
Excess free energy: integral equations
Let us consider the equilibrium density profile ρ(r) and a reference density profile ρ0(r) for the same 
system.  Assume the linear parametrization

From the definition of c(1) and c(2) as functional derivative we can write

ρλ(r) = ρ0(r) + λ[ρ(r)− ρ0(r)] = ρ0(r) + λ∆ρ(r) λ ∈ [0 : 1]

Fex[ρ] = Fex[ρ0]− kBT

∫ 1

0
dλ

∫
d3r ∆ρ(r)c(1)(r; [ρλ])

c(1)(r; [ρ]) = c(1)(r; [ρ0]) +
∫ 1

0
dλ

∫
d3r′ ∆ρ(r′)c(2)(r, r′; [ρλ])

Using the second in the first and noticing that 
we get

∫ 1

0
dx

∫ x

0
dy g(y) =

∫ 1

0
dx (1− x) g(x) ∀g(x)

For homogeneous systems with ideal gas reference state

Fex[ρ] = Fex[ρ0]− kBT

∫
d3r ∆ρ(r)c(1)(r; [ρ0])

− kBT

∫ 1

0
dλ(1− λ)

∫
d3r d3r′ ∆ρ(r)c(2)(r, r′; [ρλ]) ∆ρ(r′)

c(1)(ρ) = −βµex =
∫ ρ

0
dρ′

∫
d3rc(2)(r, ρ′)

χ(0)
T

χT
=

(
∂βP

∂ρ

)

T

= ρ

(
∂βµ

∂ρ

)

T

= 1− ρ

∫
d3r c(2)(r, ρ) = 1− ρ ĉ(2)(k = 0)
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The effective one-component system

Integral equations approach and inversion procedure: 

remember that

and consider the uniform reference system ρ0(r)=ρ0:  c(1)(r,ρ0)=-βµex

Add the ideal contribution and switch back to ΩV

Fex[ρ] = Fex[ρ0]− kBT

∫
d3r ∆ρ(r)c(1)(r; [ρ0])

− kBT

∫ 1

0
dλ(1− λ)

∫
d3r d3r′ ∆ρ(r)c(2)(r, r′; [ρλ]) ∆ρ(r′)

ΩV [ρ] = Ω0(ρ0) +
∫

d3r ρ(r)Φ(r) + kBT

∫
d3r

[
ρ(r)log

ρ(r)
ρ0

−∆ρ(r)
]

− kBT

∫ 1

0
dλ(1− λ)

∫
d3r d3r′ ∆ρ(r)c(2)([ρλ], r, r′)∆ρ(r′)

Replacing c(2)([ρλ],r,r’) by c(2)(r-r’) of the uniform system, the equilibrium condition for the functional 
provides the HNC equation

ρ(r) = ρ0exp

{
−βΦ(r) +

∫
d3r′c(2)(r − r′)∆ρ(r′)

}
HNC
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The effective one-component system

Percus (1962): consider one particle in the system as a test particle

φ(r) = v(r) the inter-particle potential
ρ(r) = ρ0g(r); ∆ρ(r) = ρ0h(r) of the uniform system

HNC+OZ: g(r) = exp {−βv(r) + h(r)− c(r)} HNC closure for homogeneous systems

Percus-Yevik (PY): g(r) = e−βv(r) [g(r)− c(r)] PY, very accurate for hard spheres

HNC and PY provide a link between the pair structure g(r) and the two-body potential v(r) in a 
uniform system, if supplemented by:

Ideal gas limit: lim
ρ→0

g(r) = e−βv(r)

Theorem (Henderson, Phy. Letts. 49A, 197 (1974)): in a quantum or classical fluid with only pairwise  
interactions, and at fixed thermodynamic conditions, the pair potential v(r) that give rise to a given 
radial distribution function g(r) is unique, up to a constant.
In other words, if a potential exists which generate a given g(r), this potential is unique up to a 
constant.

g(r) ⇐==⇒ v(r)
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The effective one-component system

Inverse problem: from a measured g(r) to a two body effective interaction v(r)

Theoretical basis for Boltzmann inversion, HNC inversion and Modified-HNC inversion

HNC inversion: 

In a one component system, the original pair potential is recovered if the inversion procedure is 
exact (or fully converged for the iterative solutions). (Reatto et al. Phys. Rev. A33, 3541 (1986))

In a multi component system, inversion of radial distribution functions gαβ(r) provides effective two-
body potentials vαβ(r) between species α and β.

- effective potentials are state dependent.
- effective potentials are obtained at finite density, at variance with ω2(r) of the diagrammatic 
expansion which considered only two particles (zero density limit).

In a two component system, the effective pair potential v11(r) obtained from the inversion procedure 
is a resummation of all n-body terms in the diagrammatic expansion of the free energy.
The two body term of the diagrammatic expansion is only the zero density limit of the effective pair 
potential

φ11(Rij) + ω2(Rij ; z2) = lim
ρ1→0

veff
11 (Rij ; ρ1, z2)

Drawbacks: 
• the knowledge of the relevant g(r) is needed. Only possible for not too extreme size ratios.
• computing thermodynamics with density dependent potentials is more cumbersome

βv(r) = − log[g(r)] + h(r)− c(r)− log[g(r)]

lunedì 7 dicembre 2009



Polymeric systems
Single chain conformations
Polymers are macromolecules build up by repeating chemical units (monomers) bonded together in 
various topologies. 
Relevant length scales for very long chains:
• the atomic length scale relevant for the local chemistry of monomers
• the Kuhn or persistence length is an intermediate length scale at which the atomistic details are lost 
and a number of chemical monomers have been coarse-grained into a single physical monomer.
• the chain size is the macroscopic length over which the polymer spread in space : end-to-end 
distance or radius of gyration
Primitive polymer model:
Physical monomers resolution: a sequence of point particles connected in a fixed topology. 
Interactions: 
• bond interactions between adjacent monomers along the chain 
• steric interaction between any pair of monomers

Fig. 8. A simple picture for the description of the conformations of a polymer chain. The "lled circles denote the atoms,
whose position vectors are r

!
. The bond vectors are l

!
"r

!"!
!r

!
and R is the end-to-end vector.

The measured spatial extension of an isolated chain and its dependence on N is given by the theory
as the expectation value over all possible conformations of the chain of the magnitude of the
end-to-end distance or the radius of gyration. If we assume that all bond vectors have equal length
a, then Eq. (3.1) implies

!R"""Na"#2
#
!
!#!

#
!

$#!"!

!l
!
) l
$
" , (3.4)

where !2" denotes a statistical average.
The simplest picture of a #exible chain is provided by the random walk (RW). Here, one assumes

that every bond vector l
!
is uncorrelated in its motion with all other bond vectors. In this way, the

inner product l
!
) l

$
in Eq. (3.4) above is uniformly distributed in the interval [!a", a"] and its

expectation value vanishes. Hence, the expectation value of the magnitude of the end-to-end vector
scales with the square root of N, i.e.

R
$
,!!R"""aN!%" . (3.5)

The above result corresponds to the so-called ideal or Gaussian chain. The term `ideala stems from
the fact that real chains do not follow this rule; they are more extended that Eq. (3.5) predicts, i.e.,
the exponent # of N has a value which is larger than 1/2. The value #

&
"1/2 for the N-exponent is

likewise known as the Gaussian value.
It is possible to de"ne a free energy associated with ideal chains, by making use of the central

limit theorem. The end-to-end vector R is a sum of a very large number of random variables, hence
it must follow a normal distribution, since the bond vectors are, for an ideal chain, independent.

