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Molecular  Mechanics : Empirical Force Fields

� Many of the problems that we would like 
to deal with are unfortunately too large 
to be considered by quantum mechanical 
methods.

Number of atoms – 1000 or 100,000 or 
more.

� Force field methods (MM) ignore the 
electronic motions and calculate the 
energy of a system as a function of the 
nuclear coordinates only.

� MM is suitable for performing calculations on systems with large

number of molecules. Models contain parameters which can be tuned 

to improve accuracy.

� MM, of course, cannot provide properties that depend upon the 

electronic distributions (chemical reactions, electronic excitations, 

charge transfers etc.)



Simple molecular mechanics force fields

V( rN )  = 

Bond stretching  +  Bond bending  +  Bond rotation (torsion)    

+  Non-bonded interactions 

Electrostatic van der Waals 

� Many of the molecular force fields in use today can be 

interpreted in terms of a relatively simple five-component 

picture of the intra and inter-molecular interactions.

Ref. A. R. Leach, Molecular

Modelling, Addison Wesley 

Longman (1998)



The potential energy curve for a typical bond can 

be described well by Morse potential

where, De is well-depth and l0 is the equilibrium 

bond length. Morse potential describe a wide 

range of behavior from equilibrium to 

dissociation. However, it is rare in molecular 

mechanics calculations for bonds to deviate 

significantly from their equilibrium values. 

Consequently, simpler expressions like Hooke’s 

law formula is most often used

which makes a reasonably good description of 

bond vibration at  the lower part of potential well.

Bond Stretching
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Bond Bending

� The contribution of each angle is characterized by a force 

constant and  an equilibrium value. Usually, force constant for 

bending is smaller than that of stretching.

� The bond stretching and angle bending terms are often regarded 

as ‘hard’ degrees of freedom because quite substantial energies 

are required to cause significant deviations from this 

equilibrium values. Hence, they are not considered at all in 

many models.
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� The deviations of angles from their equilibrium 

values are also frequently described using a 

Hooke’s law or harmonic potential



� Torsional contribution is included for 
each bonded quartet of atoms A-B-C-D 
in the system. Torsional potentials are 
usually expressed as cosine functions

where ф is the torsional  angle and Vn

measures barrier height.

Torsion

� Most of the variation in structure and relative energies is due to 
the complex interplay between the torsional and non-bonded 
interactions.

� The existence of barriers to rotation about chemical bonds is 
fundamental to understand the structural properties of molecular
and conformational analysis.
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Modelling, Addison Wesley 
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Non-bonded interaction

� The non-bonded interactions do not depend upon a specific 

bonding relationship between atoms . They are ‘through-space’

interactions and are usually modelled as a function of some 

inverse power of the distance The non-bonded terms in a force 

field are usually considered in two groups: 

� Electrostatic interaction (long range) and

� van der Waals interactions (short range)



Short range (van der Waals) interactions

� Note that Ar atoms do not have any permanent charge, dipole or 

higher multipoles.

� The attractive contribution originates from dispersive forces due to 

instantaneous dipoles which arise during fluctuations in electron 

cloud.

� If we were to study interaction between 

two argon atoms, we would find that the 

interaction energy varies as shown in the 

figure. As the separation is reduced from 

large distance, the energy decreases, passes 

through a minimum and then increases 

rapidly as the separation decreases further.

� Presence of repulsive interaction at very 

short distance and attractive interaction at 

little longer distance.



� The Drude model consists of ‘molecules’ with two charges ,+q 

and -q, separated by a distance r .The negative charge performs 

simple harmonic motion with frequency  ω along Z-axis about 

the stationary positive charge .

� The force constant of the harmonic oscillator is k and mass m so

that the frequency of oscillation is 

Dispersive interactions: Drude Model
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Ref. A. R. Leach, Molecular

Modelling, Addison Wesley 

Longman (1998)



� The coordinates of negative charges are za and zb for the two atoms 

labeled a and b. The Schrödinger wave equation for molecule a is 

where m is the mass of the associated with charge –q and Ψa is the 

wave function of the simple harmonic oscillator (SHO) a.

Here        is the potential energy of the oscillator. The eigenvalues 

are well known : 

� The total energy of system when the two molecules are infinitely

apart are

� How does on define the intermolecular interaction energy, υ(r)?

This is the difference in the total energy of the two particle system 

when they are at a distance of r apart and when they are infinitely 

separated
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Let us now see that what happens when the two SHO are brought 

together to a finite distance r but where r is still much greater than za
and zb. The Schrödinger equation For such a system would be written 

as:

where Ψ is the wave function for the combined two-molecule system. 

We do variable transformations

In terms of these transformed variables, the above equation will be

Here the new force constants corresponding to Z1 and Z2 are:
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The total energy is given by 

which in the ground state is 

Here ω1 and ω2 are

If the fluctuations in the charge density are small as in the case when 

the intermolecular separation is large compared to the molecular

diameter ( r >> σ , where σ is the molecular diameter) then both ω1

and ω2 can be expanded in terms of the binomial theorem to get:

We get,
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Note that in deriving the expression for υdisp, it is assumed an one-

dimensional oscillator. A three-dimensional analogue of this is a 

better model.

