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~ s to mins 

Globular, membrane protein  
complexation, fibril aggregation 
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Protein folding, oligomer 
aggregation, membrane 
dynamics ~ ms - 

seconds 

Coarse-Graining and MultiScale!

Barnase-Barstar (1BRS) 

Brome Mosaic Virus (T=1) Particle  
PDB: 1YC6, www.pdb.org 
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Certain degrees of freedom (position, momentum, etc) of 
different components of a system (protein, water) come to 
equilibrium more quickly than do others.!

Separation of Scales in Time and Space!
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A(t)!
or!
B(t)!

≠<A>!

<B>!
t


Remove perturbation t=t0!

Certain degrees of freedom (position, momentum, etc) of 
different components of a system (protein, water) come to 
equilibrium more quickly than do others.!

Separation of Scales in Time and Space!
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A(t)!
or!
B(t)!

≠<A>!

<B>!
t


Remove perturbation t=t0!

Certain degrees of freedom (position, momentum, etc) of 
different components of a system (protein, water) come to 
equilibrium more quickly than do others.!

Separation of Scales in Time and Space!

This difference in rapidly equilibrated regions, and regions 
whose equilibrium properties are more slowly established, 
allows for a physically correct separation of spatial scales and 
time scales.!
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Given protein (A) and solvent (B) degrees of freedom, lets follow 
equilibrium property, O, of protein:!

Coarse-Graining 
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Now lets separate protein (A) and solvent (B) degrees of 
freedom, for the equilibrium property, O, of protein:
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And rewrite; QB is determined by configuration of protein A  
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Our effective Hamiltonian is now in terms of an equilibrium 
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Separation of Timescales 

≠<A>


<B>
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A(t)!
and !
B(t)!

The translational motion of a large protein (A(t)) in a bath of 
small solvent molecules (B(t)) involves a separation of timescales: 
fast solvent and slow protein.!
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Separation of Timescales 

However our numerical MD must follow the fastest timescale, 
which is not only costly due to its small Δt, but which is also the 
least interesting. !
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small solvent molecules (B(t)) involves a separation of timescales: 
fast solvent and slow protein.!
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Lets ignore the solvent altogether by “integrating it out”, but 
include it implicitly as it must influence the protein’s equilibrium 
relaxation process. !

Separation of Timescales 
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Lets ignore the solvent altogether by “integrating it out”, but 
include it implicitly as it must influence the protein’s equilibrium 
relaxation process. !

Lets start by replacing it with an effective frictional force on 
the protein.This eliminates the uninteresting fast timescale, 
that allows us to define a new equation of motion:!

Separation of Timescales 
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m dv
dt

= −γv
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Lets ignore the solvent altogether by “integrating it out”, but 
include it implicitly as it must influence the protein’s equilibrium 
relaxation process. !

Lets start by replacing it with an effective frictional force on 
the protein.This eliminates the uninteresting fast timescale, 
that allows us to define a new equation of motion:!

Separation of Timescales 

€ 

m dv
dt

= −γv

If we integrate through time, then the solution is!

Note that the limiting velocity 
goes to zero at t→∞


€ 

v t( ) = v 0( )exp −γt / m( )
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Separation of Timescales 
However, the protein will eventually relax back to equilibrium, 
and the limiting velocity fluctuations should be governed by the 
usual Maxwell-Boltzmann (equipartition of energy), !

€ 

v2 = kT / m
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slide shows velocities going to zero), this damped motion model 
is incomplete!
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Separation of Timescales 
However, the protein will eventually relax back to equilibrium, 
and the limiting velocity fluctuations should be governed by the 
usual Maxwell-Boltzmann (equipartition of energy), !

Since we get no equipartition of energy (equation on previous 
slide shows velocities going to zero), this damped motion model 
is incomplete!


€ 

v2 = kT / m

Apparently we are missing an additional force due to solvent. 
Since solvent is at equilibrium, its motion is only equilibrium 
fluctuations about its mean. !
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This manifests itself on the protein motion as a random 
fluctuation force!

Fluctuation-Dissipation Theorem 

€ 

m dv
dt

= −γv + δQ t( )
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This manifests itself on the protein motion as a random 
fluctuation force!

Fluctuation-Dissipation Theorem 

€ 

m dv
dt

= −γv + δQ t( )

These random fluctuations at equilibrium, are well-described by 
a Gaussian distribution


€ 

δQ t( ) = 0 δQ t( )δQ t'( ) = 2Bδt

Now what do EOM look like?!

Solve ordinary first order differential equation by multiplying 
with exponential integrating factor:!
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exp −γt / m( )
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Fluctuation-Dissipation Theorem!
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Fluctuation-Dissipation Theorem!
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Damping that slows system down is now balanced by a random 
term that speeds the system up !
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Fluctuation-Dissipation Theorem!
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Damping that slows system down is now balanced by a random 
term that speeds the system up !

The relationship between friction and random force can be 
determined in limit as t→∞ for which the fluctuations of the 
velocity should conform to the equipartition of energy!
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Continue solving, and many tedious steps later we arrive at:!

Fluctuation-Dissipation Theorem 

€ 

v2 = v 0( )2 exp −2γt / m( ) +
B
γm

1− exp −2γt / m( )[ ]

Equipartition of energy allows us to define B!
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Continue solving, and many tedious steps later we arrive at:!