C.N. Likos / Physics Reports 348 (2001) 267}439 301

particle positions ri i ∈ [0, N ]

chain center of mass RCM =
1

N + 1

N∑

i=0

ri

position relative to CM si = ri −RCM i ∈ [0, N ]
bond vectors !i = ri+1 − ri

end-to-end vector R = rN − r0 =
N∑

i=1

!i

gyration radius R2
g =

1
N + 1

N∑

i=0

s2
i =

1
2(N + 1)2

∑

i,j

|rij |2
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Single chain
For very large N (N⟶∞), chains are self-similar objects, meaning that the property of part of the chain 
are identical to the property of the entire chain under a proper rescaling of lengths.
The physics of chains is expressed in terms of scaling laws

R =< R2 >1/2∼ Nν

D ∼ N−ν′
end-to-end distance
CM diffusion coefficient

Ideal chain model:
• bonds of fixed length a or with gaussian distribution of 
length around a
• steric interaction is absent

By central limit theorem:

Fig. 9. An instantaneous conformation of a self-avoiding chain. The two monomers located at positions A and
B experience a steric repulsion, denoted by the dotted line, and hence develop a correlation in their positions, although
their separation along the chain is many times larger than the persistence length l

!
.

!The persistence length l
!

is de"ned as the length along the chain in which orientational correlations among the
monomers are lost [119].

This implies that the quantity=
"
(R), where=

"
(R) dR denotes the total number of ideal chains

with end-to-end distances lying between R and R#dR, has the form [118]

=
"
(R)JR#exp!! 3R#

2Na#" . (3.6)

The prefactor R# on the right-hand side of Eq. (3.6) above arises from geometry; the exponent can
be identi"ed with a Boltzmann factor, thus giving rise to an elastic free energy F

"
(R) of the ideal

chain, which is entropic in nature and reads as [29]

F
"#
(R)"F(0)#3k

$
¹

2
R#

Na#
, (3.7)

where F(0) is an unimportant constant. The last equation allows for the interpretation of the ideal
chain as an elastic spring with spring constant k"3k

$
¹/Na#.

The physical reason for the fact that the measured exponent ! in real polymers deviates from the
Gaussian value !

%
"1/2 is that the RW-model (and all its re"nements) fail to capture the fact that

the chain cannot intersect itself, it is self-avoiding. The microscopic origin of the self-avoidance lies
in the steric repulsions between the monomers which prohibit them from approaching arbitrarily
close to one another. Though the steric forces are short-range in nature, they have a long-range
e!ect along the chain, irrespective of the persistence length l

!
.! No matter how far away from each

other two monomers lie in the polymer sequence, once they approach each other the steric
interactions enforce a correlation in their positions, as shown in Fig. 9. The excluded volume
interaction between monomers, v

$$
(r
!
,r
"
) is usually approximated by a delta-function repulsion

[120}122]:

v
$$

(r
!
, r

"
)"v

"
k
$
¹"(r

!
!r

"
) , (3.8)
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Fig. 9. An instantaneous conformation of a self-avoiding chain. The two monomers located at positions A and
B experience a steric repulsion, denoted by the dotted line, and hence develop a correlation in their positions, although
their separation along the chain is many times larger than the persistence length l
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(R), where=
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(R) dR denotes the total number of ideal chains
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The prefactor R# on the right-hand side of Eq. (3.6) above arises from geometry; the exponent can
be identi"ed with a Boltzmann factor, thus giving rise to an elastic free energy F
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(R) of the ideal

chain, which is entropic in nature and reads as [29]
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where F(0) is an unimportant constant. The last equation allows for the interpretation of the ideal
chain as an elastic spring with spring constant k"3k
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¹/Na#.

The physical reason for the fact that the measured exponent ! in real polymers deviates from the
Gaussian value !
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"1/2 is that the RW-model (and all its re"nements) fail to capture the fact that

the chain cannot intersect itself, it is self-avoiding. The microscopic origin of the self-avoidance lies
in the steric repulsions between the monomers which prohibit them from approaching arbitrarily
close to one another. Though the steric forces are short-range in nature, they have a long-range
e!ect along the chain, irrespective of the persistence length l

!
.! No matter how far away from each

other two monomers lie in the polymer sequence, once they approach each other the steric
interactions enforce a correlation in their positions, as shown in Fig. 9. The excluded volume
interaction between monomers, v
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) is usually approximated by a delta-function repulsion
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Elastic free energy of an ideal chain

Self avoiding walk model  (SAW):
• bonds of fixed length a or with gaussian distribution of 
length around a
• steric monomer-monomer interaction: 

Fig. 9. An instantaneous conformation of a self-avoiding chain. The two monomers located at positions A and
B experience a steric repulsion, denoted by the dotted line, and hence develop a correlation in their positions, although
their separation along the chain is many times larger than the persistence length l

!
.

!The persistence length l
!

is de"ned as the length along the chain in which orientational correlations among the
monomers are lost [119].

This implies that the quantity=
"
(R), where=

"
(R) dR denotes the total number of ideal chains

with end-to-end distances lying between R and R#dR, has the form [118]

=
"
(R)JR#exp!! 3R#

2Na#" . (3.6)

The prefactor R# on the right-hand side of Eq. (3.6) above arises from geometry; the exponent can
be identi"ed with a Boltzmann factor, thus giving rise to an elastic free energy F

"
(R) of the ideal

chain, which is entropic in nature and reads as [29]

F
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(R)"F(0)#3k

$
¹

2
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Na#
, (3.7)

where F(0) is an unimportant constant. The last equation allows for the interpretation of the ideal
chain as an elastic spring with spring constant k"3k

$
¹/Na#.

The physical reason for the fact that the measured exponent ! in real polymers deviates from the
Gaussian value !

%
"1/2 is that the RW-model (and all its re"nements) fail to capture the fact that

the chain cannot intersect itself, it is self-avoiding. The microscopic origin of the self-avoidance lies
in the steric repulsions between the monomers which prohibit them from approaching arbitrarily
close to one another. Though the steric forces are short-range in nature, they have a long-range
e!ect along the chain, irrespective of the persistence length l

!
.! No matter how far away from each

other two monomers lie in the polymer sequence, once they approach each other the steric
interactions enforce a correlation in their positions, as shown in Fig. 9. The excluded volume
interaction between monomers, v
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(r
!
,r
"
) is usually approximated by a delta-function repulsion

[120}122]:
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!
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¹"(r

!
!r

"
) , (3.8)
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R = a
√

N −→ νid = 0.5
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Single chain

Flory’s mean field argument for SAW:
the number of monomer that can fit into a volume R3 without overlap is R3/v0. The probability that 
one segment will not overlap with another is (1-v0/R3). For N(N+1)/2 distinct pairs we have  

Pint(R) ∝
(
1− v0

R3

)N(N+1)/2
= exp

[
N(N + 1)

2
log(1− v0/R3)

]
# exp

{
−N2v0

2R3

}

Free energy: βFtot = βFel + βFint =
3R2

2Na2
+

N2v0

2R3

equilibrium state (minimum): R5 = v0a
2N3 → R ∼ N3/5 =⇒ νsaw =

3
5

= 0.6

At d dimensions: νsaw =
3

d + 2
→ νsaw =

1
2

for d = 4

At d=4, the excluded volume is negligeble. 
Renormalization Group study at d=4 and (4-ε) expansion provides: 
in agreement with MC simulations and close to Flory’s value.

νsaw = 0.588
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Single chain: effect of the solvent
Lattice model of a chain in solvent

nearest-neighbors attractions:
monomomer-monomer
monomer-solvent
solvent-solvent

Fig. 10. A lattice model of a chain in a solvent. The monomers are denoted by the black circles and the solvent molecules
by the white ones. For the sake of simplicity, these two species are taken to have the same size.

with z being the coordination number of the lattice and !" being given by

!""("
!!

