Introduction to the Finite Element Method

Sankara J. Subramanian

Department of Engineering Design Indian Institute of Technology, Madras

December 11, 2009

(=) (④) (=) (=) (=)

SQC

Introduction to the Finite Element Method

Sankara J. Subramaniar

Outline

What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations

Advanced FEM Nonlinearity Quasi-continuum

Conclusion

1 What is FEM?

2 Basic Formulation: Theory

- Shape functions
- FE matrices
- FE equations

3 Advanced FEM

- Nonlinearity
- Quasi-continuum

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

= 900

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM?

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM

Nonlinearity Quasi-continuum

Conclusion

Origins in structural mechanics

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM?

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM

Nonlinearity Quasi-continuum

- Origins in structural mechanics
- Has strong mathematical foundation

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM?

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM

Nonlinearity Quasi-continuum

Conclusion

- Origins in structural mechanics
- Has strong mathematical foundation
- Widely used by researchers structural and solid mechanics, fluid flow, heat transfer, electricity and magnetism and various coupled problems

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM?

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM

Nonlinearity Quasi-continuum

Conclusion

- Origins in structural mechanics
- Has strong mathematical foundation
- Widely used by researchers structural and solid mechanics, fluid flow, heat transfer, electricity and magnetism and various coupled problems
- Routinely used in the industry design of buildings, airframes, electric motors, automobiles, materials

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM?

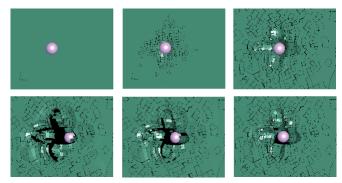
Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM

Nonlinearity Quasi-continuum

Conclusion

From 'Projectile Impact on a Carbon Fiber Reinforced Plate', Abaqus Technology Brief, Simulia Corporation, 2007



Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM?

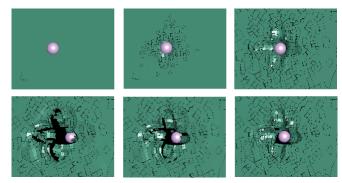
Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations

Advanced FEM Nonlinearity Quasi-continuum

Conclusion

From 'Projectile Impact on a Carbon Fiber Reinforced Plate', Abaqus Technology Brief, Simulia Corporation, 2007



・ロト ・ 四ト ・ ヨト

Sac

Plate is heterogeneous

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM?

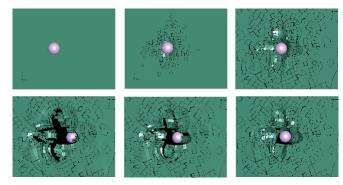
Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations

Nonlinearity Quasi-continuum

Conclusion

From 'Projectile Impact on a Carbon Fiber Reinforced Plate', Abaqus Technology Brief, Simulia Corporation, 2007



- Plate is heterogeneous
- Contact areas between steel ball and plate not known a priori

A D > A P > A B > A B >

Sac

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM?

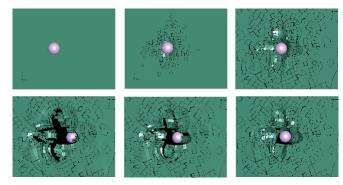
Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations

Advanced FEM Nonlinearity Quasi-continuum

Conclusion

From 'Projectile Impact on a Carbon Fiber Reinforced Plate', Abaqus Technology Brief, Simulia Corporation, 2007



- Plate is heterogeneous
- Contact areas between steel ball and plate not known a priori

A D > A P > A B > A B >

Failure criteria are complex

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM?

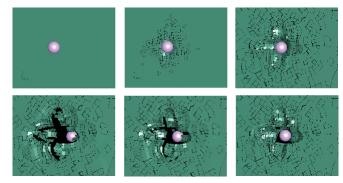
Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations

Advanced FEM Nonlinearity Quasi-continuum

Conclusion

From 'Projectile Impact on a Carbon Fiber Reinforced Plate', Abaqus Technology Brief, Simulia Corporation, 2007



- Plate is heterogeneous
- Contact areas between steel ball and plate not known a priori
- Failure criteria are complex
- Analytical solution is out of the question!

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction to the Finite Element Method	
What is FEM?	

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM?

- Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW
- Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM
- Nonlinearity Quasi-continuum
- Conclusion

 FEM is used to solve governing differential equations approximately

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー の々ぐ

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM?

