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Outline

1.Definition of the Solvation Process
2.Applications of Solvation Free Energy
3.Calculation of Solvation Free Energy

•Electrostatic Contribution: Poisson(-Boltzmann) equation
•Dispersion Contribution: surface tension
•Cavity Formation Contribution: Scaled Particle Theory

4.Commonly Used Solvation Models: 
(PBF,PCM,COSMO,DelPhi,GB,SGB,etc)

5.Examples of Solvation Models
•Fast Solvation Model (FSM)
•Analytical Volume Generalized Born-Solvent Assessable Surface 
(AVGB-SAS)

•Conductor-like Screening Model (COSMO)
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•Definition of solvation process
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* : charging free energy

c : total molar concentration

: cavity formation free energy

i/j : solute i in solvent j

Definition of Solvation

Ben-Naim: 
The process of transferring one 
molecule from a fixed position in 
an ideal gas phase to a fixed 
position in the fluid phase at 
constant temperature and 
pressure.

Hydration: when water is the solvent

A. Ben-Naim, Solvation Thermodynamics,
Pelunum Press, New York (1987)
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solvent

•Explicit Solvent vs. Implicit Solvent
Explicit: considering the molecular details of each 

solvent molecules
Implicit: treating the solvent as a continuous 

medium (Reaction Field Method)
note: what are the physical origins of the response 

of solvent to the existence of solute?

•Rigid Solute vs. Polarizable Solute
Rigid (nonpolarizable): fixed atomic charges (or 

electron distribution), polarizable solvent 
[e.g., GB, SGB, AVGB]

Polarizable: considering the mutual polarization 
between the solute and solvent              
[e.g. PCM, PBF, COSMO, etc]

Solvation Methods in Molecular Simulations

explicit 
solvent

implicit 
solvent
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Elements in Solvation Free Energy

Short-Range Effects

• Repulsive interactions 
(~1/r12 dependence)

• Usually assumed to be 
proportional to the 
volume of the cavity

• Scaled Particle Theory
• Also has the entropic 
penalty associated with 
the reorganization of 
the solvent molecules 
around the solute

Mid-Range Effects

• Dispersive interactions 
(~1/r6 dependence)

• Also called van der 
Waals contributions

• Usually assumed to be 
proportional to contact 
surface area

• Concept of tension 
parameters σ

Long-Range Effects

• Long range electrostatic 
interactions                    
(~1/r dependence)

• Also called polarization 
contributions

• Solute polarization (QM)
• Solvent polarization (ε)
• Poisson equation
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Why Implicit Solvent?

Method Explicit Solvent 
(all-atom description)

Implicit Solvent 
(Continuum description)

Pros

• Full details on the molecular 
structures

• Realistic physical picture of the 
system

• No explicit solvent atoms 
• Treatment of solute at highest 
level possible (QM)

Cons

• Many atoms--> expensive 
• Long runs required to equilibrate 
solvent to solute 

• Often solvent and solute are not 
polarizable. 

• Large fluctuations due to use of 
small system size

• Need to define an artificial 
boundary between the solute and 
solvent

• No “good” model for treating 
short range effects (dispersion 
and cavity)



Simple Long-Range Correction

• Approximate distant interactions by assuming uniform distribution 
beyond cutoff:  g(r) = 1 r > rcut

• Corrections to thermodynamic properties
– Internal energy

– Virial

– Chemical potential
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For rc/σ = 2.5, these are about 
5-10% of the total values
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Coulombic Long-Range Correction

• Coulombic interactions must be treated 
specially
– very long range
– 1/r form does not die off as quickly as 

volume grows

– Tail correction diverges unless u(r) 
decays faster than r-3

– So we can not use truncation plus 
long range correction for Coulombic 
and dipolar interactions

• Methods
– Full lattice sum (Ewald summation)
– Treat surroundings as dielectric 

continuum
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Ewald Sum (Frenkel + Smit, Ch 12)

