The Art of Goarse **Hannc**

How to become a CG master - part II

- Basic Martini philosophy
- Parameterization
- Applications

I Lipids

- Basic Martini philosophy
- Parameterization
- Applications

Lipids

- Parameterization
- Elastic networks
- Applications

- Basic Martini philosophy
- Parameterization
- Applications

II Proteins & Sugars

Future

Lipids

- Parameterization
- Elastic networks
- Applications

Hybrid modelsPolarizable Martini

Validation: partitioning of amino acid residues in lipid bilayers

Validation: binding and tilting of peptides

Validation: pores stabilized by antimicrobial peptides

All-atom Martini CG

Validation: phase behavior of lipid/peptide systems

Cubic phase induced by fusion peptides

Validation: phase behavior of lipid/peptide systems

What you can do and what you should be careful of

DO's (but be careful)

DO-NOTs (or be very careful)

What you can do and what you should be careful of

DO'S (but be careful)

DO-NOTs (or be very careful)

Protein-protein interactions

(e.g. complex formation, crowding behavior, ligand binding)

What you can do and what you should be careful of

DO's (but be careful)

DO-NOTs (or be very careful)

Protein-protein interactions

(e.g. complex formation, crowding behavior, ligand binding)

Protein-membrane interactions

(interplay between lipid/protein mismatch and self-aggregation or membrane deformation)

What you can do and what you should be careful of

DO's (but be careful)

DO-NOTs (or be very careful)

Protein-protein interactions

(e.g. complex formation, crowding behavior, ligand binding)

Protein-membrane interactions

(interplay between lipid/protein mismatch and self-aggregation or membrane deformation)

Tertiary structure transformations

(e.g. channel gating)

What you can do and what you should be careful of

DO's (but be careful)

DO-NOTs (or be very careful)

Protein-protein interactions

(e.g. complex formation, crowding behavior, ligand binding)

Protein-membrane interactions

(interplay between lipid/protein mismatch and self-aggregation or membrane deformation)

Tertiary structure transformations

(e.g. channel gating)

Cross-check

(with all-atom simulations)

What you can do and what you should be careful of

DO's (but be careful)

Protein-protein interactions

(e.g. complex formation, crowding behavior, ligand binding)

Protein-membrane interactions

(interplay between lipid/protein mismatch and self-aggregation or membrane deformation)

Tertiary structure transformations

(e.g. channel gating)

Cross-check

(with all-atom simulations)

DO-NOTs (or be very careful)

Formation of polar complexes in an apolar medium

(e.g. binding and pore formation by antimicrobial peptides)

What you can do and what you should be careful of

DO's (but be careful)

Protein-protein interactions

(e.g. complex formation, crowding behavior, ligand binding)

Protein-membrane interactions

(interplay between lipid/protein mismatch and self-aggregation or membrane deformation)

Tertiary structure transformations

(e.g. channel gating)

Cross-check

(with all-atom simulations)

DO-NOTs (or be very careful)

Formation of polar complexes in an apolar medium

(e.g. binding and pore formation by antimicrobial peptides)

Secondary structure transformations

(e.g. folding, signalling)

What you can do and what you should be careful of

DO's (but be careful)

Protein-protein interactions

(e.g. complex formation, crowding behavior, ligand binding)

Protein-membrane interactions

(interplay between lipid/protein mismatch and self-aggregation or membrane deformation)

Tertiary structure transformations

(e.g. channel gating)

Cross-check

(with all-atom simulations)

DO-NOTs (or be very careful)

Formation of polar complexes in an apolar medium

(e.g. binding and pore formation by antimicrobial peptides)

Secondary structure transformations *(e.g. folding, signalling)*

Specific protein structure (e.g. non-standard 2ndary structure)

What you can do and what you should be careful of

DO's (but be careful)

Protein-protein interactions

(e.g. complex formation, crowding behavior, ligand binding)

Protein-membrane interactions

(interplay between lipid/protein mismatch and self-aggregation or membrane deformation)

Tertiary structure transformations

(e.g. channel gating)

Cross-check

(with all-atom simulations)

DO-NOTs (or be very careful)

Formation of polar complexes in an apolar medium

(e.g. binding and pore formation by antimicrobial peptides)

Secondary structure transformations (e.g. folding, signalling)