#"
""
)/2!"

!"
. (3.18)

The ideas employed in the derivation of Eq. (3.16) above are the same with those presented in
Section 2 in deriving an e!ective Hamiltonian: the degrees of freedom of one type of particles (the
solvent molecules) are traced out and an e!ective Hamiltonian for the remaining ones (the
monomers) is obtained, with coupling constants depending on some external parameters. A com-
parison between Eqs. (3.11) and (3.16) shows that the e!ect of the solvent is to bring about
a renormalized, temperature-dependent excluded-volume parameter, v(¹), which replaces the bare
parameter v

!
:

v
!
Pv(¹)"v

!
(1!2#) . (3.19)

The origin of the nearest-neighbor attractions modeled by the parameters "!" ($, %"m, s), is
usually the dispersion force between the molecules, hence these parameters are proportional to
products of the atomic polarizabilities &! , &" , i.e., "!!

"k&"
#
, "

""
"k&"

"
and "

!"
"k&

#
&
"
, with some

positive proportionality constant k. Substituting these expressions into the de"nition of the
quantity !", Eq. (3.18), we obtain

!""k
2
(&

#
!&

"
)"'0 , (3.20)

which implies, through Eq. (3.17), that #'0 as well. The e!ect of the solvent is, in general, to
decrease the bare excluded volume parameter and to tend to bring the segments closer to each
other. Whether this only e!ects the constant of proportionality in the Flory scaling law RH&N#$%
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monomer
solvent particle

Average energy from these interactions: 

• Npp=average number of pp contacts
• Nps=average number of ps contacts
• Nss=average number of ss contacts

E = −εppNpp − εpsNps − εssNss

−εppNpp

−εpsNps

−εssNss

Monomers uniformely distributed inside R3:  φp=v0N/R3

βE(R) = −N2v0

R3
χ; χ =

βz

2
(εpp + εss − 2εps)

Free energy: βFtot = βFel + βFint =
3R2

2Na2
+

N2v

2R3
; v = v0(1− 2χ)

Npp =
1
2
zNφp

Nps = zN(1− φp)

Nss =
Ns(Ns − 1)

2
−Npp −Nps
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Single chain: effect of the solvent

three distinct regimes
a) good solvent conditions: (1-2χ)>0      high T    v>0 and ν=⅗
b) poor solvent conditions: (1-2χ)<0      low T     v<0 and ν=⅓
c) θ-solvent condition:       (1-2χ)=0      T=Tθ      v=0 and ν=½

in crossing Tθ the chain undergoes a coil-to-globule transition. For very large N this is a dramatic 
change in size (phase transition).
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Polymer solutions
System of M chains of the same length N in a solvent in a volume V. 
The relevant thermodynamics variable is the chain density ρ=M/V, 
ρ*=3/(4πR3)= chain overlapping density ~N-3ν

In good solvent we can distinguish three regimes 
a) Dilute solutions: ρ/ρ*<1                   large monomer fluctuations
b) Semidilute regime: ρ/ρ*>1               large monomer fluctuations
c) Concentrated regime: N ρ ~ 1          small monomer fluctuations

Fig. 11. The three concentration regimes for polymer solutions: (a) dilute, where the average separation d between
the coils is much larger than the typical size RH of the coil; (b) semidilute, above the overlap concentration cH ;
(c) concentrated solution, above the concentration cHH .

where r
!

denotes the position vector of the nth monomer in the chain and the index n is treated as
a continuous variable. The "rst term in this Hamiltonian is the elastic contribution associated with
the ideal chain alone and the second term encapsulates the excluded-volume interactions. In this
formulation, the partition function Q of the chain is given by a functional integral of the Boltzmann
factor over all possible conformations of the elastic string:

Q"!Dr
!
exp!!"H[r

!
]# . (3.23)

It has been shown [29] that this partition function scales with the degree of polymerization N for
large N as

QJ$"N!!" , (3.24)

where %"7/6 is another universal exponent, whereas $ is a parameter whose value depends on the
microscopic details of the chain. We will employ the continuum Hamiltonian in Section 3.4 in
order to derive an e!ective interaction between polymer chains.

3.3. Polymer solutions

Up to this point, the discussion has been limited to the conformations of a single chain. We
now introduce the notion of a polymer solution, containing many interacting chains. In dealing
with polymer solutions, one usually distinguishes three concentration regimes, sketched in
Fig. 11.

1. Dilute solutions: In this case, shown in Fig. 11(a), the average distance between chains is much
larger than the spatial extension of a single chain.

2. Semidilute solutions: Here, the chains start overlapping thus giving rise to a picture similar to the
one depicted in Fig. 11(b). The crossover between the dilute and semidilute regimes occurs at the
overlap concentration of monomers cH .
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c*=monomer concentration at overlap: c*=N ρ* ~N1-3ν <<1 for large N        ( N-⅘  in GS)
extremely low monomer densities for semidilute solution of large chains
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Polymer solutions

Flory-Huggins: mean field theory of the solution provide qualitively correct phase behaviour which 
become quantitative at high concentrations (negligible fluctuations)
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Polymer solutions
Scaling theory: chains are self-similar, the physics is unchanged if one groups λ monomers together and 
rescale the distances

N → λ−1N and a→ λνa

Osmotic pressure:                                             f is dimensionlessΠ = ckBTf(a3c, N)

c→ λ−1c =⇒ f(a3c, N) = λ−1f(λ3ν−1a3c, λ−1N) =
1
N

f̂(a3cN3ν−1)

In terms of the overlap monomer concentration Π(c) =
ckBT

N
f̂

( c

c∗

)
c∗ = a−3N1−3ν

- in the dilute regime van’t Hoff’s law implies 

- in the semidilute regime Π must become independent on N: 

lim
x→0

f̂(x) = 1

f̂(x) ∼ xα α =
1

(3ν − 1)

Π(c) ∼ ckBT

N

( c

c∗

)1/(3ν−1)
∼ c9/4 good solvent

Confirmed by experiments and at variance with the c2 behaviour predicted by mean field theory.
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Polymer solutions

Chain size in good solvent:
dilute regime:               ν=⅗    excluded volume statistics at all lengths scale
concentrated regime:    ν=⅗    at intermediate length scales below the screening length ξ
                                       ν=½   at larger length scale
                                                                                       R~ξ1-1/2ν N1/2    ideal chain statistics

semidilute regime from scaling: R(c) = R(0)f̃
( c

c∗

)
= aNν f̃

( c

c∗

)

c << c∗ f̃(x) = 1

c >> c∗ R(c) ∼ aNν
( c

c∗

)δ
∼ N1/2

c∗ = a−3N1−3ν → δ =
1− 2ν

6ν − 2
= −1

8
(ν = 3/5)

R(c) ∼ aNν
( c

c∗

) 1−2ν
6ν−2 ∼ c−

1
8

ξ ∼ c−
3
4

in agreement with experiments

lunedì 7 dicembre 2009



Coarse-grained model for polymer solutions

• Implicit solvent model of polymer solutions: solvent effects is already represented through an 
effective monomer-monomer interaction (nearest-neighbor if on lattice).
• reduce each chain to its center of mass by averaging over all monomer degrees of freedom

• for very long realistic chains (N~1000) this is enormous reduction in the number of degrees of 
freedom:                   M chains of N monomers ⇨ M soft particles

   remark: since c*~N-4/5 very long chains are needed to have a large semidilute regime

• simulation of very long chains is notoriously very difficult because of the very long relaxation 
times involved.
• simulation of the effective model is trivial because the resulting effective potential is very soft. 
• structural features of the chains are lost but thermodynamic behaviour is preserved
 
•                    how to compute the effective polymer-polymer interaction?

teraction between a wall, impenetrable to the polymer seg-

ments, and the CM of interacting polymers. The effective

polymer–polymer and wall–polymer interactions provide a

first step towards a complete description of colloid–polymer

mixtures, with the hard wall considered in this paper repre-

senting a single colloidal particle of infinite radius. The ulti-

mate goal is to go well beyond the familiar Asakura–Oosawa

!AO" model which considers polymers to be noninteracting
point particles, excluded from a sphere of radius #/2!Rg

around each colloidal particle.24 This model leads to the

well-known AO depletion interaction between hard sphere

colloids.24–26 As an application of the general method out-

lined in this paper, the limitations of the AO picture will be

illustrated in a calculation of the depletion interaction be-

tween two parallel hard walls. The effective interaction be-

tween polymer coils will be shown to lead to considerable

deviations from the AO results, even in the dilute regime.