Consider a system of N positively and negatively charged particles in a volume V 
(V=L3).
Assume charge neutrality 
Coulomb energy of this N-particle system is given by

φ(ri) is the electrostatic potential at the position of ion  i

The prime on the summation indicates that the sum is over all periodic images n and 
over all particles j, except j =i if n=0. The sum is conditionally convergent. : it contains a 
mixture of positive and negative terms Separately both the positive and negative terms 
form a divergent series.  The sum of a conditionally convergent series depents on the 
order in which its terms are considered.
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Cost of Ewald summation
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Real space part of the energy involves evaluating (consider α1/2= α

To ensure convergence of the real space part we need to choose α such that erfc is 
small at the real-space cutoff R. Suppose we specify small to be exp(-p). So p controls 
the accuracy. For large values of argument erfc behaves as exp(- α2r2). SO we demand 

α2r2=p 
or α=p1/2/R                  (1)

Fincham, Mol. Simulation, 13,1-9 (1994)
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For reciprocal space we need to compute the following

The rate of convergence is controlled by the factor exp(-k2/4 α2). Like before if we 
require the terms to have the value exp(-p) at the reciprocal cutoff K, then we have 

p=K2/ 4 α2 

or   K = 2α p1/2=2p/R             (2)
Equ. 1 and 2 specify the choice of parameters α and reciprocal cutoff K once the 
accuracy parameter p and real space cutoff R have been chosen
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Time estimate for Ewald summation

The number of ions within the cutoff sphere is 
4π/3R3n, n is the number density

Each of the N ions interacts with the other ions in the surrounding cutoff sphere , but 
each pair interactions needs to be considered only once. Thus   

TR=1/2 N 4π/3R3ntR

The value of reciprocal space within a cutoff K is
3
38

3
43

3
4

R
pK ππ =

The reciprocal-space points are given by k=2π/L(l,m,n), where l, m, n are integers. 
The volume of each reciprocal point is (2π/L)3. The number of reciprocal points with 
the cutoff K is given by 
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This grows as N as the density of points in k-space increases with system
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For each k-points a sum over over N ions needs to be performed and the execution  time is 
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For fixed p and R, TR varies as N and TF varies as N2

To find the optimal value of R which minimizes the total execution time T  we have 
dT/dR=0, which gives
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This choice of optimal real-space cutoff gives the following optimal time
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When optimized it is equally divided between real and reciprocal space parts  
calculation and it grows as N3/2
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Different Ways of Defining the Solvation Cavity

van der Waals surface
(vdWS)

Solvent Excluded  Surface
(SES)

Solvent Accessible  Surface
(SAS)

Pictures modified from http://riesling.chem.umn.edu/Group/surfaces.html

Molecular surface
Sometimes used in 
electrostatic and/or 
dispersion contribution
calculations

Commonly used in
electrostatic and/or 
dispersion contribution
calculations

Also used in 
dispersion and  cavity 
contribution 
calculations

•Three Commonly Used Surfaces in Implicit Solvation
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SASA

The Solvent Accessible Surface (transparent) of 3 carbon atoms with radius 
1.7 Å (gray), as is traced by a probe of radius 1.4 Å (yellow.)
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Electrostatic Interactions

The charge distributions of the solute and solvent play a fundamental role in 
the solvation process. The polar contribution to the solvation energy, 

includes the work necessary to create the solute’s gas-phase charge 
distribution in solution and the work required to polarize the solute charge 
distribution.

GpolarΔ

Reorganization of the solvent around a solute charge and 
dielectric screening of intra-molecular interactions.
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Electrostatic Interactions: Poisson Equation

•Poisson Eq.: Interaction between Solute and Continuum Solvent
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Electrolyte Solutions: Poisson-Boltzmann Equation

•Poisson Equation

)()()( rrr ionssolute
rrr ρρρ +=[ ] )(4)()( rrr rrr πρφε =∇⋅∇−

we assume that the ratio of the concentration of ion type i around the solute to 
its concentration far away from the solute is given by the Boltzmann distribution

exp( ( ) / )W r k Ti B− v

( )iW rr is the work required to move the ion of type i from  from infinity 
(where              ) to point r.

