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Simulation technique:

Molecular Dynamics,
Monte-Carlo,

Dissipative Particle Dynamics,
....

Degrees of freedom:

All-atom?
Coarse-grained?
Implicit solvent?

Force field:

Bonded,
Electrostatic,
VanderWaals 
interactions

(calibrated on 
experimental data)

Boundary conditions:

Periodic or fixed

Pressure, 
Temperature
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CG models Generic

- Lipid head/tail, cylindrical peptides

- Based on simple distinction of 

Specific

- Mapping to real residues, 
  specific lipids, 3-5 to 1 mapping

- Optimized potential energy functions

- Real physical units (nm, K, kJ/mol)   

United atom
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Approach I (Klein, Lyubartsev, Voth)
Inverse MC/Iterative Boltzmann, Force matching

Specific CG models

Drawbacks: 
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• Chemical fine details disappear
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 The MARTINI CG Model
Speed: 

Short range 
Large timestep
Few particles

General: 
Biomolecular systems
Consistent modeling

Easy2Use: 
Buildingblock approach
Limited # particle types

Accuracy: 
Multi level optimization
Parameterization based
on thermodynamic data
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THE PARAMETRIZATION: bonded

angle

Bonded interactions are parameterized by 
mapping to all-atom simulations
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 standard LJ and Coulombic energy functions
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Non-bonded interactions described by
 standard LJ and Coulombic energy functions

THE LOOKS: non-bonded

.... however: short-ranged by use of shifted functions
(cut-off 1.2 nm, 2-3 neighbors)



THE LOOKS: non-bonded

charged          polar                        intermediate        apolar  

LJ interactions depend on 
hydrophilicity of CG particle type

2.0 < ε < 5.6 kJ/mol ;  σ = 0.47 nm
O

IX



THE PARAMETRIZATION: non-bonded

octanolwater

PN

C

LJ interactions are parameterized based 
on experimental partitioning free energies 

(and densities)
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SIMULATION PARAMETERS
Kinetics need to be mapped on real time

-  A mapping factor of 4 reproduces self-diffusion of water, and  
describes friction dominated processes in general

(e.g. lipid diffusion, water permeation)

-  Kinetics of more complex processes depend on energy barriers

Reality

AA

CG
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Free energy of a lipid inside a bilayer

            

CG AA

    THE VALIDATION 

Baron & van Gunsteren, JPC-B, 2006

  Averaged configurational space

AA     CG

comparing to atomistic level simulations 

  Tieleman & Marrink, JACS, 2006
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Bilayer properties in semi-quantitative 
agreement with experiments

Martini CG Experimental

Structural
Area/lipid (nm2)
DPPC
DPPE
DSPC

0.66
0.62
0.66

0.64
0.60
0.65

Elastic
Bending rigidity (J) 8 x 10-20 6 x 10-20

Area compress. (mN m-1) 260 230

Thermodynamical
Phase transition T (K) 300 315

Line tension (pN) 30 10-20

Dynamical
Lipid diffusion coeff.
(cm2 s-1)

2.5 x 10-7 10-7-10-8

Water permeation rate
(cm s-1)

1.5 x 10-3 ~ 10-3

THE VALIDATION
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Rings: Four-to-one mapping inadequate

• Two/three-to-one mapping

• Reduction of interaction size and strength
  
  σ = 0.7 * σstandard
  ε = 0.75 * εstandard

• Reproduction of 
  liquid densities & partitioning free energies 
  for benzene and cyclohexane

• Behavior of cholesterol in membranes

LORD OF THE RINGS
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   How to simulate lipid vesicles?

Vesicle self-assembly

No!  Equilibration takes 
100s of ns

Mean field potentials 
save time ...

Risselada & Marrink, JPC-B (2008)
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   How to simulate lipid vesicles?

Vesicle self-assembly

No!  Equilibration takes 
100s of ns

Mean field potentials 
save time ...

Risselada & Marrink, JPC-B (2008)

PE/PC mixed vesicle

%
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simulation time

1 µs !!

100 nm

Pore allows flip-flop

Equilibrated ?

The art of liposome modeling
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