A preliminary account of parts of the present work has

been published elsewhere.27 A related soft particle picture

has recently been applied to polymer melts and polymer

blends.28 However, the phenomenological coarse-graining

procedure proposed by these authors, and its practical imple-

mentation, differ considerably from the present ‘‘first prin-

ciples’’ approach, which is better adapted to dilute and se-

midilute polymer solutions. Both methods are good

examples of current efforts to bridge widely different length

and time scales in complex fluids.

II. SIMULATION MODELS AND METHODS

Many physical properties of polymers in solution al-

ready emerge from simple models which ignore chemical

detail and describe the polymers as self-avoiding walks

!SAW" with hard segments interacting through a simple po-
tential. For example, solutions of linear polymers in a good

solvent are well modeled by N athermal SAW’s, each made

up of L nonintersecting segments, on a cubic lattice of M

sites, with periodic boundary conditions. This model cap-

tures the leading scaling behavior and has been used for

many decades to describe polymer solutions.1–6 Slightly

more sophisticated models exist, such as the fluctuating bond

model29 or off-lattice hard sphere chains,30 but the SAW lat-

tice model is simple, efficient and allows for comparisons

with previous studies.

Within the lattice model, the monomer packing fraction

is equal to the fraction of lattice sites occupied by polymer

segments, c"N#L/M , while the concentration of polymer

chains is $b"c/L"N/M . For a single SAW chain, the ra-

dius of gyration scales as Rg%L&, where &!0.6 is the Flory
exponent.1 The overlap concentration $*, signaling the onset
of the semidilute regime, is such that 4'$*Rg

3/3!1, and
hence $*%L$3&.31

To sample the configuration space of the polymer system

we employ the Monte Carlo pivot algorithm30,32 which at-

tempts to rotate part of the polymer around a random seg-

ment !the pivot". If the new trial configuration shows no

overlap, the move is accepted, otherwise the old configura-

tion is restored. This simple scheme turns out to be very

effective for single polymers and dilute polymer solutions

where we found that it efficiently samples configurational

space up to densities $b /$*(1 for L"500 polymers. Be-
cause the polymers are restricted to a cubic lattice, the pivot

move can only take place in five possible directions. For

efficiency we store the complete lattice in memory, so that

overlap between different polymers can be easily checked

for. In this way one has only to check of order L sites per

polymer move, which is much more efficient than the NL2

sites needed when each pair of segments has to be tested for

overlap.

In addition to the pivot moves, we also attempt to trans-

late the polymer. This Monte Carlo move enhances the re-

laxation to equilibrium of the polymer solution, although the

acceptance ratio for this move decreases rapidly if the den-

sity exceeds $b /$*(1 !for L"500 polymers". For densities
deep in the semidilute regime, $b /$*%1, we therefore also
perform configurational bias Monte Carlo !CBMC"
moves,33,34 in which part of the interior polymer is regrown.

In addition, we attempt reptation moves where a limited

number of segments at one end of the polymer are removed

and regrown at the other end. By regrowing the polymer a

bias is introduced, which is then corrected for in the

sampling.33,34 In the simulations at high densities, we find

that we can regrow groups of up to about 20–40 segments in

a CBMC move with a reasonable acceptance ratio !about
40%–50%". More sophisticated algorithms for very dense
polymer systems are available,35 but are not necessary in our

relatively dilute systems.

III. EFFECTIVE POTENTIALS: TWO ISOLATED
POLYMERS

The theory of the effective interactions between two

polymer coils in dilute solution has a long history. The first

calculations were by Flory and Krigbaum in 1950,23 who

showed that, within a mean-field picture, SAW polymers in a

good solvent have a strongly repulsive interaction of the

form,

)v2
!FK"!r "%L2" 3

4'Rg
3# !1$2*"exp" $

3

4

r2

Rg
2# , !1"

where r is the distance between the CM of the two polymer

coils, * is the usual Flory parameter, and )"1/kBT is the
reciprocal temperature, with kB denoting Boltzmann’s con-

FIG. 1. Modeling polymer coils by effective ‘‘soft particles.’’ The N poly-

mers, each made up of L segments, are replaced by N particles interacting

with an effective pair potential. The centers of the particles correspond to

the polymer CM. The interaction of the polymers with a hard wall is mod-

elled by a single soft particle–wall interaction.
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Zero density limit:  interaction potential between two isolated chains.   
In this limit the potential is
                           βvpp(R1 −R2) = − log [gpp(R1 −R2)]

Fig. 14. A snapshot from a simulation involving two self-avoiding polymers. In this con"guration, the centers of mass of
the two chains (denoted by the big sphere) coincide, without violation of the excluded-volume conditions. (Courtesy of
Arben Jusu".)

where ! is an energy scale of the order of k
!
¹ and " is a length scale proportional to the radius of

gyration R
!

of the chain. The e!ective potential is entropic, i.e., the energy scale is simply
proportional to the temperature and the latter is a thermodynamically irrelevant parameter
for the polymer solution, as expected for an athermal solvent: all monomer}monomer inter-
actions appearing in the Hamiltonian of Eq. (3.48) are either zero or diverging and this causes
the Boltzmann factor, exp#!$H[r

"!]%, to be temperature independent, with the result that
the e!ective Boltzmann factor, exp[!$<

!""
(R)], inherits the same property. On the other hand,

it is to be expected that the length scale appearing in the e!ective potential, ", must be proportional
to R

!
, as R

!
is the only characteristic length of the chain when the latter is looked upon at

these scales.
A striking characteristic of the Gaussian potential of Eq. (3.64) is that, in contrast to the usual

interatomic potentials or even potentials between colloidal particles, it does not diverge at the
origin. This means that con"gurations where the centers of mass of the two chains coincide are not
forbidden. However, this is to be expected, in view of the fact that the polymers are indeed fractal
and not compact objects. The centers of mass of two coils can be at the same place, still leaving
room for allowed con"gurations, in which each chain can #uctuate without intersecting the other,
as shown in Fig. 14. Polymer chains are soft, interpenetrable entities.

3.4.2. Simulation results
Another possibility to determine the e!ective polymer}polymer potential <

!""
(R) is through

computer simulations of two chains. In these approaches, the monomers are modeled microscop-
ically as beads interacting by means of a pair potential whose form is chosen so as to include also
the e!ects of the solvent. For athermal solvents a hard-sphere interaction between monomers is

318 C.N. Likos / Physics Reports 348 (2001) 267}439

gpp(R) is the pair distribution function of the two 
centres of mass at distance R.