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM

Nonlinearity Quasi-continuum

Conclusion

- FEM is used to solve governing differential equations **approximately**
- ODEs or PDEs are converted to a (large) system of algebraic equations, solved on computers

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM?

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM

Nonlinearity Quasi-continuum

Conclusion

- FEM is used to solve governing differential equations **approximately**
- ODEs or PDEs are converted to a (large) system of algebraic equations, solved on computers

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー の々ぐ

 Unknown quantities are field variables (e.g. displacement, temperature) at 'nodes'

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM?

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM

Quasi-continuun

Conclusion

- FEM is used to solve governing differential equations **approximately**
- ODEs or PDEs are converted to a (large) system of algebraic equations, solved on computers
- Unknown quantities are field variables (e.g. displacement, temperature) at 'nodes'
- Quality of solution improves with increasing number of elements

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM?

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM

Nonlinearity Quasi-continuum

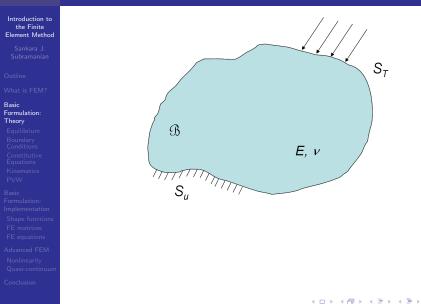
Conclusion

- FEM is used to solve governing differential equations **approximately**
- ODEs or PDEs are converted to a (large) system of algebraic equations, solved on computers
- Unknown quantities are field variables (e.g. displacement, temperature) at 'nodes'
- Quality of solution improves with increasing number of elements

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

100 unknowns large in 1960s, now 10⁶ unknowns routine!

Sac



Sankara J. Subramanian

Outline

What is FEM

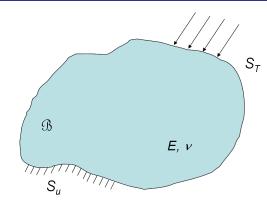
Basic Formulation: Theory

Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations

Nonlinearity Quasi-continuum

Conclusion



 Elastic deformation is reversible body returns to original configuration when loads are removed

・ロト ・ 一下・ ・ モト・

Sac

Sankara J. Subramanian

Outline

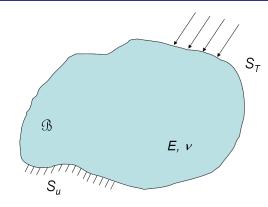
What is FEM

Basic Formulation: Theory

Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations

Nonlinearity Quasi-continuum



- Elastic deformation is reversible body returns to original configuration when loads are removed
- We know the forces and displacements imposed on the body

Sankara J. Subramanian

Outline

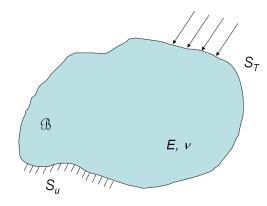
What is FEM

Basic Formulation: Theory

Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations

Nonlinearity Quasi-continuum



- Elastic deformation is reversible ⇒ body returns to original configuration when loads are removed
- We know the forces and displacements imposed on the body
- Force F applied to a bar of cross-section A, stress $\sigma = F/A$

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

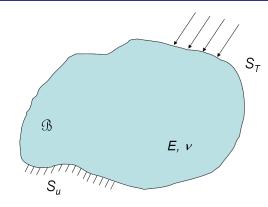
What is FEM?

Basic Formulation: Theory

Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations

Nonlinearity Quasi-continuum



- Elastic deformation is reversible onfiguration when loads are removed
- We know the forces and displacements imposed on the body
- Force F applied to a bar of cross-section A, stress $\sigma = F/A$
- For arbitrary 3-D solids, how do we compute the displacements and stresses everywhere in the body? 💿 👁 👁

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM?

Basic Formulation Theory

Equilibrium

Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM

Nonlinearity Quasi-continuum

Conclusion

The governing equation (no body forces, quasi-static case) is the **linear momentum balance** equation:

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー の々ぐ

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM

Basic Formulation Theory

Equilibrium

Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM

Nonlinearity Quasi-continuum

Conclusion

The governing equation (no body forces, quasi-static case) is the **linear momentum balance** equation:

The stress tensor quantifies intensity of force (force/unit area) at a point.

