010-2015

- Basic Martini philosophy
- Parameterization
- Applications

I Lipids

- Basic Martini philosophy
- Parameterization
- Applications

Lipids

- Parameterization
- Elastic networks
- Applications

- Basic Martini philosophy
- Parameterization
- Applications

II Proteins & Sugars

Future

Lipids

- Parameterization
- Elastic networks
- Applications

Hybrid modelsPolarizable Martini

- Testing CG configurations
- Testing all-atom forcefields

Hybrid models

Resolution transformation

- Testing CG configurations
- Testing all-atom forcefields

Spatially resolved resolution

- High resolution only at area of interest
- Dynamic or static division

Hybrid models

Resolution transformation

- Testing CG configurations
- Testing all-atom forcefields

Spatially resolved resolution

- High resolution only at area of interest
- Dynamic or static division

Temporary resolved resolution

Particles can adapt dynamically

Hybrid models

Resolution transformation

- Testing CG configurations
- Testing all-atom forcefields

Spatially resolved resolution

- High resolution only at area of interest
- Dynamic or static division

Temporary resolved resolution

Particles can adapt dynamically

Mixed models

- Still fast, more accurate
- Hamiltonian exchange

Outline of the method

Outline of the method

• START: Random placement of fine-grained particles within sphere centered at CG bead

Outline of the method

- START: Random placement of fine-grained particles within sphere centered at CG bead
- SA: Simulated annealing slowly decreasing temperature, using a harmonic restraining potential

$$U^{\text{tot}} = U^{\text{AA}} + U^{\text{restr}},$$
$$U^{\text{restr}} = \sum_{i=1}^{n} \frac{k}{2} \left(\mathbf{r}_{i}^{\text{CG}} - \mathbf{r}_{i}^{\text{AA,com}} \right)^{2},$$

Outline of the method

- START: Random placement of fine-grained particles within sphere centered at CG bead
- SA: Simulated annealing slowly decreasing temperature, using a harmonic restraining potential

$$U^{\text{tot}} = U^{\text{AA}} + U^{\text{restr}},$$
$$U^{\text{restr}} = \sum_{i=1}^{n} \frac{k}{2} \left(\mathbf{r}_{i}^{\text{CG}} - \mathbf{r}_{i}^{\text{AA,com}} \right)^{2},$$

Outline of the method

- START: Random placement of fine-grained particles within sphere centered at CG bead
- SA: Simulated annealing slowly decreasing temperature, using a harmonic restraining potential

$$U^{\text{tot}} = U^{\text{AA}} + U^{\text{restr}},$$
$$U^{\text{restr}} = \sum_{i=1}^{n} \frac{k}{2} \left(\mathbf{r}_{i}^{\text{CG}} - \mathbf{r}_{i}^{\text{AA,com}} \right)^{2},$$

• EQ: Molecular dynamics with restrained potentia

Outline of the method

- START: Random placement of fine-grained particles within sphere centered at CG bead
- SA: Simulated annealing slowly decreasing temperature, using a harmonic restraining potential

$$U^{\text{tot}} = U^{\text{AA}} + U^{\text{restr}},$$
$$U^{\text{restr}} = \sum_{i=1}^{n} \frac{k}{2} \left(\mathbf{r}_{i}^{\text{CG}} - \mathbf{r}_{i}^{\text{AA,com}} \right)^{2},$$

- EQ: Molecular dynamics with restrained potentia
- RELAX: Relaxation with normal fine-grained potentials

Parameter	mdp-option	Recommended value
Initial capping force $F_{cap,0}$	cap_force	15,000 kJ mol ⁻¹ nm ⁻¹
Capping increase rate A	cap_a	100 KJ mol ⁻¹ nm ⁻¹ ps ⁻¹
Restraining force constant k	fc_restr	12,000 kJ mol ⁻¹ nm ⁻²
Nr of steps to release	rel_steps	5000
Annealing method	annealing	single
Annealing time	annealing_time	60 ps
Initial annealing temperature	annealing_temp	1300 K