RGT provides a universal Gaussian Core Potential:

A soft effective segment representation of semidilute polymer solutions
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A coarse-grained effective segment description of polymer solutions is presented, based on soft,
transferable effective interactions between bonded and nonbonded effective segments. The number
of segments is chosen such that the segment density does not exceed their overlap threshold,
allowing polymer concentrations to be explored deep into the semidilute regime. This quantitative
effective segment description is shown to preserve known scaling laws of polymer solutions and
provides accurate estimates of amplitudes, while leading to a orders-of-magnitude increase in the
simulation efficiency and allowing analytic calculations of structural and thermodynamic
properties. © 2007 American Institute of Physics. #DOI: 10.1063/1.2803421$

Many conformational, structural, and thermodynamic
properties of semidilute polymer solutions, both in the bulk
and under confinement, can be qualitatively understood in
terms of scaling arguments based on the de Gennes–Pincus
“blob” picture.1 This picture is applicable whenever the char-
acteristic length scale of the polymer solution !e.g., the cor-
relation length !" or of the confinement is significantly
shorter than the radius of gyration Rg of an isolated polymer
chain. The blob picture suggests a systematic coarse-graining
procedure, whereby each polymer chain is divided into a
number n of effective segments, each containing the same
number of monomers of the initial coil, such that segments
of the same or different chains do not, on average, overlap.
In this letter we present and validate a quantitative formula-
tion of such an effective segment representation, which al-
lows a popular single soft segment coarse graining
procedure2–6 to be extended to highly concentrated solutions.

Consider a solution of N self-avoiding polymer chains of
L monomers !each of size b" in a volume V; the polymer
number density is "=N /V, and if Rg%bL# !with #&0.588
the Flory exponent" is the radius of gyration of an isolated
chain, the polymer overlap density is "*=3/ !4$Rg

3".
In the dilute regime, "%"*, where polymers do not, on

average, overlap, they may be represented by a single soft
segment !or “soft colloid”" of radius Rg; the effective inter-
action potential v!r" between the centers of mass !CMs" of
two soft colloids can be calculated by averaging over mono-
mer conformations for a given distance r between their CMs,
e.g., by Monte Carlo !MC" simulations of an isolated pair of
polymers.2–6 The resulting v!r" depends weakly on polymer
length L, and in the scaling limit !L→&", it is approximately,
but accurately represented by a Gaussian of width %Rg,6

v!r"
kBT

& A exp#− '!r/Rg"2$ , !1"

where A&1.75 and '&0.80. For finite L, the MC data6 for
the amplitude A can be fitted, for L(100 by A!L"=A&

+a /L), with A&=1.75, a=1.5, and )=0.33, while the coef-
ficient ' turns to be independent of L. The softness of the
repulsive interaction, characterized by a modest free energy
penalty of &2kBT at full overlap !r=0" of two polymers,
reflects the low average monomer concentration c%L1−3#

%L−0.77 inside each coil for long chains.
In the semidilute regime, "*"*, polymer coils overlap,

and this is reflected in a significant density dependence of the
effective interaction,5 which spoils the simplicity of the
coarse-graining procedure and introduces complications as-
sociated with state-dependent interactions.7 This density de-
pendence signals the fact that in the semidilute regime the
relevant length scale is no longer Rg, but the shorter correla-
tion length !%Rg!" /"*"−+, with +=# / !3#−1"&0.77.1

These shortcomings may be overcome by switching to a
multisegment representation, where each of the n effective
segments is made up of l=L /n monomers. If rg%bl# is the
segment radius of gyration, the segment overlap concentra-
tion is "s

*=3/ !4$rg
3"="*n3#. This means that the polymer

density "="s /n can be increased beyond "*, up to n3#−1"*

&n0.77"* before the segments overlap. In other words, the
more segments are used to represent one polymer, the deeper
one can penetrate into the semidilute regime without signifi-
cant segment overlap. Under those conditions the effective
interactions between the CMs of the effective segments are
expected to be practically independent of segment density "s
and may be taken equal to their zero density limit.

These effective interactions include the pair potential
v!r" between nonbonded segments, and the “tethering” po-
tential ,!r" between adjacent segments on a given chain. The
former is expected to be similar to the Gaussian repulsion in
Eq. !1", with Rg replaced by rg, i.e., the same as the effectivea"Electronic mail: bc299@cam.ac.uk
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From MC calculations for N>100:

A(N) = A∞ +
a

Nσ
A∞ = 1.75; a = 1.5;σ = 0.33

α = 0.80
Rg = chain radius of gyration
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Can Polymer Coils Be Modeled as “Soft Colloids”?
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We map dilute or semidilute solutions of nonintersecting polymer chains onto a fluid of “soft” par-
ticles interacting via a concentration dependent effective pair potential, by inverting the pair distribution
function of the centers of mass of the initial polymer chains. A similar inversion is used to derive an
effective wall-polymer potential; these potentials are combined to successfully reproduce the calculated
exact depletion interaction induced by nonintersecting polymers between two walls. The mapping opens
up the possibility of large-scale simulations of polymer solutions in complex geometries.

PACS numbers: 61.25.Hq, 61.20.Gy, 82.70.Dd

A statistical description of polymer solutions in complex
geometries, such as the colloid-polymer mixtures which
have recently received much experimental attention [1–3],
generally relies on a nanometer scale segment representa-
tion of the polymer coils, a computationally very demand-
ing task except in the special case of ideal (nonintersecting)
polymers obeying Gaussian statistics [4]. This obviously
follows from the fact that, although the colloidal particles
may reasonably be modeled by hard impenetrable spheres
or other complex shapes lacking internal structure, each
polymer coil involves L segments which must satisfy a
nonintersection constraint. It thus appears natural to at-
tempt a mesoscale coarse graining, whereby polymer coils
interact via effective pair potentials acting between their
centers of mass (CM). Since polymers can interpenetrate,
the effective potential by!r" is expected to be soft, with a
range of the order of the radius of gyration Rg of individual
coils. Such a coarse-grained description has been a long-
time goal in the statistical mechanics of polymer solutions,
dating back to the first attempts by Flory and Krigbaum [5]
who employed mean-field theory to find an interaction for
which the strength at overlap scales as by!r ! 0" # L0.2.
Later, scaling arguments [6], field-theoretical renormaliza-
tion group calculations [7], and simulations [8] confirmed
that the range of the interaction between two isolated poly-
mer coils is of the order of Rg, but found that in the scaling
limit the strength by!r ! 0" is independent of L and of
order kBT .

In this Letter, we show that a meaningful “soft colloid”
picture of polymer coils may be built on a coherent “first
principles” statistical mechanical foundation. We derive
both the effective wall-polymer CM interaction bf!z",
and the “best” local effective pair potential by!r" between
polymer CM’s for finite polymer concentrations. These
potentials are then applied to simulate bulk polymer so-
lutions, as well as inhomogeneous polymers near a hard
wall and polymers confined between two parallel walls
to extract the effective depletion potential between plates.
The soft colloid approach turns out to be successful not
only in the dilute regime but also, perhaps more surpris-

ingly, well into the semidilute regime. A related “soft par-
ticle” picture has been applied to polymer melts and blends
[9], but the corresponding phenomenological implementa-
tion differs substantially from the present first principles
approach.