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー の々ぐ

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM

Basic Formulation Theory

Equilibrium

Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM

Nonlinearity Quasi-continuum

Conclusion

The governing equation (no body forces, quasi-static case) is the **linear momentum balance** equation:

The stress tensor quantifies intensity of force (force/unit area) at a point.

$$\begin{array}{l} \frac{\partial \sigma_{11}}{\partial x_1} + \frac{\partial \sigma_{12}}{\partial x_2} + \frac{\partial \sigma_{13}}{\partial x_3} = 0\\ \frac{\partial \sigma_{21}}{\partial x_1} + \frac{\partial \sigma_{22}}{\partial x_2} + \frac{\partial \sigma_{23}}{\partial x_3} = 0\\ \frac{\partial \sigma_{31}}{\partial x_1} + \frac{\partial \sigma_{32}}{\partial x_2} + \frac{\partial \sigma_{33}}{\partial x_3} = 0 \end{array}$$

 σ_{ij} - stress tensor components,

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM

Basic Formulatior Theory

Equilibrium

Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM

Nonlinearity Quasi-continuum

Conclusion

The governing equation (no body forces, quasi-static case) is the **linear momentum balance** equation:

The stress tensor quantifies intensity of force (force/unit area) at a point.

$$\begin{array}{l} \frac{\partial \sigma_{11}}{\partial x_1} + \frac{\partial \sigma_{12}}{\partial x_2} + \frac{\partial \sigma_{13}}{\partial x_3} = 0\\ \frac{\partial \sigma_{21}}{\partial x_1} + \frac{\partial \sigma_{22}}{\partial x_2} + \frac{\partial \sigma_{23}}{\partial x_3} = 0\\ \frac{\partial \sigma_{31}}{\partial x_1} + \frac{\partial \sigma_{32}}{\partial x_2} + \frac{\partial \sigma_{33}}{\partial x_3} = 0 \end{array}$$

 σ_{ij} - stress tensor components,

• a system of 3 coupled PDEs for 6 unknown stress components $(\sigma_{ij} = \sigma_{ji})$

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM

Basic Formulatior Theory

Equilibrium

Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM

Nonlinearity Quasi-continuum

Conclusion

The governing equation (no body forces, quasi-static case) is the **linear momentum balance** equation:

The stress tensor quantifies intensity of force (force/unit area) at a point.

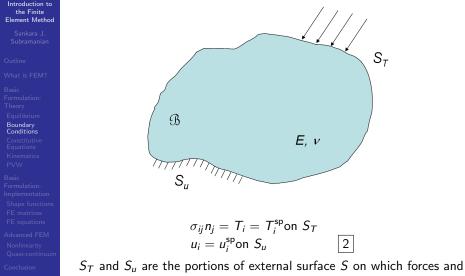
$$\begin{array}{l} \frac{\partial \sigma_{11}}{\partial x_1} + \frac{\partial \sigma_{12}}{\partial x_2} + \frac{\partial \sigma_{13}}{\partial x_3} = 0\\ \frac{\partial \sigma_{21}}{\partial x_1} + \frac{\partial \sigma_{22}}{\partial x_2} + \frac{\partial \sigma_{23}}{\partial x_3} = 0\\ \frac{\partial \sigma_{31}}{\partial x_1} + \frac{\partial \sigma_{32}}{\partial x_2} + \frac{\partial \sigma_{33}}{\partial x_3} = 0 \end{array}$$

 σ_{ij} - stress tensor components,

• a system of 3 coupled PDEs for 6 unknown stress components $(\sigma_{ij} = \sigma_{ji})$

$$\sigma_{ij,j} = 0, \qquad i = 1, 3$$

... boundary conditions 2, ...



 S_T and S_u are the portions of external surface S on which forces and displacements are specified respectively.

... constitutive equations 3 ...

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions

Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM

Nonlinearity Quasi-continuum

Conclusion

Constitutive Equation - Hooke's Law for isotropic, linear elasticity:

$$\sigma_{ij} = \frac{E}{1+\nu} \left[\epsilon_{ij} + \frac{\nu}{1-2\nu} \epsilon_{kk} \delta_{ij} \right] \quad \boxed{3}$$

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Sac

E - Young's modulus, ν - Poisson's ratio, ϵ_{ij} - strain tensor components, δ_{ij} - Kronecker delta

... and kinematic relations 4 ...

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive

Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM

Nonlinearity Quasi-continuum

Conclusion

Strain-displacement relations:

... and kinematic relations 4 ...

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive

Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM Nonlinearity

Quasi-continuur

Conclusion

Strain-displacement relations:

$$\epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \qquad \boxed{4}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

... and kinematic relations 4 ...