Specific protein structure (e.g. non-standard 2ndary structure)

Protein deformation (Martini too coarse for realistic packing)

What you can do and what you should be careful of

DO's (but be careful)

Protein-protein interactions

(e.g. complex formation, crowding behavior, ligand binding)

Protein-membrane interactions

(interplay between lipid/protein mismatch and self-aggregation or membrane deformation)

Tertiary structure transformations

(e.g. channel gating)

Cross-check

(with all-atom simulations)

DO-NOTs (or be very careful)

Formation of polar complexes in an apolar medium

(e.g. binding and pore formation by antimicrobial peptides)

Secondary structure transformations (e.g. folding, signalling)

Specific protein structure (e.g. non-standard 2ndary structure)

Protein deformation (Martini too coarse for realistic packing)

Elastic Network

(EINeDyn)

 $\underline{all \alpha}$ Villin headpiece

<u>all β </u>

SH3 domain

protein G

ElNeDyn: Elastic Network in Dynamics

harmonic potentials between all $C\alpha$ beads within a cut-off

Villin headpiece

Effect of k_{EN} and C_{EN} on the structure and dynamics of the protein

Effect of k_{EN} and C_{EN} on the structure and dynamics of the protein

ElNeDyn: C_{EN} and k_{EN} parameterized against AA simulations

Martini: the bitter taste - The solutions / ElNeDyn

ElNeDyn: useful tool when single (native) state matters both structure and internal dynamics well represented

Martini: the bitter taste - The problems / COM vs. Ca

COM vs. C α

Martini: the bitter taste - The problems / COM vs. Ca

Coarse-graining new molecules:

Sweet MARTINI

extension of Martini force field to carbohydrates

Choosing the mapping

Choosing the mapping

Parameterization of non-bonded interactions

Direct	Manhood March	Econolisi	Acces		Activit		Acquirt		Accessed		anders		Accessor	
dis.	anneng tress	Freedow	Exp	CE.	Exp	eg	EMP CAP	65	EN	.eg	EU	60	- OH Exp	EX
Qda	03NT-C2-00	Elfantistamini (protosphol)				-25		\$-30		-18		-13		0
Q_{d}	HINT-CI	1-Propilaniae (processed)				-25		<:30		-18		-12		- 11
	NAT OH	Sodium (hydrated)				- 25		12:30		-18		-43		-13
Qui	193.	Resplanc				-25		<0.00		-18		-42		-11
	CL= 100	Chiesele (tradestat)				-25		45,30		-15		-43		-0
Ū.s	C-N+	Chedney						15.00		-15		-13		
-11	- Br.													
De:	Hard-Carll	Assessing		and a	-381	-25	-37	-78	0.000	-15	-15	-63	-8	-10
6.4	100012/2010	Water	-27	-08	-27	-18	-25	-23		14	10			
- u	10405-00	Etheretied	-15	-18	-33	-18	21	-23		-14		1	-8	4
$\bar{P}_{(1)}$	HOLE: HE	Acticaded	-34	-18	-29	-18	-19	-21	-9	- 10	-4	- 46	4	
	CNECO	Metle Bornamide	-35	-18		-18		-21		- 10		- 6		
12	63-011	Eduard	- 22	-144		- 68	-12	- #9	4	- 4			4	
84	63-801	1-Stoppand	- 23	- 196		100	-14				0			
		S-140 panel		-19		0.04	-10	-11	1	- 19	-	- 1	e.	
61.	10 - 10 L	(Bernel		- 14										
N.	8-5-C-	I-Protection	37	-11	-18		1.00		100	- 2	6.03		6Tb	
65	Canto.	2 Propagation	-17	-33	-16	-61			11	ä	1		1	
	C-N0-2	Network/Rase	-23	-13	-17	- QL	-6	-7				2	-2	
	Carels	Propriorited	-22	-13	-17	-9	-5	ন		10		2	1	
	0.04040	Methy Dormatic	-86	-12	<12	- 19	(-6)	-3	60	0	640	2	100	
	C211C=0	Propagal		-12	-12	- 19		-3		- 19	2	2	3	
Ng	ie seiež	Methoxyethone	-13	:19	60	- 2	662	- 12		8	69	6	69	
11	7-100	S. Bernerald of		100		T.		a.		107		10.7		
-9	C3-Ca	Male febries	-17	-10	-	1	171	ŝ		80		90	191	
64	CamCa	2.0000	-35	-10		8	656			6.7		63	10	
	CIC CIC	1.3-Batadame		-10	2	8	11	9		13		43	11	
	6-X4	Chloroform	-18	-10	-4	8	(73)	8	14	13		13	11	
\$2	Rysley	2 Betene		-10		8		43		43		23	13	1
	C3-X	1. Chloropropose	-16	-10	-1	- 8	12	43		43		83	12	1
		2 Bronnepropula	-16	=10	-2	29		63		4.5		83	12	
62	51	Propuse	gas	-10	8	00		65		45		84	1.8	
S.L.	54	Butter	-11.4	-10		64	18	08		88		0.4	16	
		and a choice	-gao	-10	10	- 14		1.0		55		12	19	