We consider a popular model for polymers in a good
solvent [10], namely, N excluded volume polymer chains
of L segments undergoing nonintersecting self-avoiding
walks (SAW) on a simple cubic lattice of M sites, with
periodic boundary conditions. The packing fraction is
equal to the fraction of lattice sites occupied by poly-
mer segments, c ! N 3 L$M, while the concentration of
polymer chains is r ! c$L ! N$M. For a single SAW
chain, the radius of gyration Rg # Ln , where n % 0.6 is
the Flory exponent [10]. The overlap concentration r!,
signaling the onset of the semidilute regime, is such that
4pr!R3

g$3 % 1, and hence r! # L23n . We have carried
out Monte Carlo (MC) simulations for chains of length
L ! 100 and L ! 500, and covered a range of concentra-
tions up to r$r! # 5. The pair distribution function g!r"
of the centers of mass was computed for several concen-
trations; g!r ! 0" is always nonzero, thus confirming the
“softness” of the effective pair potential by!r". The lat-
ter was then derived from g!r" by an inversion procedure
based on the hypernetted-chain (HNC) approximation clo-
sure relation [11]:

g!r" ! exp&2by!r" 1 g!r" 2 c!r" 2 1' , (1)

where b ! 1$kBT , while c!r" is the direct pair correla-
tion function, related to g!r" by the Ornstein-Zernike (OZ)
relation [11]. To any given g!r" and density there corre-
sponds a unique effective pair potential by!r", capable of
reproducing the input g!r", irrespective of the underlying
many-body interactions in the system [12]; in a variational
sense this by!r" provides the best pair representation of
the true interactions [13], and leads back to the true ther-
modynamics via the compressibility relation [11]. While
the simple HNC inversion procedure would be inadequate
for dense fluids of hard-core particles, where more sophis-
ticated closures or iterative procedures are required [13],
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Finite density:    HNC inversion is very accurate because of the softness of the potential
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we are able to demonstrate the consistency of the HNC in-
version in the present case [14]. If the resulting effective
by!r", examples of which are shown in Fig. 1, are used
directly in MC simulations, the calculated “exact” g!r"
for this effective representation coincides within statisti-
cal errors with the g!r" derived from the simulation of the
full initial polymer segment model. In fact, the HNC clo-
sure turns out to be quasiexact when applied to the simple
Gaussian model [15] whereby particles interact via the po-
tential by!r" ! e exp#2a!r$Rg"2%, which yields a rea-
sonable fit to the effective pair potentials shown in Fig. 1.
Even the much cruder random-phase approximation clo-
sure, c!r" ! 2by!r", yields semiquantitatively accurate
results in the regime of interest [16,17]. Careful inspection
of Fig. 1 reveals that the effective pair potential is not very
sensitive to the polymer concentration. The value at r ! 0
first increases slightly with r, before decreasing again at
the highest concentration. More strikingly, and perhaps not
surprisingly, the range of by!r" increases with r. The ef-
fective potential becomes slightly negative #O !1023kBT "%
for r$Rg * 3 at the higher concentrations.

The properties of soft-core fluids are significantly dif-
ferent from their hard-core counterparts. For example, for
potentials of the type shown in Fig. 1, the pressure is very
well described by bP ! r 1 1$2bV̂ !0"r2 over the entire
density range [16,17]. Here V̂ !0" is the Fourier transform
of the potential, at k ! 0. Our observation that potentials
become slightly longer ranged at higher densities implies
that the pressure scales with an exponent slightly higher
than 2, so that the equation of state (e.o.s.) is consistent
with the well-known r2.25 law [10], and reproduces the
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FIG. 1. The effective polymer CM pair potential by!r$Rg"
derived from an HNC inversion of g!r$Rg" for different densi-
ties. The x axis denotes r$Rg, where Rg is the radius of gyration
of an isolated SAW polymer. Inset: The polymer CM pair dis-
tribution function g!r" calculated for L ! 500 SAW polymers
and used to generate by!r".

e.o.s. of the full SAW simulations [16]. At first sight it
may seem surprising that a two-body potential could re-
produce the full e.o.s. without explicit many-body terms.
However, the effective potential we use is constructed to
reproduce the true thermodynamics through the compress-
ibility relation (ignoring small volume terms); the relative
insensitivity of by!r" to concentration implies that many-
body interactions are not very important [16].

This insensitivity to concentration makes it possible to
apply the effective potential appropriate for a given mean
concentration to inhomogeneous cases, where the local
polymer concentration deviates from the mean. Such a
situation occurs when a polymer solution is confined by a
hard wall. Using the same explicit SAW polymer model
in MC simulations, we have computed the exact profiles
h!z" ! r!z"$r 2 1, where z denotes the perpendicular
distance of the polymer CM from the wall. Examples of
h!z" for several bulk concentrations are shown in the inset
of Fig. 2. The corresponding adsorptions G are defined by

G ! 2
≠!Vex$A"

≠m
! r

Z `

0
h!z" dz , (2)

where Vex$A is the excess grand potential per unit area,
r the bulk concentration of the polymers, and m their
chemical potential. From a knowledge of the concentra-
tion profile r!z", and the bulk direct correlation func-
tion between polymers CM’s c!r", one may extract an
effective wall-polymer potential bf!z" by combining the
wall-polymer OZ relations [11] with the HNC closure, re-
sulting in

bf!z" ! bfMF!z" 1 r
Z

dr0 h!z0"c!jr 2 r0j" . (3)

0 1 2
z/Rg

−1

−0.5

0

h(
z/

R
g)

0 1 2 3 4
z/Rg

0

2

4

6

βφ
(z

/R
g)

ρ/ρ∗ = 0
ρ/ρ
ρ/ρ∗

* = 0.67

ρ/ρ∗
 = 1.28

ρ/ρ∗
 = 2.49
 = 6.05

FIG. 2. The wall-polymer potential bf!z$Rg" derived from an
HNC inversion of h!z". Inset: The wall-polymer density profile
h!z" ! r!z"$r 2 1 for different densities. The corresponding
adsorptions G are 0, 0.096, 0.132, 0.178, and 0.248 in units of
R22

g , respectively.

2523

Remarks:
• the pair correlation decreases with increasing 
density (like for quantum particles) confirming that 
in the melt regime, polymers are uncorrelated.
• the effective interaction at zero distance is 
always ~2kT and has a non monotonous behaviour 
with ρ
• the effective potential is only moderately density 
dependent and is well fitted by a sum of gaussians
• the effective range of the interaction tends to 
increase with ρ, and the potential develops a small 
amplitude negative tail for r>>Rg

βv(r; ρ) = − log[g(r)] + h(r)− c(r)

r2v(r;!b). For example, leaving them out can easily induce

a 5% change in the pressure. It is, therefore, paramount to

include these effects in "quasi#-analytical representations of
the effective potentials. For that reason, a simple fit to a

Gaussian or a sum of Gaussians is not accurate enough to

reproduce the potentials and hence the thermodynamics of

the SAW polymer systems and consequently, we chose to

use an interpolation spline fit to describe the potentials. First,

the raw effective potential data were fitted to a Gaussian,

vest"r #!a0e
"a1r

2

. "10#

Subsequently, the difference $v(r;!b)!v(r;!b)"vest(r)
was fitted by employing a least squares spline procedure with

8 nodes "the ‘‘dfc’’ routine of the slatec library52#. The val-

ues of the nodes are not known in advance, except for the

boundaries r!0 and r!rc . Additional constraints on the

spline fit were v(rc)!0, dv(r!rc)/dr!0 and v(r!0)/dr
!0. We optimized the spline fit by moving the nodes on the
x-axis using a Monte Carlo procedure. The parameters for

the fits are available elsewhere.53

Note that in Fig. 7, the polymer–polymer interaction

v(r;!b) is plotted vs r/Rg , where Rg is the radius of gyra-

tion of isolated polymers in the infinitely dilute limit. In a

dense solution, the effective radius of gyration of the poly-

mers contracts according to the power-law, Rg%!b
"1/8 ,2,37,54

as shown in Fig. 9.