. 

( ) 0Φ ∞ =

Assume  we have only two types of ions, negative and positive (such that the total 
system is electrically neutral).  So for each ionic species we have 

1 2( ) ( ) ( ) ( )c cW r e r W r e r= + Φ = − Φr r r r
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Electrolyte Solutions: Poisson-Boltzmann Equation
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The charge density of ions around the solute should be
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concentration M 
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Electrolyte Solutions: Poisson-Boltzmann Equation

K is the Debye-Huckel parameter and is given by

The Poisson equation is written as 

( ) 2 ( )( ) ( ) ( ) sinh 4 ( )c
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e rr r r r
k T

ε κ πρ
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Expanding the hyperbolic sine function as Taylor series and keeping only the first 
term we have linearised Poisson-Boltamann equation
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The most common assumption for solving the PB equation is that the dielectric 
permittivity takes two values, 

Solution of PB equation : a computational challenge

Exact analytical solutions of the PB or in the absence of salt, the Poisson 
equation, are not possible except for very few simple cases with simple solute 
shape like proteins treated as spherical cavities or DNA is modeled as a 
charged cylinder.. 

inε in the solute cavity outε for outside

( )
1

1 ( ) ( )
2

N
solv vac

polar i i i
i

G q r r
=

Δ = Φ − Φ∑ r r

electrostatic free energy of solvation can be obtained by solving this equation 
twice, once with the solute inside the solvent dielectric and once with the solute 
in vacuum and can be written as
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Few examples of analytical solution in special case

JACS, 1957

Not very useful! simplifications needed in the shape of the solute limit 
severely the applicability of the model to realistic systems. Numerical solution 
is developed.

26
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Solution to the Poisson Equation for Real Molecules

ρ1

ρ2

ρ3
ρ4

ρ5

ρ6

σ1

σ2
σ3

σn [ ] )(4)()( rrr rrr πρφε =∇⋅∇−

Solvent Polarization: Poisson Equation

),()(),( int
)0( σρρσρ VHH +=

Solute Polarization: Shrödinger Equation

Initial ρ0(r) of the 
solute (vacuum)

Solve the Poisson 
equation for φ(r)

•Multiple Expansion
•Image Charge
•Apparent Charge
•Finite Difference
•Finite Element

Calculate Solute-
Solvent interaction ΔG

Solve the Shrödinger 
equation ρ(r)

ρ(r)= ρ0(r) 
no yes



•Numerical solution, CPU intensive, scales as )( 3NO

•Lack of gradients (atomic forces) 
•Accuracy depends on grid resolution.

•Applications show successful predictions.
•Not parallelizable, QM implementations available
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Approximate Solutions for the Continuum Dielectric Model

Multipole Expansions: 
Electrostatic potential is determined by assuming very simple shapes for the solute 
cavity and using limited multipole expansions to represent the solute charge 
distribution. The electrostatic potential can be written as a series of spherical 
harmonic terms.

Distance Dependent Dielectric (DDD) methods

the solvent molecules surrounding the solute are polarized due to the solute charge 
distribution. This generates a reaction field, which in turn polarizes the solute. The 
intramolecular coulombic interactions are screened because of the surrounding 
solvent molecules. Dielectric permittivity taken to be distance dependent and given 
by a sigmoid profiles

( )
1 exp( )ij

ij

Br A
k Br

ε
λ

= +
+ −
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Distance Dependent Dielectric (DDD) methods

Srinivasan J., Trevathan M. W., Beroza P., Case D. A., Theor. Chem. Acc., 101, 426 
(1999)
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Analytical Solutions to the Poisson Equation