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations

Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM

Nonlinearity Quasi-continuum

Conclusion

Strain-displacement relations:

$$\epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \qquad \qquad \boxed{4}$$

$$\epsilon_{11} = \frac{\partial u_1}{\partial x_1}$$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨー

Sac

reduces to the familiar definition of $\epsilon = \Delta I/I$ for the 1-D case.

1

Introduction to the Finite Element Method
Kinematics PVW

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Introduction to the Finite Element Method The requirement of satisfying the governing PDE pointwise is relaxed: we seek to satisfy it in a weak or integrated form.

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

-

Sac

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM Nonlinearity

Quasi-continu

- The requirement of satisfying the governing PDE pointwise is relaxed: we seek to satisfy it in a *weak or integrated form*.
 - Instead of satisfying point-wise the equilibrium equations

$$\sigma_{ij,j} = 0, \qquad i = 1,3$$

Sar

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics **PVW**

Basic Formulation: Implementation Shape function: FE matrices FE equations Advanced FEM Nonlinearity

Quasi-continuu

Conclusion

- The requirement of satisfying the governing PDE pointwise is relaxed: we seek to satisfy it in a *weak or integrated form*.
- Instead of satisfying point-wise the equilibrium equations

$$\sigma_{ij,j} = 0, \qquad i = 1,3$$

we solve

$$\int_{V} u_i^* \sigma_{ij,j} dV = 0$$

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

3

Sar

Finite element equations follow from PVW

Introduction to the Finite Element Method
Equations Kinematics PVW

(ロ)、

Finite element equations follow from PVW

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics

PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM Nonlinearity

Quasi-continuum

Conclusion

 Using the divergence theorem and the strain-displacement relations, we can restate the integral as

$$\int_{V} \epsilon_{ij}^* \sigma_{ij} dV = \int_{S} F_i u_j^* dS$$

・ロト ・ 雪 ト ・ ヨ ト

Sac

where F_i are components of the applied loads on the boundary

Finite element equations follow from PVW

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics DNAV

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM Nonlinearity

Quasi-continuu

Conclusion

Using the divergence theorem and the strain-displacement relations, we can restate the integral as

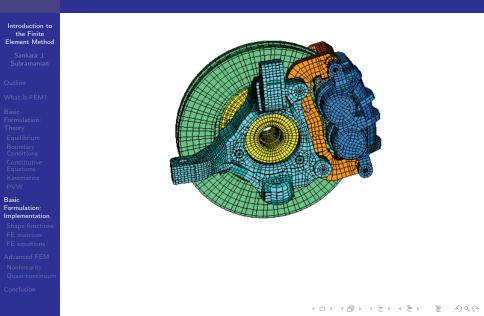
$$\int_{V} \epsilon_{ij}^* \sigma_{ij} dV = \int_{S} F_i u_j^* dS$$

・ロト ・ 一下・ ・ ヨト・

Sac

where F_i are components of the applied loads on the boundary
This is not an energy balance, it is merely a restatement of equilibrium!

How is a finite-element solution implemented?



How is a finite-element solution implemented?

Sankara J. Subramanian

Outline

What is FEM

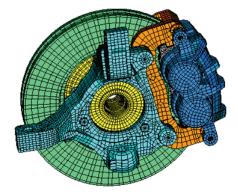
Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation

Shape function FE matrices FE equations

Advanced FEM Nonlinearity Quasi-continuum

Conclusion



 First, the solid is *discretized* into a number of elements ('meshing')

Sac

How is a finite-element solution implemented?

Sankara J. Subramanian

Outline

What is FEM

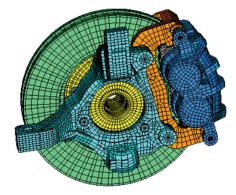
Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation

Shape function FE matrices FE equations

Advanced FEM Nonlinearity Quasi-continuum

Conclusion



 First, the solid is *discretized* into a number of elements ('meshing')

・ コット ふぼう ふほう トロッ

500

Nodes are typically points on the element boundaries

Displacement at any point in the solid is expressed in terms of nodal displacements

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM?

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementatior

Shape functions FE matrices

Advanced FEM Nonlinearity Quasi-continuum

Conclusion

 The actual displacement components at any point inside an element are interpolated from the (unknown) actual nodal values uⁱ

・ロト ・四ト ・ヨト ・ヨト

3

Sar

Displacement at any point in the solid is expressed in terms of nodal displacements

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM?