Parameter	mdp-option	Recommended value
Initial capping force $F_{cap,0}$ Capping increase rate A Restraining force constant k	cap_force cap_a fc_restr	15,000 kJ mol ⁻¹ nm ⁻¹ 100 KJ mol ⁻¹ nm ⁻¹ ps ⁻¹ 12,000 kJ mol ⁻¹ nm ⁻²
Nr of stors to release	ral stars	5000
restraints Annealing method	annealing	single
Annealing time Initial annealing temperature	annealing_time annealing_temp	60 ps 1300 K

Parameter	mdp-option	Recommended value	
Initial capping force $F_{cap,0}$	cap_force	15,000 kJ mol ⁻¹ nm ⁻¹	
Capping increase rate A	cap_a	$100 \mathrm{KJ}\mathrm{mol}^{-1}\mathrm{nm}^{-1}\mathrm{ps}^{-1}$	
Restraining force constant k	fc_restr	$12,000 \text{ kJ mol}^{-1} \text{ nm}^{-2}$	
Nr of steps to release	rel_steps	5000	
restraints			
Annealing method	annealing	single	
Annealing time	annealing_time	60 ps	
Initial annealing temperature	annealing_temp	1300 K	

Parameter	mdp-option	Recommended value
Initial capping force $F_{cap,0}$ Capping increase rate A	cap_force cap_a	15,000 kJ mol ⁻¹ nm ⁻¹ 100 KJ mol ⁻¹ nm ⁻¹ ps ⁻¹
Restraining force constant <i>k</i>	fc_restr	$12,000 \text{ kJ mol}^{-1} \text{ nm}^{-2}$
Nr of steps to release	rel stens	5000
restraints	Tel_steps	2000
Annealing method	annealing	single
Annealing time	annealing_time	60 ps
Initial annealing temperature	annealing_temp	1300 K

Parameter	mdp-option	Recommended value
Initial capping force $F_{cap,0}$	cap_force	15,000 kJ mol ⁻¹ nm ⁻¹
Capping increase rate A	cap_a	100 KJ mol ⁻¹ nm ⁻¹ ps ⁻¹
Restraining force constant k	fc_restr	12,000 kJ mol ⁻¹ nm ⁻²
Nr of steps to release restraints	rel_steps	5000
Annealing method	annealing	single
Annealing time	annealing_time	60 ps
Initial annealing temperature	annealing_temp	1300 K

Parameter	mdp-option	Recommended value	
Initial capping force $F_{cap,0}$	cap_force	15,000 kJ mol ⁻¹ nm ⁻¹	
Capping increase rate A	cap_a	100 KJ mol ⁻¹ nm ⁻¹ ps ⁻¹	
Restraining force constant k	fc_restr	12,000 kJ mol ⁻¹ nm ⁻²	
Nr of steps to release restraints	rel_steps	5000	
Annealing method	annealing	single	
Annealing time	annealing_time	60 ps	
Initial annealing temperature	annealing_temp	1300 K	

Parameter	mdp-option	Recommended value	
Initial capping force $F_{cap,0}$	cap_force	15,000 kJ mol ⁻¹ nm ⁻¹	
Capping increase rate A	cap_a	100 KJ mol ⁻¹ nm ⁻¹ ps ⁻¹	
Restraining force constant k	fc_restr	12,000 kJ mol ⁻¹ nm ⁻²	
Nr of steps to release restraints	rel_steps	5000	
Annealing method	annealing	single	
Annealing time	annealing_time	60 ps	
Initial annealing temperature	annealing_temp	1300 K	

A 0.06 atomistic 1-to-A0.04 probability 0.02 am.-to-1 MARTINI 0 -180 -90 180 90 0 dihedral angle (degrees) 0.016 0.012 buopapilit 0.008 0.004 0 -180 90 180 -90 0 dihedral angle (degrees)

Reconstruction algorithm generates proper ensemble !

Resolution Transformation

Testing on small peptide: generation of proper ensemble 0.06 Δ atomistic A0.04 probability 0.02 am.-to-1 MARTINI 0 -180 180 -90 90 0 dihedral angle (degrees) 0.016 0.012 bropapilit 0.008 0.004 0 -180 180 -90 90 0 dihedral angle (degrees)

Reconstruction algorithm generates proper ensemble !