Fluctuation-Dissipation Theorem 

€ 

v2 = v 0( )2 exp −2γt / m( ) +
B
γm

1− exp −2γt / m( )[ ]

v2 = kT / m → B = γkT

δQ t( )δQ t'( ) = 2γkTδt

Equipartition of energy allows us to define B!

And 2nd moment of Gaussian random force!

The essence of fluctuation-dissipation theorem is that it relates 
equilibrium thermal fluctuations to out-of-equilibrium quantities. !

It states that the dissipative effects needed to restore a non-
equilibrium system to equilibrium are derived from equilibrium 
fluctuations of our system correlated at different times. !
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Newtonian to Langevin Dynamics 
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Newton’s equation of motion of all degrees of freedom:
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Newtonian to Langevin Dynamics 

  

€ 

m
d
 
v t( )
dt

=
 
f t( )

Replaced with Langevin equation for slow particle, with fast 
degrees of freedom manifested as effective forces:!

Newton’s equation of motion of all degrees of freedom:
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Newtonian to Langevin Dynamics 

Replaced with Langevin equation for slow particle, with fast 
degrees of freedom manifested as effective forces:!

(1) A friction or drag force representing hydrodynamic effects 
of the missing solvent. D* is the mobility; D*=1/(6πηa), where a 
is particle radius!

Newton’s equation of motion of all degrees of freedom:
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Newtonian to Langevin Dynamics 

Replaced with Langevin equation for slow particle, with fast 
degrees of freedom manifested as effective forces:!

(1) A friction or drag force representing hydrodynamic effects 
of the missing solvent. D* is the mobility; D*=1/(6πηa), where a 
is particle radius!

(2) Random fluctuating force described as “white noise” or 
Gaussian distribution of the random walk


Newton’s equation of motion of all degrees of freedom:
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Langevin Dynamics!

  

€ 

m
 ˙ v = − 1

D*
 
v +
 
Q 

Let’s examine this separation of into fast and slow timescales


Ignore systematic force. !
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Langevin Dynamics!
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v +
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Let’s examine this separation of into fast and slow timescales


Definitions


Ignore systematic force. !

Rewrite in terms of position variable !
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Langevin Dynamics!
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Langevin Dynamics!
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Assume that slow particle is at thermal equilibrium with solvent 
bath so equipartition holds!
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Langevin Dynamics!
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Assume that slow particle is at thermal equilibrium with solvent 
bath so equipartition holds!

Position and random force are uncorrelated so <r·Q>=0!
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Langevin Dynamics!
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 

And now this partial differential can be solved 


Assume that slow particle is at thermal equilibrium with solvent 
bath so equipartition holds!

Position and random force are uncorrelated so <r·Q>=0!
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Langevin Dynamics: Limits!

€ 

τ = mD*

Define a time scale as the ratio of mass over friction:  
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For times much shorter than this time variable:!
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And substitute


For times much shorter than this time variable:!

We recover an MD like expression (we ignored systematic force):!
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Langevin Dynamics: Limits!
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 
r =

6kTτ 2
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τ
− 1− e− t / τ( ) 

 
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 
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t << τ

 
r ⋅
 
r =

3kTt2

m
= m
 
v ⋅
 
v t 2  

r =
 
v t

t >> τ

 
r ⋅
 
r =

6kTtτ
m

= 6kTD* t = 6Dt D = ktD* =
kT

6πηa

Define a time scale as the ratio of mass over friction:  


And substitute


For times much shorter than this time variable:!

We recover an MD like expression (we ignored systematic force):!

We recover the diffusion expression and fluctuation-dissipation:!

For times much longer than this time variable:!
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Brownian Dynamics 
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Brownian dynamics is a next level of coarse-graining. We don’t 
see the instantaneous acceleration of the Brownian particle: i.e. 
we are on an effectively longer timescale. 
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Brownian Dynamics 
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0 = −ε
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v t( ) +

 
f t( ) +

 
Q t( )

Brownian dynamics is a next level of coarse-graining. We don’t 
see the instantaneous acceleration of the Brownian particle: i.e. 
we are on an effectively longer timescale. 


Use simple finite difference expression: !

Draw from a Gaussian distribution 
of this 2nd moment !  
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A(t)!
or!
B(t)!

≠<A>!

<B>!
t


Remove perturbation t=t0!

Certain degrees of freedom (position, momentum, etc) of 
different components of a system (protein, water) come to 
equilibrium more quickly than do others.!

Summary of Coarse Graining 



    Lecture 1 

A(t)!
or!
B(t)!

≠<A>!

<B>!
t


Remove perturbation t=t0!

Certain degrees of freedom (position, momentum, etc) of 
different components of a system (protein, water) come to 
equilibrium more quickly than do others.!

Summary of Coarse Graining 

This difference in rapidly equilibrated regions, and regions 
whose equilibrium properties are more slowly established, 
allows for a physically correct separation of spatial scales and 
time scales.!
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How do we decide what to integrate out? !

Separation of Lengthscales 

CG electrostatic models for long-range recognition in protein-
ligand and protein-protein association!

Structural coarse-graining, Henderson uniqueness theorem, and!
Thermodynamic-dynamic relation for water !

Principle of minimal frustration: protein folding, protein 
aggregation, and protein-membrane interactions!