When a Drude molecule or the oscillator is placed in an electric field

E, a force equal to qE acts on a charge to produce a displacement

z’
a. 

The induced dipole moment in such a case is given by 

At equilibrium the force qE must be balanced by the restoring force 

kz’
a

and therefore

Which gives

The polarizability is 
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Also, it has been seen that the most easily polarizable orbital is the 

outermost orbital. The energy of an electron in this orbital is given 

by the first ionization potential EI which must be approximately 

equal to ħω0. 

The expression for υdisp from a three dimensional Drude model is:

Which can be transformed to 

Note added: The above eqn should have a 1/r6

When we use the result that EI = ħω0 and       .Thus, from a 

knowledge of the polarizability and EI it is possible to obtain an 

estimate of the dispersion interaction strength.

More importantly,
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Short range repulsive interactions

This repulsive interaction is significant only 

when two atoms come very close to each other 

and thus electron cloud begin to overlap. In 

addition N electron cloud overlap, a number of 

other contributions such as Pauli repulsion, 

nucleus-nucleus repulsion also influence this 

short range repulsion.

Quantum mechanical calculations suggest an 

exponential           behavior at short distances.( )r

e α−



The short-range repulsive and attractive potentials 

are usually put in common used form known as 

Lennard-Jones potential.

The r-6 term is, of course, the same power-law 

relationship found for the theoretical calculation of 

dispersion energy.

Modelling van der Waals interactions: 

Lennard-Jones potential

There are no strong arguments in favour of the r-12 dependence of the 

repulsive part. Numerically, r-12 dependence has been found to be 

reasonable for  rare gases. The 12-6 potential is largely used as model 

of van der Waals interaction because of its calculational simplicity.

Other forms of LJ interaction: 
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Electrostatic interactions mean interactions mean interactions 

between permanent Charges or multipoles.

Consider a diatomic molecule : 

Non-bonded interactions: Electrostatic Contributions

Electrostatic interactions mean interactions mean interactions 

between permanent Charges or multipoles.

Consider a diatomic molecule : 
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Take an exercise:
Find the electrostatic potential at points P and P` using point 

dipole approximation and find the percent errors.

Error = 12%

At P`, error = 4%

Point dipole approximation works better with increasing distance

Point dipole,

Note added: The denoninator of the above eqn should 

read (3l/2)2



Electric field of a point dipole:



Multipole expansion scheme:

. For a polyatomic molecule,

Total potential= That of total charge at origin +  that of total dipole                  

at origin + that of total quadrupole at origin +…



Multisite electrostatic interaction:
Multipole expansion scheme is alright for small molecules. For large 

molecules, multisite interaction scheme is practically more viable.



Other interactions: 

Induction interactions: Effects of polarizability

� The interaction energy of  induction in presence of electric field E is 

� A dipole moment can  arise when a  molecule of polarizability α is placed 

in an  electric field E of a neighboring polar molecule. 

� The induction interaction in the presence of an electric field is therefore
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� The charge distribution within an atom will get 

polarized in the presence of an electric field. 

Such an electric field can arise from a 

neighbouring molecule if it has a non-zero 

permanent moment for the charge distribution. 



Potential due to a dipolar molecule at a point is

Since the electric field is the derivative of the potential, we get 

in the denominator r3 for E. Therefore , υind will be
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Simple water models

The simple water models use between 3 -5 interaction sites 

and a rigid water geometry 

Dipole moment 2.2 – 2.5 D

For another successful model see:
A.Chandra and T. Ichiye, J. Chem. Phys. 111, 2701 (1999); 

Liu and Ichiye, JPC (1996).

SPC SPC/E TIP3P BF TIP4P ST2

r(OH), Å 1.0 1.0 0.9572 0.96 0.9572 1.0

HOH,deg 109.47 109.47 104.52 105.7 104.52 109.47

A× 10-3, kcal Å12/mol 629.4 629.4 582.0 560.4 600.0 238.7

C,Kcal Å6/mol 625.5 625.5 595.0 837.0 610.0 268.9

q(O) -0.82 -0.8472 -0.834 0.0 0.0 0.0

q(H) 0.41 0.4238 0.417 0.49 0.52 0.2375

q(M) 0.0 0.0 0.0 -0.98 -1.04 -0.2375

r(OM), Å 0.0 0.0 0.0 0.15 0.15 0.8



Force Fields for interaction with macrobodies :

Reduction of variables

One example : Molecular-surface 

interaction 

Consider a circular ring of radius 

x take the cross section dxdz
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Israelachvili, Intermolecular and 

surface forces, Academic Press



So, the 12-6 potential become a 9-3 potential.
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If the particle interact through LJ interaction, then

See,  S. Senapati and A. Chandra, JCP (1999,200), JPC (2001)



� Hybrid QM/MM scheme to treat quantum and classical parts 

of a system in a combined simulation.

� QM/MM energy schemes, additive and subtractive methods, 

different embedding schemes, treatment of boundaries etc.

� Results of some simple QM/MM systems

� Brief description of second hands-on session

Case studies of biological systems will be discussed by Prof. 

Elstner.

Next Lecture:

QM/MM (Basic methodology)