Idea: use it to test validity of atomistic forcefield

Resolution Transformation

Special cases

Special cases

 Configurations which are high energy but remain trapped

Special cases

- Configurations which are high energy but remain trapped
 - >> block certain dihedral angles

Special cases

- Configurations which are high energy but remain trapped
 - >> block certain dihedral angles

Multiple molecules mapped to single bead

Special cases

- Configurations which are high energy but remain trapped
 - >> block certain dihedral angles

 Multiple molecules mapped to single bead

>> add special restraining potential

$$U_j^{\text{restr,W}} = \begin{cases} 0 & \text{for } r_{ij} \le r_{\text{CGW}} \\ \frac{k_{\text{W}}}{2} (r_{ij} - r_{\text{CGW}})^2 & \text{for } r_{ij} > r_{\text{CGW}} \end{cases}$$

Application to complex system

Application to complex system

Static approach (in progress)

Static approach (in progress)

Protein modeled at both all-atom and coarse-grained level

Solvent coarse-grained only

Static approach (in progress)

Protein modeled at both all-atom and coarse-grained level Solvent coarse-grained only *Protein-protein: all-atom Solvent-solvent: coarse-grained Protein-solvent: coarse-grained*

Static approach (in progress)

Protein modeled at both all-atom and coarse-grained level Solvent coarse-grained only *Protein-protein: all-atom Solvent-solvent: coarse-grained Protein-solvent: coarse-grained*

- Water is ubiquitous solvent in biological systems
 - \rightarrow Treatment crucial to properties derived from simulations
- Most CG force fields (also MARTINI): water modelled as vdW fluid; no orientational polarizability
 - \rightarrow Potential for improvements

- Water is ubiquitous solvent in biological systems
 - \rightarrow Treatment crucial to properties derived from simulations
- Most CG force fields (also MARTINI): water modelled as vdW fluid; no orientational polarizability
 - \rightarrow Potential for improvements

- Water is ubiquitous solvent in biological systems
 - \rightarrow Treatment crucial to properties derived from simulations
- Most CG force fields (also MARTINI): water modelled as vdW fluid; no orientational polarizability
 - \rightarrow Potential for improvements

- Water is ubiquitous solvent in biological systems
 - \rightarrow Treatment crucial to properties derived from simulations
- Most CG force fields (also MARTINI): water modelled as vdW fluid; no orientational polarizability
 - \rightarrow Potential for improvements

Parameterization

Criteria for parametrization:

- Density close to that of real water
- Dielectric constant *e* close to 78 at 300 K
- Same partitioning ΔG 's as standard MARTINI

Parameterization

(a) dielectric constant 140 (b) 120 WP 100 80 60 K_θ 40 20 WM 0 0.30 0.350.40 0.450.50 0.55(b) 0.128 0.126 124 volume Criteria for parametrization: 122 Density close to that of real water 120 Dielectric constant e close to 78 at 300 K u. 118 0.116 Same partitioning ΔG 's as standard MARTINI 0.114 0.35 0.30 0.40 0.45 0.50 0.55 virtual charge q

Parameterization

(a) dielectric constant 140 (b) 120 WP 100 80 60 K_θ 40 q = 0.4920 WM 0 0.30 0.35 0.40 0.450.50 0.55(b) 0.128 0.126 124 volume Criteria for parametrization: 122 Density close to that of real water 120 Dielectric constant e close to 78 at 300 K L_ 118 0.116 Same partitioning ΔG 's as standard MARTINI 0.114 0.35 0.30 0.40 0.45 0.50 0.55 virtual charge q

ow

WP WM

Parameters & Properties

(b)

WP

WM

 K_{θ}

Computational cost: ca. factor 3

Shifted cut-off & PME

S Yesylevskyy, LV Schäfer, D Sengupta, SJ Marrink, in preparation

ow

Parameters & Properties

(b) WP

 K_{θ}

WM

Shifted cut-off & PME

Parameters		Properties ^a	
charge WP,WM	$q = \pm 0.46$	density	1043 kg m ⁻³
bond W-WP, W-WM	1 = 0.14 nm	dielectric constant	75.6
angle WP-W-WM	$\theta = 0$ rad	dipole moment	4.9 D
	$K_{\theta} = 4.2 \text{ kJ mol}^{-1} \text{ rad}^{-2}$	self diffusion	$2.45 \ 10^{-5} \ \mathrm{cm}^2 \ \mathrm{s}^{-1}$
LJ_{W-W}	$\varepsilon = 4.0 \text{ kJ mol}^{-1}$	hydration free energy	-18.7 kJ mol ⁻¹
	$\sigma = 0.47 \text{ nm}$	freezing temperature	$282 \pm 3 \text{ K}$
relative screening	$\epsilon_{rel} = 2.5$		

ow

Parameters & Properties

(b)