The work in this paper clearly shows that there is an art in 
knowing what needs to be preserved in the coarse-graining 
procedure in order to correctly render the key underlying 

physical processes one is trying to emulate!
M. E. Johnson, T. Head-Gordon, A. A. Louis (2007). Representability problems for coarse-grained water 

models. J. Chem. Phys. 126, 144509-144519.  
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Protein-Ligand Binding: SOD/Superoxide 
“CuZn superoxide dismutase (CuZnSOD) catalyses the dismutation 
reaction of the toxic superoxide radical to molecular oxygen and 
hydrogen peroxide and thus forms a crucial part of the cellular 
antioxidant defense mechanism”. http://srs.dl.ac.uk/mbg/sod.html
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Protein-Ligand Binding: SOD/Superoxide!

Single point mutations in SOD are 
associated with the development 
of a form of motor neuron 
disease known as ALS or Lou 
Gehrig’s disease!

“CuZn superoxide dismutase (CuZnSOD) catalyses the dismutation 
reaction of the toxic superoxide radical to molecular oxygen and 
hydrogen peroxide and thus forms a crucial part of the cellular 
antioxidant defence mechanism”. http://srs.dl.ac.uk/mbg/sod.html
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Superoxide Dismutase 
CuZnSOD is a protein dimer. Each 151 
amino acid monomer folds as an eight 
stranded greek-key beta-barrel 
connected by three external loops. The 
overall charge of SOD is -4e. !

http://srs.dl.ac.uk/mbg/sod.html
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Superoxide Dismutase 
CuZnSOD is a protein dimer. Each 151 
amino acid monomer folds as an eight 
stranded greek-key beta-barrel 
connected by three external loops. The 
overall charge of SOD is -4e. !

The active site of SOD lies at base of 
15Å deep cavity formed by two loops 
containing charged residues. The active 
site consists of 1 Cu and 1 Zn ion 
bridged by imidazole ring of His61, a 
feature unique to enzymes of this class. 


http://srs.dl.ac.uk/mbg/sod.html
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Superoxide Dismutase 
CuZnSOD is a protein dimer. Each 151 
amino acid monomer folds as an eight 
stranded greek-key beta-barrel 
connected by three external loops. The 
overall charge of SOD is -4e. !

The active site of SOD lies at base of 
15Å deep cavity formed by two loops 
containing charged residues. The active 
site Cu is coordinated by His61 and 
three His ligands and a water molecule, 
while Zn is ligated by His61 and two His 
and an aspartic acid. 


http://srs.dl.ac.uk/mbg/sod.html
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Diffusion Controlled Chemical Reactions!
The overall rate of any (bio)chemical reaction is the rate of the 
slowest step. Diffusion-controlled reactions are reactions in 
which the catalysis step occurs so quickly that the reaction rate 
is determined by how fast reactants encounter each other. !
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evolutionarily optimized enzymes. !
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Diffusion Controlled Chemical Reactions!
The overall rate of any (bio)chemical reaction is the rate of the 
slowest step. Diffusion-controlled reactions are reactions in 
which the catalysis step occurs so quickly that the reaction rate 
is determined by how fast reactants encounter each other. !

Diffusion-controlled rates are more likely found in solution 
where diffusion of reactants is slower due to the greater 
number of collisions with solvent molecules, and is typical for 
evolutionarily optimized enzymes. !

Experimentally we know the following about the functional 
properties of the SOD enzyme. The actual reaction itself !

takes very little time to complete, but instead the rate limiting 
step is diffusion of the O2

- radical to the active site. !
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SOD/O2
- Diffusion Controlled Rates 

Thus the SOD catalysis rate of conversion of superoxide to 
hydrogen peroxide is close to diffusion-controlled. Diffusion 
controlled rates imply that there is no systematic force between 
SOD and O2

- (its all random collisions and friction forces).!

This is surprising for several reasons:!
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- ligand 

(-1e) should be a repulsive interaction that would slow down 
the rate.!
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SOD/O2
- Diffusion Controlled Rates 

Thus the SOD catalysis rate of conversion of superoxide to 
hydrogen peroxide is close to diffusion-controlled. Diffusion 
controlled rates imply that there is no systematic force between 
SOD and O2

- (its all random collisions and friction forces).!

This is surprising for several reasons:!

(1)  The overall charge of the protein (-4e) and the O2
- ligand 

(-1e) should be a repulsive interaction that would slow down 
the rate.!

(2) The rate decreases with increasing salt concentration!

(3) The active site sits at the bottom of a deep cleft that 
occupies 1/150th of the total protein surface area.!
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SOD/O2
- Diffusion Controlled Rates 

Today we will develop a model for the potential energy surface 
of SOD/O2

- interaction that includes electrostatics, dielectric 
boundaries, salt effects (ionic strength of solution), and active 
site accessibility.!
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site accessibility.!

We then will use Brownian dynamics to simulate a reaction rate 
with above systematic forces, combined with a flux model to 
account for diffusion in an infinite domain. We will compare this 
to the rate with varying systematic forces (with and without 
dielectric discontinuities, with and without salt, etc).!
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SOD/O2
- Diffusion Controlled Rates 

Today we will develop a model for the potential energy surface 
of SOD/O2

- interaction that includes electrostatics, dielectric 
boundaries, salt effects (ionic strength of solution), and active 
site accessibility.!