The accuracy of the effective potentials are tested by

performing a direct molecular dynamics "MD# simulation of
the ‘‘soft colloids’’ interacting via v(r;!b). In Fig. 10 the
pair distribution function gMD(r) from MD simulations is

compared with the original SAW g(r) for two densities in

FIG. 7. The effective polymer CM pair potential v(r;!b) derived from a

HNC inversion of g(r) for different densities. The x-axis denotes r/Rg ,

where Rg is the radius of gyration of an isolated SAW polymer. "Inset# The
value of the effective polymer CM pair potential at r!0, as a function of
density !b /!*. The maximum of the potential initially increases before

decreasing at high concentration.

FIG. 8. The negative part of the effective polymer CM pair potential

v(r;!b) derived from an HNC inversion of g(r) for different densities. The
x-axis denotes r/Rg , where Rg is the radius of gyration of an isolated SAW

polymer.

FIG. 9. The effective radius of gyration for L!500 SAW polymers de-

creases as a function of density !b /!*. "Inset# At high densities the effec-
tive radius of gyration asymptotically follows the scaling law Rg%!1/8.

FIG. 10. The g(r) of a system interacting via the effective potential v(r;!b)
compared with the CM pair distribution of a SAW simulation for two poly-

mer concentrations. The differences are shown in the lower panel and are

typically less than #0.01.
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Link with thermodynamics via the compressibility relation

Polymer solutions S3187

negative tail for r significantly larger than Rg [4, 11]. The link with thermodynamics is via the
compressibility relation [9], which allows the osmotic pressure P to be expressed as

β P(ρ) =
∫ ρ

0
[1 − ρ ′ĉ(k = 0; ρ ′)] dρ ′ (6)

where ĉ(k) is the Fourier transform of c(r). Use of the effective pair potential in conjunction
with the virial and energy equations is meaningless [12]. The equations of state calculated
from MC simulations of the full monomer level polymer representation and from simulations
based on the much less CPU-intensive effective potential representation agree within numerical
uncertainties, underlining the adequacy of the HNC inversion procedure for such ‘soft’
effective particles. Well into the semi-dilute regime (ρ # ρ∗) the slopes of the calculated
equation of state agree with the des Cloizeaux scaling prediction β P ≈ ρ3ν/(3ν−1) ≈ ρ9/4,
where ν = 0.588 ≈ 3/5 is the Flory exponent for the radius of gyration in good solvent
(Rg ∼ bLν) [10].

Neglecting the density dependence of v2(r), i.e. extending the low-density Gaussian
form to all densities, brings us back to the ‘Gaussian core model’ (GCM) first introduced
by Stillinger [13], which exhibits interesting behaviour at low temperatures (β∗ # 1) [14].
In the regime relevant for polymer solutions (β∗ ≈ 1) the model leads to ‘mean field fluid’
behaviour at sufficiently high density,where the random phase approximation,c(r) = −βv2(r)

leads to a quadratic equation of state for ρ # ρ∗ [14, 15]:

β P = ρ + 1
2β v̂2(k = 0)ρ2. (7)

Incorporating the ρ-dependence of v2 is found from simulation to change the asymptotic
ρ2 behaviour into des Cloizeaux scaling ρ9/4. As a by-product of the GCM, we have
developed a multiple occupancy lattice model, which also gives rise to interesting microphase
separation [16].

3. From good to poor solvent conditions

We now turn our attention to the case where adjacent monomers attract, i.e. ε '= 0 or β∗ > 0.
This attraction is solvent induced, and the quality of the solvent deteriorates as β∗ increases,
leading to contraction of the polymer coils. At the θ temperature (β∗

θ = ε/kBTθ ), repulsion and
attraction between polymers cancel, at least in the low-density limit, so the polymers exhibit
the scaling behaviour of ideal polymers (Rg ∼ L1/2). Below Tθ , polymer coils collapse
into globules (Rg ∼ L1/3), and phase separation occurs into polymer-rich and polymer-poor
solutions.

The most convenient diagnostic for locating Tθ from simulations is to calculate the second
virial coefficient B2(L; T ) as a function of temperature and polymer length. The L-dependent
Boyle temperature TB(L) is that at which B2(L; T ) vanishes for a fixed L, then:

Tθ = lim
L→∞

TB(L). (8)

This leads to the estimate β∗
θ = 0.2690 ± 0.0002 [17]. Note that B2(L; T ) can be directly

expressed in terms of the low-density limit of the effective CM pair potential:

B2(L; T ) = 2π

∫ ∞

0
[1 − e−βv2(r,L ,T )]r2 dr. (9)

Extensive MC simulations were used to determine the effective pair potential for fixed
length L = 100 over a wide range of temperatures (0 ! β∗ ! 0.3) and densities ρ [18].
As β∗ increases, v2(r = 0) decreases and v2(r) develops an attractive tail for r > Rg.

Remarks:
• it is well known (Stillinger) that the 
‘gaussian core model’ has an EOS quadratic 
in density which violates scaling

• incorporating the density dependence into 
the potential restore the correct des 
Cloizeaux scaling ρ9/4

• the inversion procedure does not provide 
the volume term necessary to compute the 
free energy of the effective model. However 
the observed agreement between OES for 
the full monomer and the effective 
polymers suggests that this term is negligibly 
small
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negative tail for r significantly larger than Rg [4, 11]. The link with thermodynamics is via the
compressibility relation [9], which allows the osmotic pressure P to be expressed as

β P(ρ) =
∫ ρ

0
[1 − ρ ′ĉ(k = 0; ρ ′)] dρ ′ (6)

where ĉ(k) is the Fourier transform of c(r). Use of the effective pair potential in conjunction
with the virial and energy equations is meaningless [12]. The equations of state calculated
from MC simulations of the full monomer level polymer representation and from simulations
based on the much less CPU-intensive effective potential representation agree within numerical
uncertainties, underlining the adequacy of the HNC inversion procedure for such ‘soft’
effective particles. Well into the semi-dilute regime (ρ # ρ∗) the slopes of the calculated
equation of state agree with the des Cloizeaux scaling prediction β P ≈ ρ3ν/(3ν−1) ≈ ρ9/4,
where ν = 0.588 ≈ 3/5 is the Flory exponent for the radius of gyration in good solvent
(Rg ∼ bLν) [10].

Neglecting the density dependence of v2(r), i.e. extending the low-density Gaussian
form to all densities, brings us back to the ‘Gaussian core model’ (GCM) first introduced
by Stillinger [13], which exhibits interesting behaviour at low temperatures (β∗ # 1) [14].
In the regime relevant for polymer solutions (β∗ ≈ 1) the model leads to ‘mean field fluid’
behaviour at sufficiently high density,where the random phase approximation,c(r) = −βv2(r)

leads to a quadratic equation of state for ρ # ρ∗ [14, 15]:

β P = ρ + 1
2β v̂2(k = 0)ρ2. (7)

Incorporating the ρ-dependence of v2 is found from simulation to change the asymptotic
ρ2 behaviour into des Cloizeaux scaling ρ9/4. As a by-product of the GCM, we have
developed a multiple occupancy lattice model, which also gives rise to interesting microphase
separation [16].

3. From good to poor solvent conditions

We now turn our attention to the case where adjacent monomers attract, i.e. ε '= 0 or β∗ > 0.
This attraction is solvent induced, and the quality of the solvent deteriorates as β∗ increases,
leading to contraction of the polymer coils. At the θ temperature (β∗

θ = ε/kBTθ ), repulsion and
attraction between polymers cancel, at least in the low-density limit, so the polymers exhibit
the scaling behaviour of ideal polymers (Rg ∼ L1/2). Below Tθ , polymer coils collapse
into globules (Rg ∼ L1/3), and phase separation occurs into polymer-rich and polymer-poor
solutions.