Parameterization of non-bonded interactions

Final particle types

molecule	B1	B2	B3	B4	B5	B 6
glucose (G)	P1	P4	P4			
fructose (F)	P1	P3	P4			
sucrose (SUC)	P1	P2	P4	P1	P1	P4
maltose (M)	P1	P2	P4	P2	P1	P4
cellobiose (C)	P1	P2	P4	P2	P1	P4
kojibiose (K)	P1	P2	P4	P2	P4	P1
sophorose (S)	P1	P2	P4	P2	P4	P1
nigerose (N)	P1	P2	P4	P2	P4	P1
laminarabiose (L)	P1	P2	P4	P2	P4	P1
trehalose (T)	P1	P2	P4	P2	P1	P4

Parameterization of bonded interactions

Parameterization of bonded interactions

o Angles and dihedrals should account for rotameric states

Parameterization of bonded interactions

o Angles and dihedrals should account for rotameric states o Bonded parameters fitted to mapped atomistic simulations

Parameterization of bonded interactions

o Angles and dihedrals should account for rotameric states o Bonded parameters fitted to mapped atomistic simulations o Most distributions unimodal, except for 1-6 linked sugars

Parameterization of bonded interactions

o Angles and dihedrals should account for rotameric states o Bonded parameters fitted to mapped atomistic simulations o Most distributions unimodal, except for 1-6 linked sugars

Testing: partitioning free energy

			All-atom	Ma	Exp				
molecule	ΔG^{W} (AA) (kJ mol ⁻¹)	ΔG^{O} (AA) (kJ mol ⁻¹)	$\Delta\Delta G_{\rm OW}$ (AA) (kJ mol ⁻¹)	log P _{OW} (AA)	∆ <i>G</i> ^w (CG) (kJ mol ⁻¹)	∆ <i>G</i> ^o (CG) (kJ mol ⁻¹)	$\Delta\Delta G_{\rm OW}$ (CG) (kJ mol ⁻¹)	log P _{OW} (CG)	log P _{ow} (exp)
glucose (G)		-74	15	-2.5	-60	-43	17	-2.9	-2.8
fructose (F)			11	-2.0		-44	16	-2.7	
sucrose (SUC)	-107		18	-3.0	-103		20	-3.4	-3.3
maltose (M)	-121		25	-4.2	-120		24	-4.0	
cellobiose (C)	-114		24	-4.0	-120		24	-4.0	
kojibiose (K)	-121		28	-4.7	-120		24	-4.0	
sophorose (S)	-120		32	-5.4	-120		24	-4.0	
nigerose (N)	-119		30	-5.0	-120		24	-4.0	
laminarabiose (L)	-120	-91	29	-5.0	-120		24	-4.0	
trehalose (T)	-120		28	-5.0	-120		24	-4.0	-3.78

Testing on oligosaccharides: amylose

Testing on oligosaccharides: amylose

o Amylose is 1-4 linked glucose oligosaccharide (principal component of starch)

Testing on oligosaccharides: amylose

o Amylose is 1-4 linked glucose oligosaccharide (principal component of starch) o Amylose in apolar solvents forms helical structure (V-amylose)

Testing on oligosaccharides: amylose

o Amylose is 1-4 linked glucose oligosaccharide (principal component of starch) o Amylose in apolar solvents forms helical structure (V-amylose) o Pitch length around 7-8 Angstrom (6-8 sugars)