We then will use Brownian dynamics to simulate a reaction rate 
with above systematic forces, combined with a flux model to 
account for diffusion in an infinite domain. We will compare this 
to the rate with varying systematic forces (with and without 
dielectric discontinuities, with and without salt, etc).!

We propose a possible explanation for poor function for ALS 
(although recently it has been classified as an aggregation 
disease)!
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The earliest molecular recognition events are controlled by long-
range forces. !

Electrostatic Model of SOD System!
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The earliest molecular recognition events are controlled by long-
range forces. The electrostatic potential due to 76 charges of 
SOD can be described as a multipole expansion about the origin:!

Electrostatic Model of SOD System!
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The electrostatic potential energy at some point ri due to a 
distribution of charges near some origin can be described as a 
multipole expansion!

Multipole Expansion!
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The electrostatic potential energy at some point ri due to a 
distribution of charges near some origin can be described as a 
multipole expansion!
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°


°


°


°
°



°


  

€ 

Velect = qi

q j
 
r i −
 
r jj

∑

 
r i −
 
r j = ri

2 − 2
 
r i ⋅
 
r j + rj

2 1 / 2
= ri 1−

2
 
r i ⋅
 
r j

ri

+
rj

2

ri
2

 

 
 
 

 

 
 
 

1 / 2

rj!

ri!
°




    Lecture 1 

The electrostatic potential energy at some point ri due to a 
distribution of charges near some origin can be described as a 
multipole expansion!
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The electrostatic potential energy at some point ri due to a 
distribution of charges near some origin can be described as a 
multipole expansion!

Multipole Expansion!
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Since rj<<ri, we can reexpress the 1/ri-rj as a binomial 
expansion (i.e x is small)!

Multipole Expansion!
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Since rj<<ri, last 
2 terms are 
ignored!
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Rexpress previous equation:!

Multipole Expansion!
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Rexpress this equation in terms of vector components:!

Which gives us following multipole coefficients:!
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εP


Coarse-Graining Electrostatics 
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εP


The 76 charges of SOD are 
reduced to a multipole 
expansion about the origin!
Monopole=-4e!
Dipole~0!
Quadrupole: large!
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εP


The 76 charges of SOD are 
reduced to a multipole 
expansion about the origin!
Monopole=-4e!
Dipole~0!
Quadrupole: large!

Now just place five charges 
in such a way that there 
multipole expansion 
reproduces same moments:!

This is equivalent to 5 
charges arranged as shown!

Coarse-Graining Electrostatics 

q1


q3


O2
-


R


r


a=28.5


q2


q4
q5


θ


εP


εS


O2
- is small sphere of q=-1!
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εP


Coarse-Grained Model of SOD System 
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R
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a=28.5
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q4
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Charges are enclosed in 
sphere of r=28.5A of !
low dielectric (εP)!
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εP


Coarse-Grained Model of SOD System 
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a=28.5


q2


q4
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Charges are enclosed in 
sphere of r=28.5A of !
low dielectric (εP)!

Outside protein is salty 
aqueous environment of high 
dielectric (εs)!
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εP


Coarse-Grained Model of SOD System 

q1


q3


O2
-


R


r


a=28.5


q2


q4
q5


Charges are enclosed in 
sphere of r=28.5A of !
low dielectric (εP)!

Outside protein is salty 
aqueous environment of high 
dielectric (εs)!

Active sites of dimer are 
two caps which occupy 
1/150th of protein surface 
area!

θ


εP


εS
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εP


Coarse-Grained Model of SOD System 

q1


q3


O2
-


R


r


a=28.5


q2


q4
q5


Charges are enclosed in 
sphere of r=28.5A of !
low dielectric (εP)!

Outside protein is salty 
aqueous environment of high 
dielectric (εs)!

Active sites of dimer are 
two caps which occupy 
1/150th of protein surface 
area!

θ


εP


εS


How to model the salty solution? More explicit ions? Since they 
diffuse around, we are only interested in their average spatial 
distributions. Use Debye Huckel theory!
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The Poisson-Boltzmann Equation!

€ 

−∇ ε r( )∇Φ r( )[ ] +κ 2Φ r( ) = ρ fixed r( )

Poisson’s Equation: !

€ 

−∇ ε r( )∇Φ r( )[ ] = ρ r( ) = ρ fixed r( ) + ρions r( )

€ 

ρions r( ) = c jq j exp −q jΦ r( ) /kT( )
j=1

K

∑Mean Field approximation: !

€ 

−∇ ε r( )∇Φ r( )[ ] + c jq j exp −q jΦ r( ) /kT( )
j=1

K

∑ = ρ fixed r( )Non-linear PB!

Linearized PB!

If 1:1 salt; qΦ/kT <<1!

€ 

κ =
8πe2C
εskT

Inverse Debye Length!
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Debye-Huckel Theory 
What do solutions of the mean field equations look like?!
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Debye-Huckel Theory 

€ 

1
r2

d
dr

r2 dΦ
dr

 

 
 

 

 
 = −

4π
ε
ρ r( )

What do solutions of the mean field equations look like?!
Poissons equation in spherical 
coordinates!
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Debye-Huckel Theory 

€ 

1
r2

d
dr

r2 dΦ
dr

 

 
 

 

 
 = −

4π
ε
ρ r( )

4πr2
a

∞

∫ ρ r( )dr = 0

What do solutions of the mean field equations look like?!
Poissons equation in spherical 
coordinates!