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation

Shape functions

FE equations

Advanced FEM Nonlinearity Quasi-continuum

Conclusion

- The actual displacement components at any point inside an element are interpolated from the (unknown) actual nodal values uⁱ
- The virtual displacements are also interpolated in the same way

$$\mathbf{u}(x_1, x_2, x_3) = \sum_{i=1}^3 N^i(x_1, x_2, x_3) \mathbf{u}^i$$

Sac

Nⁱ are shape functions

Displacement at any point in the solid is expressed in terms of nodal displacements

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM?

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementatior

Shape functions FE matrices

FE equations

Advanced FEM Nonlinearity Quasi-continuum

Conclusion

- The actual displacement components at any point inside an element are interpolated from the (unknown) actual nodal values uⁱ
- The virtual displacements are also interpolated in the same way

$$\mathbf{u}(x_1, x_2, x_3) = \sum_{i=1}^{3} N^i(x_1, x_2, x_3) \mathbf{u}^i$$

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Sac

N^i are shape functions

For full 3D analysis, $(3 \times \# \text{ of nodes})$ unknowns

Linear shape functions are the simplest

Sankara J. Subramanian

Outline

What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

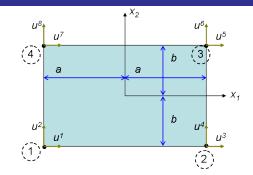
Basic Formulation: Implementation

Shape functions

FE equations

Advanced FEM Nonlinearity Quasi-continuum

Conclusion



A D > A P > A B > A B >

æ

Sac

Linear shape functions are the simplest

Sankara J. Subramaniar

Outline

What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

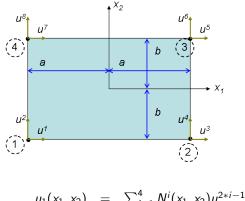
Basic Formulation: Implementatio

Shape functions FE matrices

FE equations

Nonlinearity Quasi-continuum

Conclusion



$$u_1(x_1, x_2) = \sum_{i=1}^{4} N^i(x_1, x_2) u^{2*i}$$
$$u_2(x_1, x_2) = \sum_{i=1}^{4} N^i(x_1, x_2) u^{2*i}$$

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ の へ ()・

Linear shape functions are the simplest

Sankara J. Subramaniar

Outline

What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

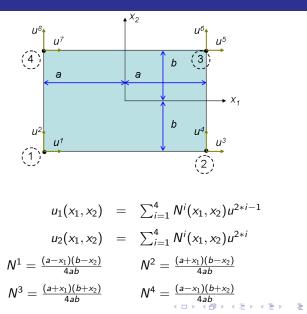
Basic Formulation: Implementatio

Shape functions

FE equations

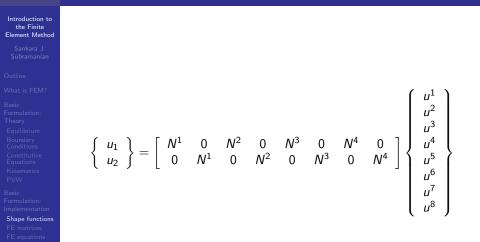
Advanced FEM Nonlinearity Quasi-continuum

Conclusion



Sac

Displacements are written in vector form



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Derivatives of shape functions relate strains to displacements

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM?

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape function **FE matrices** FE equations Advanced FEM

Nonlinearity Quasi-continuum

Conclusion

Recall strain-displacement relations:

$$\epsilon_{ij} = \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right)$$

In vector form,

$$\boldsymbol{\epsilon} = \left\{ \begin{array}{c} \epsilon_{11} \\ \epsilon_{22} \\ \epsilon_{12} \end{array} \right\} = [\mathbf{B}] \{ \mathbf{u}^{\mathbf{i}} \}$$

where

$$\begin{bmatrix} \mathbf{B} \end{bmatrix} = \begin{bmatrix} \frac{\partial/\partial x_1}{0} & 0\\ 0 & \frac{\partial}{\partial x_2}\\ (1/2) \frac{\partial}{\partial x_1} & (1/2) \frac{\partial}{\partial x_2} \end{bmatrix} \begin{bmatrix} \mathbf{N} \end{bmatrix}$$

・ロト ・ 一下・ ・ ヨト・

э.