•Born Model: point charge in a spherical cavity

q

ε
R

--
---

--
-

The electrostatic energy Gpol of a charged dielectric 
sphere of radius R  and charge q, embedded in a 
dielectric of permittivity ε can be calculated by 

4E ds qπ⋅ =∫
r r

2
21

4 2pol
qG E dv

Rπ ε
= =∫

Assume that the sphere has interior dielectric of 1, and it is reversibly transferred from 
the vacuum to a medium of dielectric permittivity ε, the change in the electrostatic free 
energy is given by 

21 11
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More general expression
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Analytical Solutions to the Poisson Equation

R
qG ele

Si

2
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/ 2
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ε −
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•Born Model: point charge in a spherical cavity
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•Bell Model: rigid dipole in a spherical cavity
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•Onsager: polarizable dipole in a spherical cavity

(energies in electrostatic unit)
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Simplifications: 1. Generalized Born Approximation
• Polar Solvation Energy of a charged centered at spherical cavity

of radius R in dielectric medium ε (Born):

•System of N spheres of radii αi, far away from each other:

•Generalized Born (Still et al., 1990): 
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The Generalized Born Model

( )jiijjiijij rrf αααα 4exp 22 −+=

•Interpolation formula:

•Limit iiiij fr α=⇒= 0
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34



•If we set all charges to zero except qk, we get:

k
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•Parameters αk are the Born Radii.

•Physical Meaning: the effective radius of an ion of 
charge qk, whose solvation energy is equal to the 
self-energy of polarization of atom  in the molecule.

•Difficult to calculate.

Physical meaning of Born radii
35



Accuracy of Interpolation Formula

y = 0.9202x
R2 = 0.9674
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How to compute Born Radii

Zhang L. Y., Gallichio E., Friesner R. A., Levy R. M., J. Comp. Chem., 22, 591 
(2001)

Still W. C., Tempczyk A., Hawley R. C., Hendrickson T., J. Am. Chem. Soc., 112, 
6127 (1990)

Ghosh A., Rapp C. S., Friesner R. A., J. Phys. Chem. B, 102, 10983 (1998)
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Simplifications: 1. Generalized Born: Born Radii

ε

qi

•It can be proven that (Still et al., 1990):

∫ −
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V kkk

rd
rrR
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4

1
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111
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• The Born radius of an atom corresponds to the 
radius that would return the electrostatic energy 
of the system according to the Born equation if 
all of the other molecules in the system were 
uncharged.
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Require volume integral

•S-GB (Surface area based GB, Ghosh et al., 1998):
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Born Radii

The electrostatic self-energy of solvation of an atom is due to the interaction of the 
solute charge distribution ρ(r) with the induced dipoles of the solvent. This is called the 
reaction field  Φ(r) and  is responsible for polarizing the solute atoms. The polarization is 
described by the induced surface charge σpol(r) on the surface of the solute atoms

2( )
( ) pol

reac
S

R
r d R

r R
σ

Φ =
−∫
r

r
rr

S is the solvent accessible surface of the solute. So the solvation free energy is given 
by
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2pol reacG r r d rρΔ = Φ∫
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Assuming that the solute charge distribution is a set of  N point charges qk located at 
points rk

1
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Born Radii

Now apply Gauss law on the boundary surface that separates the two dielectrics εin and 
εout 

( )

4

or,

ˆ 4

S

out in pol

E ds q

E E n S

π

πσ

⋅ =

− ⋅ = Δ

∫
r r

r r

n̂ is the normal to the boundary surface 
E
r

is the electric field due to the local polarization charge density

1 ˆ( ) 1 ( )
4

in
pol in

out

r E r nεσ
π ε

⎛ ⎞
= − ⋅⎜ ⎟

⎝ ⎠

rr r
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Born Radii

2
,

ˆ( ).1 1
8

in in
pol k k

out kS

E r nG q d r
r r

ε
π ε

⎛ ⎞
Δ = −⎜ ⎟ −⎝ ⎠

∫
r r

r r

If we set all charges to zero except qk, we get:

3
1( ) k

in k
in k

r rE r q
r rε

−
=

−

r rr r
r r

Note that for point charge qk, located at rk in a spherical cavity 
we have 

( )2 2
, 4

ˆ1 1 1
8

k
pol k k

in out S k

r r n
G q d r

r rπ ε ε
− ⋅⎛ ⎞

Δ = − −⎜ ⎟ −⎝ ⎠
∫
r r

r r

So we have expression for the self-energy in terms of the 
geometry of the system
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Born Radii

The use of Coulomb’s law for the electric field is exact only in 
the case of a single charge qk  in the center of a spherically 
symmetric cavity. We can expect that this approximation for 
the local electrostatic field will be valid for cases that the 
molecule’s surface is locally convex. This approximation is 
known as the “Coulombic approximation”

Coulombic approximation works very well for a diverse 
set of molecules.

3

V S V

A ds Ad r
∂ =

⋅ = ∇ ⋅∫ ∫
r rr

Now use Green’s theorem to convert the surface 
integral to a volume integral
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Born Radii
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=

−
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r r r r
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Ω − ≤

− −
⋅ = ∇ ⋅

− −

− −
= ∇ ⋅ + ∇ ⋅

− −

∫ ∫

∫ ∫
r r

r r r r
r

r r r r

r r r r

r r r r

break the integration over the solute volume into two regions: the volume of a 
sphere of radius Rk and and the volume of the solute excluding the sphere of 
radius Rk



44

Born Radii
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Finally we get 
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Born Radii

Finally we have 3
4

1 1 1 1
4

kk k

d r
R r rα π Ω

= −
−∫ r r

Volume integral is very difficult to be calculated analytically 
for cases of arbitrary molecular geometry.

Numerical integration

The asymptotic model: ad-hoc analytical model for Born radii

The pairwise descreening approximation (PDA)

The surface generalized Born model (SGB)

The overlapping spheres approximation and the analytical volume 
model
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Dispersion Free Energy

∑
=

=Δ
N

i
iidips AG

1
σ

sum over atom types

“surface tension” for atom type i
σ is solvent dependent!

exposed surface area of atom type i
SES usually chosen for Ai
Ai depends on atomic radius and probe radius



AVGB Solvation Energy

•Long-Range Effects:

( )∑∑
= = −+⎟⎟
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•Short-Range Effects:

∑
=

=Δ+Δ
N

i
iicavvdW AGG

1
σ

Solvent accessible surface areas and solvent excluded 
volumes must be calculated fast and accurately

Zamanakos, Phd thesis (Caltech), 2002
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The Fused-Sphere Model

•Analytical calculation of 
volumes and areas, with 
gradients

•Complicated topologies

•Robust algorithms

An example of the fused-sphere model: The central atom (white) is surrounded 
by a number of neighbors that define its exposed surface area and volume

48



Area Calculation

Gauss-Bonnet Theorem

( ) ( ) ( )∑∑ ∫∫∫
==

=Ω++
m

i
i

n

i RC
g RdssKdllk

i
11

2πχ

Geodesic curvature, gaussian curvature of surface, Euler-Poincare characteristic of surface R

External angles of surface

Zamanakos, Phd thesis (Caltech), 2002
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Determine GB-paths

•Identify GB-points (intersection of 
two neighbors on surface of atom)

•Group GB-points that belong to 
the same GB-path

•Order GB-points in a CCW 
fashion to identify GB-paths

Key property: edges of IHS pierce atom at the GB-points
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Decomposition into Building Blocks

Building Block
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Volume Calculation

Cone-pyramids

Building Block Spherical Sector

exp

1 3
1

3
1

ii

M

j
ijiji SrAgV += ∑

=
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Volume Calculation

Triangles

Arc-SectorsPlanar Section

Arc (part of a COI)