We will enforce electroneutrality!
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Debye-Huckel Theory 

€ 

1
r2

d
dr

r2 dΦ
dr

 

 
 

 

 
 = −

4π
ε
ρ r( )

4πr2
a

∞

∫ ρ r( )dr = 0

ni'= ni exp −qiΦ / kT( )

What do solutions of the mean field equations look like?!
Poissons equation in spherical 
coordinates!

We will enforce electroneutrality!

Ions are distributed according to 
Boltzmann distribution with 
interaction energy –qiΦ(r) !
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Debye-Huckel Theory 

€ 

1
r2

d
dr

r2 dΦ
dr

 

 
 

 

 
 = −

4π
ε
ρ r( )

4πr2
a

∞

∫ ρ r( )dr = 0

ni'= ni exp −qiΦ / kT( )

1
r2

d
dr

r2 dΦ
dr

 

 
 

 

 
 = −

4π
ε

qini exp −qiΦ / kT( )
i
∑

exp −qiΦ / kT( ) = 1− qiΦ / kT

What do solutions of the mean field equations look like?!
Poissons equation in spherical 
coordinates!

We will enforce electroneutrality!

Ions are distributed according to 
Boltzmann distribution with 
interaction energy –qiΦ(r) !

Density=Σqini’!
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Debye-Huckel Theory 

€ 

1
r2

d
dr

r2 dΦ
dr

 

 
 

 

 
 = −

4π
ε
ρ r( )

4πr2
a

∞

∫ ρ r( )dr = 0

ni'= ni exp −qiΦ / kT( )

1
r2

d
dr

r2 dΦ
dr

 

 
 

 

 
 = −

4π
ε

qini exp −qiΦ / kT( )
i
∑

exp −qiΦ / kT( ) = 1− qiΦ / kT

What do solutions of the mean field equations look like?!
Poissons equation in spherical 
coordinates!

We will enforce electroneutrality!

Ions are distributed according to 
Boltzmann distribution with 
interaction energy –qiΦ(r) !

For low [monovalent salts], Φ<<kT 
and do expansion of exponential


Density=Σqini’!
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Debye-Huckel Theory!

€ 

1
r2

d
dr

r2
dΦ
dr

 

 
 

 

 
 = −

4π
ε

qini
i
∑ +

4π
ε

qi
2niΦ j / kT

i
∑

0
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Debye-Huckel Theory!

€ 

1
r2

d
dr

r2 dΦ
dr

 

 
 

 

 
 = −

4π
ε

qini
i
∑ +

4π
ε

qi
2niΦ j / kT

i
∑

1
r2

d
dr

r2
dΦ
dr

 

 
 

 

 
 =

4π
ε

qi
2niΦ j / kT

i
∑

0




    Lecture 1 

Debye-Huckel Theory!

€ 

1
r2

d
dr

r2
dΦ
dr

 

 
 

 

 
 = −

4π
ε

qini
i
∑ +

4π
ε

qi
2niΦ j / kT

i
∑

1
r2

d
dr

r2 dΦ
dr

 

 
 

 

 
 =

4π
ε

qi
2niΦ j / kT

i
∑

1
r2

d
dr

r2
dΦ
dr

 

 
 

 

 
 = κ 2Φ j

κ  is the DH screening length. It is what 
we will use to control salt concentration in 
the model.!

0
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Debye-Huckel Theory!

€ 

1
r2

d
dr

r2 dΦ
dr

 

 
 

 

 
 = −

4π
ε

qini
i
∑ +

4π
ε

qi
2niΦ j / kT

i
∑

1
r2

d
dr

r2 dΦ
dr

 

 
 

 

 
 =

4π
ε

qi
2niΦ j / kT

i
∑

1
r2

d
dr

r2 dΦ
dr

 

 
 

 

 
 =κ 2Φ j

Φ j =
A
R
exp κR( )

κ is the DH screening length. It is what 
we will use to control salt concentration in 
the model.!

With a solution that will look something 
like this…!

0
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Electrostatic Potential Energy 

€ 

Ψin =
qnr

m

Rm+1 + BmR
m

 

 
 

 

 
 

m= 1
∑ Pm cosθ( ) 0 < R < a

n= 1

# ch arg es

∑

Ψout =
Am exp −κR( )Km κR( )Pm cosθ( )

Rm+1
m= 1
∑ R > a

The general form of the potential for charges inside low 
dielectric sphere and for outside high dielectric solvent
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Electrostatic Potential Energy 

€ 

Ψin =
qnr

m

Rm+1 + BmR
m

 

 
 

 

 
 

m= 1
∑ Pm cosθ( ) 0 < R < a

n= 1

# ch arg es

∑

Ψout =
Am exp −κR( )Km κR( )Pm cosθ( )

Rm+1
m= 1
∑ R > a

Pm cosθ( )

Km κR( )

The general form of the potential for charges inside low 
dielectric sphere and for outside high dielectric solvent


Legendre polynomials!

Modified spherical bessel functions 
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Electrostatic Potential Energy 
The unknown coefficients Am and Bm are solved to give the 
final form of the potential by enforcing boundary conditions. 
These are the requirements that the potential must be 
continuous across the dielectric boundary:
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Electrostatic Potential Energy 

€ 

−
1
a
dΨin

dθ R= a

= −
1
a
dΨout

dθ R= a

−εSOD
dΨin

dR R= a

= −εout
dΨout

dR R= a

The unknown coefficients Am and Bm are solved to give the 
final form of the potential by enforcing boundary conditions. 
These are the requirements that the potential must be 
continuous across the dielectric boundary:


Tangential to boundary!