WP

WM

 K_{θ}

Computational cost: ca. factor 3

Shifted cut-off & PME

Para	meters		Properties ^a	
char	ge WP,WM	$q = \pm 0.46$	density	1043 kg m^{-3}
bond	d W-WP, W-WM	1 = 0.14 nm	dielectric constant	75.6
angl	e WP-W-WM	$\theta = 0$ rad	dipole moment	4.9 D
		$K_{\theta} = 4.2 \text{ kJ mol}^{-1} \text{ rad}^{-2}$	self diffusion	$2.45 \ 10^{-5} \ \mathrm{cm}^2 \ \mathrm{s}^{-1}$
LJ _{W-}	-W	$\varepsilon = 4.0 \text{ kJ mol}^{-1}$	hydration free energy	-18.7 kJ mol ⁻¹
		$\sigma = 0.47 \text{ nm}$	freezing temperature	$282 \pm 3 \text{ K}$
relat	ive screening	$\varepsilon_{\rm rel} = 2.5$		

S Yesylevskyy, LV Schäfer, D Sengupta, SJ Marrink, in preparation

ow

Parameters & Properties

(b)

WP

WM

 K_{θ}

Computational cost: ca. factor 3

Shifted cut-off & PME

Parameters		Properties ^a	
charge WP,WM	$q = \pm 0.46$	density	1043 kg m ⁻³
bond W-WP, W-WM	1 = 0.14 nm	dielectric constant	75.6
angle WP-W-WM	$\theta = 0$ rad	dipole moment	4.9 D
	$K_{\theta} = 4.2 \text{ kJ mol}^{-1} \text{ rad}^{-2}$	self diffusion	$2.45 \ 10^{-5} \ \mathrm{cm}^2 \ \mathrm{s}^{-1}$
LJ_{W-W}	$\varepsilon = 4.0 \text{ kJ mol}^{-1}$	hydration free energy	-18.7 kJ mol ⁻¹
	$\sigma = 0.47 \text{ nm}$	freezing temperature	$282 \pm 3 \text{ K}$
relative screening	$\varepsilon_{rel} = 2.5$		

S Yesylevskyy, LV Schäfer, D Sengupta, SJ Marrink, in preparation

Testing

)

Ow

WP

Improved electrostatic response

OW

Electroporation of an octane slab

(similar to atomistic simulations by Tieleman)

ow

Electroporation of a lipid membrane by charge imbalance

(very similar to atomistic work by the group of Vattulainen)

OW

Electroporation of a lipid membrane by charge imbalance

1

OW

Electroporation of a lipid membrane by charge imbalance

At lower field strengths: ion leakage through 'water finger'

Ow

Ow

Advantages & Drawbacks

OW

Advantages & Drawbacks

OW

WP WW WM

Advantages & Drawbacks

Ow

WP WW WM

Advantages & Drawbacks

More realistic screening in inhomogeneous systems

Electroporation - Electrofusion

Voltage gated channels - Antimicrobial peptides

OW

WP WW WM

Advantages & Drawbacks

More realistic screening in inhomogeneous systems

Electroporation - Electrofusion

Voltage gated channels - Antimicrobial peptides

Factor 3 slower

Ow

WP WW WM

Advantages & Drawbacks

More realistic screening in inhomogeneous systems

Electroporation - Electrofusion

Voltage gated channels - Antimicrobial peptides

Factor 3 slower

Water/vapor surface tension only marginally improved

Ow

WP WW WM

Advantages & Drawbacks

More realistic screening in inhomogeneous systems

Electroporation - Electrofusion

Voltage gated channels - Antimicrobial peptides

Factor 3 slower

Not well tested (yet)

Water/vapor surface tension only marginally improved

Complete lipid database (SM, PS, PG, glycolipids ...)

Softer potentials (LJ 9-6)

Multiscaling (Hamiltonian exchange, hybrid simulations)

Nucleotides (DNA, RNA)

Polarizable Martini

Secondary structure changes