Line Segment

∑∑
==

+=
arcs
ij

seg
ij M

ij

M

ij SathA
11 2

1
2
1

λ
λ

μ
μμ
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COSMO solvation

boundaryat   allfor      0)()()( bbsolventbsoluteb rrrr rrrr
=+= φφφ

•COnductor-like Screening MOdel (COSMO)
− Consider the solvent being a conductor
− Net potential at solute-solvent boundary is zero
− Screening charge σ(rb) can be obtained in a single step

b
bsolute rr

rrdr rr

r
rr

−
= ∫
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•Solvation free energy from the screening charges
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2
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Cavity Formation Free Energy: Scaled Particle Theory

3
3

2
210)( rKrKrKKrGSPT +++=Δ

•Cavity Formation Free Energy: 
Work to create a cavity of size V in solution
Related to the probability of finding a void of size V in solution

•The Scaled Particle Theory: (Reiss et al. 1959)

∑ Δ=Δ
spheres

i
i

SPT
i

i

icav
Si rG

r
AG )(

4
*
/ π

σiσj

rcav

)(ln)( 0
*
/ vpkTvG cav
Si −=Δ

2
jir

σσ +
=

Hard sphere solute (σi) in hard sphere solvent (σj)

•Modified Scaled Particle Theory:

Molecular shape solute (σi) in hard sphere 
solvent (σj)

SAS
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An Example of Solvation Energy Calculation

ΔG*ele ΔG*disp ΔG*cav
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Commonly Used Solvation Models

Model Name ΔG*ele  

solute polarization/solvent pol.
ΔG*disp ΔG*cav

PBF (Jaguar) QM/Finite Difference surface tension

PCM (Gaussian) QM/Apparent Charge surface 
tension

SPT

COSMO-RS QM/Conductor surface tension

DelPhi Point Charge/Finite Difference surface tension

GB/SA Point Charge/GB surface tension

SGB-SAS Point Charge/SGB surface tension

FSM none surface tension
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Continuum Methods Accuracy
•Jaguar (QM) with PBF (finite element PB solver): 
•Self-Consistent Reaction Field method to converge wavefunction 
•Solvation energies are calculated within 0.2 kcal/mol of experiment 
•pKa calculations are calculated within 1 unit for organics. 
•Forces are calculated : get optimum geometry for solvated molecule 

•SGB: Surface Generalized Born Algorithm 
•Parameterized against dense mesh PBF results for organics 
•Absolute Energies: within ~ 2 kcal/mol for polypeptides (400 atoms) 
•Relative Energies: Accurate ranking of polypeptide conformations
•Performance: depends on surface area (not volume) leads to better scaling with 
system size. Roughly 10x faster than PBF. 
•Parallelizable: atomic terms can be done independently: excellent distribution of 
work allows for very large simulations.
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Comparison of Solvation Models

methane 2.00 1.92 1.34 1.16 0.31
ethane 1.83 2.16 1.60 1.76 0.44
propane 1.95 2.31 1.44 1.74 0.53
butane 2.08 2.47 1.51 1.74 0.61
2-methylpropane 2.32 2.39 1.29 1.40 1.62
pentane 2.33 2.63 1.76 2.00 0.73
2-methylbutane 2.38 2.57 1.46 1.17 1.38
2,2-dimethylpropane 2.50 2.44 1.24 1.67 0.88
hexane 2.48 2.81 1.74 2.12 0.79
2,2-dimethylbutane 2.59 2.67 1.29 1.96 0.89
heptane 2.62 2.97 1.79 2.61 0.89
2,2-dimethylpentane 2.88 2.80 1.51 1.86 0.98
octane 2.89 3.14 2.06 2.38 1.00
cyclopropane 0.75 1.62 1.19 0.04 0.23
cyclopentane 1.20 2.47 1.83 2.09 0.48
cyclohexane 1.23 2.61 1.95 1.73 0.58
methylcyclopentane 1.60 2.56 1.49 1.46 1.56
cycloheptane 0.80 2.72 2.04 1.30 0.65
methylcyclohexane 1.71 2.67 1.72 1.12 1.37
cyclooctane 0.86 2.85 2.16 0.95 0.75
1,2-dimethylcyclohexane 1.58 2.82 1.70 0.58 1.45
cyclopentene 0.56 1.81 1.18 0.42 0.28
cyclohexene 0.37 1.74 1.28 0.78 0.43
1-methylcyclohexene 0.67 2.16 1.53 0.96 0.28
1,3,5-cycloheptatriene -0.99 0.09 0.21 -1.66 -0.16
benzene -0.86 -0.44 0.17 -2.09 -1.29
methylbenzene -0.89 -0.04 0.32 -2.17 -1.26
1,4-dimethylbenzene -0.80 0.48 0.66 -2.12 -1.27