Normal to boundary 
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Electrostatic Potential Energy 

€ 

−
1
a
dΨin

dθ R= a

= −
1
a
dΨout

dθ R= a

−εSOD
dΨin

dR R= a

= −εout
dΨout

dR R= a

Ψout =
qrm 2m + 1( )Km κR( )Pm cosθ( )exp −κ R − a( )( )

Rm+1 εout m + 1( )Km+1 κa( ) + mKm κa( ) εSOD −εout( )[ ]m= 1
∑

n= 1

# ch arg es

∑

The unknown coefficients Am and Bm are solved to give the 
final form of the potential by enforcing boundary conditions. 
These are the requirements that the potential must be 
continuous across the dielectric boundary:


Tangential to boundary!

Normal to boundary 
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Electrostatic Potential Energy 

€ 

−
1
a
dΨin

dθ R= a

= −
1
a
dΨout

dθ R= a

−εSOD
dΨin

dR R= a

= −εout
dΨout

dR R= a

Ψout =
qrm 2m + 1( )Km κR( )Pm cosθ( )exp −κ R − a( )( )

Rm+1 εout m + 1( )Km+1 κa( ) + mKm κa( ) εSOD −εout( )[ ]m= 1
∑

n= 1

# ch arg es

∑

The unknown coefficients Am and Bm are solved to give the 
final form of the potential by enforcing boundary conditions. 
These are the requirements that the potential must be 
continuous across the dielectric boundary:


Tangential to boundary!

Normal to boundary 


and series expansions converges to m~10.
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Brownian Motion: Brownian Dynamics 
The potential: !

€ 

Ψout =
qrm 2m + 1( )Km κR( )Pm cosθ( )exp −κ R − a( )( )

Rm+1 εout m + 1( )Km+1 κa( ) + mKm κa( ) εSOD −εout( )[ ]m= 1
∑

n= 1

# ch arg es

∑

and derivative with respect to R can be defined to get force. !
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Brownian Motion: Brownian Dynamics 

€ 

R t + Δt( ) = R t( ) +
Dm
kT

f t( )Δt +Q t( )

D =
aSOD + a

O2
−( )kT

4πηaSODaO2
−

Q t( ) = 0 Q t( )2 = 6DΔt

The potential: !

€ 

Ψout =
qrm 2m + 1( )Km κR( )Pm cosθ( )exp −κ R − a( )( )

Rm+1 εout m + 1( )Km+1 κa( ) + mKm κa( ) εSOD −εout( )[ ]m= 1
∑

n= 1

# ch arg es

∑

and derivative with respect to R can be defined to get force.!

Solve the numerical BD equation of motion of O2
- to SOD active 

sites!
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Simulating association rates of SOD/O2
-!

b

O2
- starts at a distance b from the origin where the potential 

and therefore the flux at b is isotropic. !

O2
-
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Simulating association rates of SOD/O2
-!

b

O2
- starts at a distance b from the origin where the potential 

and therefore the flux at b is isotropic. !

The rate can be expressed as !

k=k(b)P# # 

O2

-
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Simulating association rates of SOD/O2
-!

b

O2
- starts at a distance b from the origin where the potential 

and therefore the flux at b is isotropic. !

The rate can be expressed as !

k=k(b)P# # !

# # # # # k(b) is rate for reaching b!
## # # # after diffusing from infinity!

# # # # # and can be solved analytically


€ 

k b( ) =
1

4πD

exp βq
O2
−qSOD

monopole / R( )
R2

b

∞

∫ dR
 

 

 
 

 

 

 
 

−1

O2
-
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Simulating association rates of SOD/O2
-!

O2
-


b

P = B∞A is the probability that pair reacts and does not escape 
to infinity, A is activation energy of catalysis!
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Simulating association rates of SOD/O2
-!

O2
-


b

Since experiment tells us this 
is diffusion-controlled we set 

A=1              !

P = B∞A is the probability that pair reacts and does not escape 
to infinity, A is activation energy of catalysis!
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Simulating association rates of SOD/O2
-!

O2
-


b
B∞ is the probability that 

particle reaches b and 
makes it to the reactive 

surface when moving in an 
infinite domain. !

Since experiment tells us this 
is diffusion-controlled we set 

A=1              !

P = B∞A is the probability that pair reacts and does not escape 
to infinity, A is activation energy of catalysis!
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Simulating association rates of SOD/O2
-!

O2
-


b
B∞ is the probability that 

particle reaches b and 
makes it to the reactive 

surface when moving in an 
infinite domain. !

Since experiment tells us this 
is diffusion-controlled we set 

A=1              !

P = B∞A is the probability that pair reacts and does not escape 
to infinity, A is activation energy of catalysis!

But given all of these 
simplifications, it still would be 

impossible to simulate in an 
infinite domain. !
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Simulating association rates of SOD/O2
- 

bd

O2
-


We define another sphere at d, and if O2
- reaches this outer 

sphere we truncate the trajectory, and count the trajectory as 
non-reactive
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Simulating association rates of SOD/O2
- 

bd

O2
-


The probability B∞ now 
becomes !
B∞∝(1-δ), !