Sac

Matrix of elastic constants relates stress components to strain components

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations

Advanced FEM Nonlinearity Quasi-continuum

Conclusion

Recall Hooke's law:

$$\sigma_{ij} = \frac{E}{1+\nu} \left[\epsilon_{ij} + \frac{\nu}{1-2\nu} \epsilon_{kk} \delta_{ij} \right]$$

In matrix form, we can write this as

 $\{\sigma\} = [D]\{\epsilon\} = [D][B]\{u^i\}$

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー の々ぐ

where [D] is a matrix of elastic constants

Substitution into PVW gives element equilibrium equations

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM?

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape function FE matrices FE equations

Advanced FEM Nonlinearity Quasi-continuum

Conclusion

Recall the PVW:

$$\int_{V} \epsilon_{ij}^{*} \sigma_{ij} dV = \int_{S} F_{i} u_{j}^{*} dS$$

In matrix form,

$$\int_{V} \{ \boldsymbol{\epsilon}^{*} \}^{T} \{ \boldsymbol{\sigma} \} dV = \int_{S} \{ \mathbf{u}^{*} \}^{T} \{ \mathbf{F} \} dS$$

$$[K]{u^i} = {R}$$

where

$$[\mathbf{K}] = \int_{V} [\mathbf{B}]^{\mathsf{T}} [\mathbf{D}] [\mathbf{B}] dV \text{ and } \{\mathbf{R}\} = \int_{S} [\mathbf{N}]^{\mathsf{T}} \{\mathbf{F}\} dS$$

A D > A P > A B > A B >

э

Sac

Assembly of element contributions yields global stiffness equations

Introduction to the Finite Element Method
Basic Formulation: Implementation Shape functions FE matrices FE equations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Assembly of element contributions yields global stiffness equations

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations

Nonlinearity Quasi-continuum

Conclusion

 Global equations are solved for the nodal displacements in the entire solid

・ロト ・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Sac

Assembly of element contributions yields global stiffness equations

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM?

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape function: FE matrices FE equations

Advanced FEM Nonlinearity Quasi-continuum

Conclusion

- Global equations are solved for the nodal displacements in the entire solid
- Using the finite-element matrices, strains and stresses are then computed

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー の々ぐ

Sac

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Sac

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape function FE matrices FE equations

Advanced FEM

Nonlinearity Quasi-continuum

Conclusion

Nonlinear material behaviour: plasticity, creep

Sac

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape function FE matrices FE equations

Advanced FEM

Nonlinearity Quasi-continuum

Conclusion

- Nonlinear material behaviour: plasticity, creep
- Large deformations: Geometric non-linearity

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape function: FE matrices FE equations

Advanced FEM

Nonlinearity Quasi-continuum

Conclusion

- Nonlinear material behaviour: plasticity, creep
- Large deformations: Geometric non-linearity
- Contact: bodies come into contact as a result of load application

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□

SOR

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape function: FE matrices FE equations

Advanced FEM

Nonlinearity Quasi-continuum

Conclusion

- Nonlinear material behaviour: plasticity, creep
- Large deformations: Geometric non-linearity
- Contact: bodies come into contact as a result of load application

 Coupled phenomena: e.g. Piezoelectric ceramics, hydrogen embrittlement

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape function: FE matrices FE equations

Advanced FEM

Nonlinearity Quasi-continuum

Conclusion

- Nonlinear material behaviour: plasticity, creep
- Large deformations: Geometric non-linearity
- Contact: bodies come into contact as a result of load application

- Coupled phenomena: e.g. Piezoelectric ceramics, hydrogen embrittlement
- Fatigue and fracture studies

A finite-element formulation was used to study hot-isostatic pressing of powders

Sankara J. Subramanian

Outline

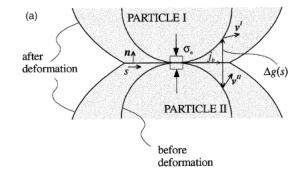
What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations

Nonlinearity Quasi-continuun

Conclusion



- Bulk deformation: Elasticity + power-law creep
- Interparticle mass diffusion
- Surface diffusion

Modeling the interaction between densification mechanisms in powder compaction (2001), S. J. Subramanian and P. Sofronis, Int. J. Sol. Struct., 38, 7899-7918

Introduction to the Finite Element Method
Nonlinearity Quasi-continuum

Introduction to the Finite Element Method Stress-strain relations are derived from atomistic calculations instead of traditional continuum descriptions Quasi-continuum

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

∃ \0 < \0</p>

Conclusion

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PU/W

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM

Quasi-continuum

Conclusion

- Stress-strain relations are derived from atomistic calculations instead of traditional continuum descriptions
- Can capture the physics extremely accurately, but can only model very small volumes (100s of nm³)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э.