Testing on oligosaccharides: amylose

o Amylose is 1-4 linked glucose oligosaccharide (principal component of starch) o Amylose in apolar solvents forms helical structure (V-amylose) o Pitch length around 7-8 Angstrom (6-8 sugars)

Testing on oligosaccharides: amylose

o Amylose is 1-4 linked glucose oligosaccharide (principal component of starch) o Amylose in apolar solvents forms helical structure (V-amylose) o Pitch length around 7-8 Angstrom (6-8 sugars)

General recipe for CGing your own molecule

General recipe for CGing your own molecule

General recipe for CGing your own molecule

General recipe for CGing your own molecule

Decompose molecule into building blocks

Assign particle types

Assign standard bonded potentials or derive them from AA simulations

General recipe for CGing your own molecule

Decompose molecule into building blocks

Assign particle types

Assign standard bonded potentials or derive them from AA simulations

IV Compare behavior as much as possible to either experimental data or AA simulations

V

General recipe for CGing your own molecule

Decompose molecule into building blocks

Assign particle types

Assign standard bonded potentials or derive them from AA simulations

IV Compare behavior as much as possible to either experimental data or AA simulations

Optimize model going back to step I, II or III

Key features of the MARTINI model

• Four-to-one mapping

- Four-to-one mapping
- Explicit solvent

- Four-to-one mapping
- Explicit solvent
- Short range potentials

- Four-to-one mapping
- Explicit solvent
- Short range potentials
- Systematic building block approach

- Four-to-one mapping
- Explicit solvent
- Short range potentials
- Systematic building block approach
- Parameterization based on:
 - Thermodynamic data (non-bonded)
 - Atomistic simulations (bonded)

- Four-to-one mapping
- Explicit solvent
- Short range potentials
- Systematic building block approach
- Parameterization based on:
 - Thermodynamic data (non-bonded)
 - Atomistic simulations (bonded)

Key features of the MARTINI model

- Four-to-one mapping
- Explicit solvent
- Short range potentials
- Systematic building block approach
- Parameterization based on:
- Thermodynamic data (non-bonded)
- Atomistic simulations (bonded)

Lipid force field

Marrink, Risselada, Yefimov, Tieleman, de Vries JPC-B (2007)

Protein force field

Monticelli, Kandasamy, Periole, Larson, Tieleman, Marrink JCTC (2008)

Key features of the MARTINI model

- Four-to-one mapping
- Explicit solvent
- Short range potentials
- Systematic building block approach
- Parameterization based on:
- Thermodynamic data (non-bonded)
- Atomistic simulations (bonded)

Lipid force field

Marrink, Risselada, Yefimov, Tieleman, de Vries JPC-B (2007)

Protein force field

Monticelli, Kandasamy, Periole, Larson, Tieleman, Marrink JCTC (2008)

Carbohydrate force field

Lopez, Rzepiela, de Vries, Dijkhuizen, Huenenberger, Marrink JCTC (2009)

Key features of the MARTINI model

- Four-to-one mapping
- Explicit solvent
- Short range potentials
- Systematic building block approach
- Parameterization based on:
- Thermodynamic data (non-bonded)
- Atomistic simulations (bonded)

Same particle type for similar building blocks e.g. O-C-C-OH group

Lipid force field

Marrink, Risselada, Yefimov, Tieleman, de Vries JPC-B (2007)

Protein force field

Monticelli, Kandasamy, Periole, Larson, Tieleman, Marrink JCTC (2008)

Carbohydrate force field

Lopez, Rzepiela, de Vries, Dijkhuizen, Huenenberger, Marrink JCTC (2009)

Key features of the MARTINI model

- Four-to-one mapping
- Explicit solvent
- Short range potentials
- Systematic building block approach
- Parameterization based on:
- Thermodynamic data (non-bonded)
- Atomistic simulations (bonded)

Human force field

(not yet released ...)

Carbohydrate force field

Lopez, Rzepiela, de Vries, Dijkhuizen, Huenenberger, Marrink JCTC (2009)

Lipid force field

Marrink, Risselada, Yefimov, Tieleman, de Vries JPC-B (2007)

Protein force field

Monticelli, Kandasamy, Periole, Larson, Tieleman, Marrink JCTC (2008)