Where (1- δ) is the 
probability that particle 
reaches separation R=d. 


We define another sphere at d, and if O2
- reaches this outer 

sphere we truncate the trajectory, and count the trajectory as 
non-reactive
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Simulating association rates of SOD/O2
- 

b

=δ
 # trajectories reaching active site!

d

O2
-


  total # trajectories


The probability B∞ now 
becomes !
B∞∝(1-δ), !

Where (1- δ) is the 
probability that particle 
reaches separation R=d. 


δ is given by our simulation:!

We define another sphere at d, and if O2
- reaches this outer 

sphere we truncate the trajectory, and count the trajectory as 
non-reactive
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Simulating association rates of SOD/O2
- 

bd

O2
-


The probability B∞ is also proportional to (1-γ), the probability 
that if particle reaches separation R=d it escapes to infinity. !
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Simulating association rates of SOD/O2
- 

b

€ 

γ =
k b( )
k d( )d

O2
-


The probability B∞ is also proportional to (1-γ), the probability 
that if particle reaches separation R=d it escapes to infinity. !

We can solve for γ analytically
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Simulating association rates of SOD/O2
- 

However you can have 
multiple recrossings across 

the boundary d, so that 
final expression for B∞. 


b

€ 

γ =
k b( )
k q( )

B∞ =
δ

1− 1−δ( )γ[ ]

d

O2
-


The probability B∞ is also proportional to (1-γ), the probability 
that if particle reaches separation R=d it escapes to infinity. !

We can solve for γ analytically
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Summary of Results for SOD/O2
- 

The electrostatic field lines looked like this: 


q1


q3

r


a=28.5


q2


q4
q5


θ

Repulsive forces


Attractive forces
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Summary of Results for SOD/O2
- 

The electrostatic field lines looked like this: 


q1


q3

r


a=28.5


q2


q4
q5


θ

Repulsive forces


Attractive forces
(1)  Protein (-4e) and O2
- 

(-1e) suggest a 
repulsive interaction 
that would slow 
down the rate.!

(2) Active site sits at 
bottom of cleft that 
occupies 1/150th of 
total protein surface 
area. !
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Summary of Results for SOD/O2
- 

The electrostatic field lines looked like this: 


q1


q3

r


a=28.5


q2


q4
q5


θ


Effectively the potential steers superoxide !
toward the protein active sites.!

Repulsive forces


Attractive forces
(1)  Protein (-4e) and O2
- 

(-1e) suggest a 
repulsive interaction 
that would slow 
down the rate.!

(2) Active site sits at 
bottom of cleft that 
occupies 1/150th of 
total protein surface 
area. !
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Summary of Results for SOD/O2
- 

The electrostatic field lines looked like this with salt: 
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q3
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a=28.5
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Summary of Results for SOD/O2
- 

The electrostatic field lines looked like this with salt: 


q1


q3

r


a=28.5


q2


q4
q5


θ


The steering effect 
by SOD to guide 
superoxide toward 
protein active site is 
screened out. Salt 
decreases rate!!

Repulsive forces


Attractive forces


(3) The rate decreases 
with increasing salt 
concentration!
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Summary of Results for SOD/O2
- 

The electrostatic field lines looked like this with salt: 


q1


q3

r


a=28.5


q2


q4
q5


θ


The steering effect 
by SOD to guide 
superoxide toward 
protein active site is 
screened out. Salt 
decreases rate!!

Repulsive forces


Attractive forces


Mutations that destroy this charge distribution have the 
potential to destroy this steering effect!

(3) The rate decreases 
with increasing salt 
concentration!
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Virus Structure and Assembly!

Anti-viral drugs and 
vaccines and predicting new 
strains of viruses that arise 

from mutation are of 
tremendous clinical and 
fundamental importance !

PRV virus, Dr. Marko Reschke, 1994


(*)


(*) 

(*) some viruses only


Simulating their assembly from their constituent proteins is of 
importance for designing better gene delivery systems!
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Virus Structure and Assembly!

Each facet:!
-  3-fold symmetry!
-  comprised of 3T monomers!

T = ‘Triangulation number’!
 T=1 : 20x3x1 = 60 monomers!
 T=3 : 20x3x3 = 180 monomers!

PRV virus, Dr. Marko Reschke, 1994
 Helical capsid!

(*)


(*) 

(*) some viruses only
 Icosahedral capsid!
- 20 facets!
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Brome Mosaic Virus!

 WT forms T=3 particle (189 residues/
monomer and 180 monomers!

Mutant (1YC6) forms T=1 particle (154 
residues/monomer and 60 monomers) !

- plant virus: infects grass!
-  forms empty capsid in vitro !
-  potential drug delivery vehicle!
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Brome Mosaic Virus!

 WT forms T=3 particle (189 residues/
monomer and 180 monomers!

Mutant (1YC6) forms T=1 particle (154 
residues/monomer and 60 monomers) !

- plant virus: infects grass!
-  forms empty capsid in vitro !
-  potential drug delivery vehicle!

Can we assemble the Brome 
Mosaic virus from its monomers 

in these two forms?!
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Solving the Linearized PB Equation!
•  Analytical (Multipole) Methods !

•  Debye-Huckel; Kirkwood (1934): 1 molecule!
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Solving the Linearized PB Equation!
•  Analytical (Multipole) Methods !