SOR

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM

Quasi-continuum

Conclusion

- Stress-strain relations are derived from atomistic calculations instead of traditional continuum descriptions
- Can capture the physics extremely accurately, but can only model very small volumes (100s of nm³)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

Mainly used in nanotechnology and materials research applications

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM Nonlinearity

Quasi-continuum

Conclusion

- Stress-strain relations are derived from atomistic calculations instead of traditional continuum descriptions
- Can capture the physics extremely accurately, but can only model very small volumes (100s of nm³)

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー の々ぐ

- Mainly used in nanotechnology and materials research applications
- Field of active research

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM

Nonlinearity Quasi-continuum

Conclusion

- Stress-strain relations are derived from atomistic calculations instead of traditional continuum descriptions
- Can capture the physics extremely accurately, but can only model very small volumes (100s of nm³)

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

- Mainly used in nanotechnology and materials research applications
- Field of active research
- http://www.qcmethod.com: a good resource

Quasi-continuum method used to study crack propagation in Ni

Sankara J. Subramanian

Outline

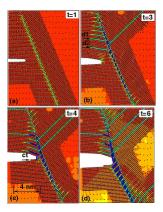
What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations

Nonlinearity Quasi-continuum

Conclusion



Reference: *Quasicontinuum simulation of fracture at the atomic scale* (1998), R. Miller, E. B. Tadmor, R. Phillips and M. Ortiz, Modelling and Simulation in Materials Science and Engineering, vol. 6, 607-638

Introduction to the Finite
Element Method
Conclusion

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction to the Finite Element Method

Sankara J. Subramaniar

Outline

What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM Nonlinearity

Quasi-continuur

Conclusion

FEM is an extremely valuable research tool that can be used on a wide variety of problems

・ロト ・ 厚 ト ・ ヨ ト ・ ヨ ト

= na<</p>

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM

Quasi-continuur

Conclusion

FEM is an extremely valuable research tool that can be used on a wide variety of problems

▲ロト ▲冊ト ▲ヨト ▲ヨト ヨー の々ぐ

 Hybrid FEM-atomistic computation is an active research area that is growing rapidly

Textbooks:

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM Nonlinearity

Quasi-continut

- FEM is an extremely valuable research tool that can be used on a wide variety of problems
- Hybrid FEM-atomistic computation is an active research area that is growing rapidly

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Textbooks:

Finite element procedures: K. J. Bathe

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM Nonlinearity

Quasi-continuur

Conclusion

- FEM is an extremely valuable research tool that can be used on a wide variety of problems
- Hybrid FEM-atomistic computation is an active research area that is growing rapidly

Textbooks:

- Finite element procedures: K. J. Bathe
- Concepts and applications of finite element analysis: R. D. Cook, D. S. Malkus, M. E. Plesha and R. J. Witt

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM

Nonlinearity Quasi-continuum

Conclusion

- FEM is an extremely valuable research tool that can be used on a wide variety of problems
- Hybrid FEM-atomistic computation is an active research area that is growing rapidly

Textbooks:

- Finite element procedures: K. J. Bathe
- Concepts and applications of finite element analysis: R. D. Cook, D. S. Malkus, M. E. Plesha and R. J. Witt
- The finite element method set: O. C. Zienkiewicz and R. L. Taylor

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●

Introduction to the Finite Element Method

Sankara J. Subramanian

Outline

What is FEM

Basic Formulation: Theory Equilibrium Boundary Conditions Constitutive Equations Kinematics PVW

Basic Formulation: Implementation Shape functions FE matrices FE equations Advanced FEM

Nonlinearity Quasi-continuum

Conclusion

- FEM is an extremely valuable research tool that can be used on a wide variety of problems
- Hybrid FEM-atomistic computation is an active research area that is growing rapidly

Textbooks:

- Finite element procedures: K. J. Bathe
- Concepts and applications of finite element analysis: R. D. Cook, D. S. Malkus, M. E. Plesha and R. J. Witt
- The finite element method set: O. C. Zienkiewicz and R. L. Taylor

Thank you for your time

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ● ●