Exp. PBF (1) SGB Jaguar FSM
Name RMS 1.49 2.93 0.81 0.96



61

Efficiency

Solvation Timings
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Examples: 1. Fast Solvation Model (FSM)

∑
=

=Δ+Δ+Δ=Δ
N

i
ii

cav
Si

disp
Si

ele
Si

sol
Si AGGGG

1

*
/

*
/

*
/

*
/ σ

•Fast Solvation Model 
−Developed by Dr. Mario Blanco

−Available in Cerius2

x
•Parameters: 78 surface tension coefficients (103 atomic radii) 
•Parameters fitted to 376 small molecules in water  (Cabani Set)
•SES used
•Good for nonpolar solutes, worse for polar solutes
− RMS (kcal/mol): 0.26 (HC), 0.78 (O), 1.21 (N), 1.99 (F), 1.52 
(Cl, Br, I), 0.16 (S,P)
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Examples: 1. Fast Solvation Model: Example

Hydration free energy of 2-propanol

Atom 
Type

Surf. 
Tension

Area (A^2) Solvation

H_MET 0.0132 39.7501 0.5247

H_ALC -0.1381 6.5777 -0.9084

C_31 0.0054 33.3833 0.1803

C_O3 -0.0391 5.3865 -0.2106

O_31 -0.2988 13.8971 -4.1525

Total Area =99.0 (A^2)

Solvation Free Energy =    -4.57 Kcal/mol

Expt value: -4.76 Kcal/mo
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Examples: 2. AVGB-SAS

•Analytical Volume Generalized Born- Solvent Accessible Surface
−Developed by Dr. Georgios Zamanakos

−Available in MPSim
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Solvent accessible surface areas and solvent excluded 
volumes must be calculated fast and accurately

same as FSM
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Examples: 2. AVGB-SAS: Example

Valence

Bonds      : 0.62474

Angles     : 0.96765

Torsion    : 0.00697

Inversions : 0

Nonbond

Nonbond     : -101.03811

Coulomb     : -103.55434

VDW         : 2.51624

Hbonds      : 0

Solvation

FSM - Cavity : -0.33879

FSM - Polar  : -5.27538

Total Solvation -5.61417
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Examples: 2. AVGB-SAS: Hydration Free Energy

AVGB-SAS vs Experiment
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•Parameters: 78 surface tension coefficients (103 atomic radii) 
•Parameters fitted to 376 small molecules in water (Cabani Set)
•Overall RMS: 0.74 kcal/mol
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Examples: 2. AVGB-SAS: B-DNA Dynamics

Canonical Vacuum AVGB-SAS

RMSD of B-DNA 
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Examples: 3. COSMO-RS/COSMO-SAC

•COSMO-for realistic solvent (RS)/segment activity coefficient (SAC)
−Developed by Klamt and coworkers/ST Lin and coworkers

−Available in Cerius2/DMol3

• Use the screening charges σ
• Histogram of σ – the σ-profile, p(σ)
• Solvation Free Energy from the σ-profile
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