•  Kirkwood (1934): 1 molecule!
•  Lotan & THG (2006): N molecules! Generalized theory of 

Kirkwood (1934) to arbitrary numbers of molecules through 
advances in multipole methods for Yukawa potential 
(Greengard and co-workers)!

•  Fast and accurate!
•  Restricted to idealized geometries!
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Solving the Linearized PB Equation!
•  Numerical Methods (Arbitrary dielectric geometries)!

•  Finite Difference Methods (FD): Delphi, UHBD, APBS!
•  Finite Element Methods (FE): APBS!

•  Realistic geometries; sparse matrix solvers available!
• More recent (APBS) are very fast!
• Mesh does not follow dielectric boundary exactly!
•  does not include von Neumann boundary condition!
•  forces estimated from finite difference of potential!

•  Boundary Element Methods (BEM)!
•  Surface (2D) instead of volume (3D): less unknowns!
•  both Dirchlet and Von Neumann b.c. satisfied by 
construction!

• Memory Intensive; computationally intensive, can handle 
only few macromolecules!
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Analytical Solution to PBE for N Molecules!

€ 

An
m

€ 

En
m

€ 
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€ 
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Direct Field 

Reaction Field 
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 
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∑ ∑tPotential inside cavity:!
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,
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j
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+
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∑ ∑t
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Analytical Solution to PBE for N Molecules!
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∑ ∑tPotential inside cavity:!
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( ) ( ) ( ),

1
T

N
i i j j

j
j i
=
≠
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Multipole methods for 
Yukawa potential 
(Greengard et al)
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Analytical Solution to PBE for N Molecules!
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Solving for A(i) and B(i):!
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If I solve A(i), then B(i) is straightforward; focus on solving A(i) !
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Analytical Solution to PBE for N Molecules!
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If I solve A(i), then B(i) is straightforward; focus on solving A(i) !

Define matrix Γ(i) !

and matrix Δ(i) !

Note that these matrices are merely constants of the system 
we are solving (and we solve once in a CG scheme)!



    Lecture 1 

Analytical Solution to PBE for N Molecules!
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Reaction Field!
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A = Γ Δ⋅ T⋅ A + E( )

Solution to A(i) can be 
written as
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Analytical Solution to PBE for N Molecules!
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Reaction Field!

Cavity-polarization operator from external charges!

Dielectric-boundary-crossing operator for a molecule!
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Γ i( )
€ 

A = Γ Δ⋅ T⋅ A + E( )

Δ(i) 


Solution to A(i) can be 
written as


Effective multipole expansion: transformed charges due to 
dielectric boundary and polarization of other empty 
dielectric cavities !

( )iA
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Analytical Solution to PBE for N Molecules!
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Direct Field 

Reaction Field!

Cavity-polarization operator from external charges!

Dielectric-boundary-crossing operator for a molecule!

The potential field induced by a molecule is due to the sum of 
contribution of its free charges (E(i)) and the contribution of 
polarization charges induced by other molecules, transformed 
by the effect of its dielectric boundary. !
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A = Γ Δ⋅ T⋅ A + E( )

Δ(i) 


Solution to A(i) can be 
written as


Effective multipole expansion: transformed charges due to 
dielectric boundary and polarization of other empty 
dielectric cavities !
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Semi-analytical PBE: N Realistic Shapes!

Multipole Method! Boundary Element Method!
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Multipole Method for arbitrary shapes!

Discretize molecule into Nki spheres!
Solve for each sphere ki analytically, !
Iterate over Nki spheres, Nki ~ 100 !

Solve for entire molecule i 
analytically!

Solve for Nk system of equations 
numerically Nk ~ 106 !

Boundary 
element k !

sphere 
element 

ki!

h(r)(i) !
h(r)(k)!

h(r)(ki) !
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Express Φin and Φout in terms of multipoles F(ki)
 and H(ki) !

Impose boundary equations and solve for F(ki)
 and H(ki) !

Update contribution from F(ki)
 and H(ki) to other spheres!

Semi-analytical PBE: N Realistic Shapes 

Molecule i
 Molecule j
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f(r)(i)


For each sphere ki:!

Molecule i
 Molecule j


h(r)(i)


Φin

Φout


Repeat for all spheres until convergence criteria is reached!

h(r)(j)
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On the EXPOSED sphere surface (a,θE,φE):!
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On the BURIED sphere surface (a,θB,φB):!
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Now we can solve for F(ki) and H(ki) 


Semi-analytical PBE: N Realistic Shapes 
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Semi-analytical PBE: N Realistic Shapes 

We are currently investigating the !
assembly of the capsid!

Each protein modeled!
as a cluster of !
overlapping !
Spheres!

Each sphere contains!
fixed partial charges! Aqueous solvent: 


εs = 78, κ > 0


Protein Interior:


- εp = 4, κ = 0

- Partial Charges
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Semi-analytical PBE: N Realistic Shapes 

We are currently investigating the !
assembly of the capsid!

Aqueous solvent: 


εs = 78, κ > 0


Protein Interior:


- εp = 4, κ = 0

- Partial Charges
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Mulltiscale models!

Model 3 

Model 2 

Model 1 

Atomistic Models 

Spherical dielectric 
approximation breaks 
down!

Separation d ~ (RA , 
RB)!

Separation d ~ few 
water molecules!

Proposed transitions between models!