The most convenient diagnostic for locating Tθ from simulations is to calculate the second
virial coefficient B2(L; T ) as a function of temperature and polymer length. The L-dependent
Boyle temperature TB(L) is that at which B2(L; T ) vanishes for a fixed L, then:

Tθ = lim
L→∞

TB(L). (8)

This leads to the estimate β∗
θ = 0.2690 ± 0.0002 [17]. Note that B2(L; T ) can be directly

expressed in terms of the low-density limit of the effective CM pair potential:

B2(L; T ) = 2π

∫ ∞

0
[1 − e−βv2(r,L ,T )]r2 dr. (9)

Extensive MC simulations were used to determine the effective pair potential for fixed
length L = 100 over a wide range of temperatures (0 ! β∗ ! 0.3) and densities ρ [18].
As β∗ increases, v2(r = 0) decreases and v2(r) develops an attractive tail for r > Rg.

the semidilute regime. The difference between the two dis-

tribution functions shows an oscillation at small r. Because

this occurs in the same way for both densities it is possibly

introduced by the inversion procedure. Even so, the differ-

ence between the two distribution functions is still typically

less than !0.01. We conclude that the HNC inversion pro-
cedure yields very accurate effective potentials for soft par-

ticles, capable of describing the structure of the fluid with an

absolute error of less than !0.01.
In a previous paper40 we have shown that the HNC clo-

sure is very accurate when applied to the Gaussian model,55

whereby particles interact via the repulsive potential v(r)
"! exp"##(r/Rg)

2$, and is in fact quasiexact in the regime
relevant to the effective potentials shown in Fig. 7.56 Even

the much cruder RPA closure, c(r)"#v(r), yields semi-
quantitatively accurate results for correlations and thermody-

namics in the regime of interest. Thus polymer solutions in

the dilute or semidilute regime fall into the class of mean

field fluids according to the nomenclature introduced in Ref.

40.

The inversion procedure guarantees that the two-body

correlations are accurately reproduced by the effective poten-

tial, but this does not necessarily imply that higher order

correlations are also well represented. As a first test we per-

formed preliminary simulations of the three-body correlation

functions for both full SAW walks and our soft particles. The

two approaches lead to identical results within statistical er-

rors, implying that higher order correlations are much more

accurately reproduced than one might initially expect. We

have also performed some preliminary calculations of the

three-body interaction v3(r1 ,r2 ,r3). Even at full overlap of
the three centers of mass, the three-body interaction term is

only about 10% of the pairwise interaction. This is consistent

with the results found for star-polymers,57 and was foreshad-

owed by the relatively weak density dependence of the ef-

fective pair interaction v(r;%b).
Besides accurately describing the structure, it is also im-

portant that the thermodynamics are captured by the effec-

tive potential. In the next section we therefore focus on the

equation of state &e.o.s.' for polymer solutions.

B. Equation of state

1. Equation of state from direct SAW simulations

We measured the e.o.s., (b /%b , directly for a SAW
simulation by using the thermodynamic integration approach

of Dickman.58 In this method the bulk &osmotic' pressure (b

is measured by taking the derivative of the free energy F

with respect to volume of a system of SAW polymers be-

tween two hard walls. The polymers live on a rectangular

cubic lattice of size M"H$D$D , which is periodic in the

y and z directions. The two walls are represented by an infi-

nitely repulsive potential at x"0 and at x"H%1, so that the
polymer segments cannot penetrate the walls. The volume of

a lattice can only change discretely, and the free energy de-

rivative changes to a finite difference,

(b"
) ln Z&N ,L ,D ,H '

)M

"D#2
) ln Z&N ,L ,D ,H '

)H

*D#2& ln Z&N ,L ,D ,H '#ln Z&N ,L ,D ,H#1 ''. &11'

The model is modified by associating an additional repulsive

potential #ln + with each occupied site in the plane x"H ,

where 0&+&1. The partition function then becomes

Z&N ,L ,D ,H+'" ,
polymer conf

e#U•+nH, &12'

where nH"D2%H(+) is the number of occupied sites in the
x"H plane, and %H(+) is the corresponding number density
in this plane. The pressure can now be estimated as

(b"D#2!
0

1

d+" ) ln Z

)+ #"!
0

1

d+
%H&+'

+
. &13'

We performed SAW simulations of polymers with length L

"500 on an M"160$100$100 cubic lattice for N"50,
100, 200, 400, 600, and 800. For each density we determined

the value of %H(+) for 5 different values of +, corresponding
to the abscissae of a 5 point Gaussian quadrature which was

used to evaluate the integral in Eq. &13' The resulting e.o.s. is
plotted in Fig. 11 and Fig. 12.

2. Equation of state from the soft-particle picture

To calculate the e.o.s. within the soft-particle picture, we

use the compressibility relation &7', which must now be in-
tegrated w.r.t. the density,

(b&%b'"!
0

%b
&1#%!ĉ&0,%!''d%!. &14'

We used the quasiexact HNC approximation to calculate

c(r) from the inverted effective potential v(r;%b) for several
state-points, fitted the values of ĉ(0;%b), and integrated

FIG. 11. Log–log plot of the e.o.s. Z"(/%b as a function of the density for
L"500 polymers. The soft-particle e.o.s. gives a good representation of the
full SAW polymer simulations. At the highest densities there is a slight

deviation from the expected des Cloizeaux (%b /%*)
1/(3-#1) scaling law

which we attribute to the effects of a finite monomer concentration c. Also

shown is the RG e.o.s. of Ohta and Oono &Refs. 60, 61'.
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Same strategy to compute hard wall-polymer effective interactions

!!"
"#$ex/A %

"&
!'b!

0

(

h#z %dz , #17%

where $ex/A is the excess grand potential per unit area and

& the chemical potential of the polymers. As the density

increases, more polymer is adsorbed at the wall as expected,

but the relative adsorption, !/'b , decreases.
The normalized monomer density profiles for SAW’s are

shown in Fig. 14 for the same polymer densities as the CM

profiles shown in Fig. 13. As expected, the profile moves

closer to the wall for higher density; the width of the mono-

mer depletion layer shifts from around Rg at the lowest den-

sities, down to values dictated by the segment correlation

length2 in the semidilute regime. Although the profiles do not

show such a clear correlation-induced oscillation as the CM

profiles, there is nevertheless still a small maximum in the

depletion layer as illustrated in the inset of Fig. 14. The peak

in the monomer profile is less than 1% of the bulk density,

and seems to decrease with higher overall polymer concen-

tration. The range is about Rg , implying that it arises from

correlations between polymer coils. We observe only one

peak, although due to statistical noise, we cannot rule out the

possibility of more oscillations in the density profiles. Re-

cently self-consistent field calculations, valid for polymers in

a theta solvent, found a similar small oscillation in the mono-

mer profiles.64

B. Deriving !„z;"b… from "„z…
From a knowledge of the concentration profile '(z), and

the bulk direct correlation function between polymer CM’s,

cb(r), one may extract an effective wall–polymer potential

)(z;'b) by combining the wall–polymer OZ relations
48 with

the HNC closure. For a binary mixture of two components

labeled 0 and 1, in which component 0 is infinitely dilute

(x0→0), the Ornstein–Zernike equations become48

h11#1,2%!c11#1,2%#'b! h11#1,3%c11#2,3%d3, #18a%

h10#1,2%!c10#1,2%#'b! h11#1,3%c10#2,3%d3, #18b%

h01#1,2%!c01#1,2%#'b! h01#1,3%c11#2,3%d3, #18c%

h00#1,2%!c00#1,2%#'b! h01#1,3%c10#2,3%d3. #18d%

In the limit R0→( , Eq. #18c% becomes an equation for the
wall-density profile, sometimes called the wall-OZ relation,

h#z %!c01#z %#'b! dr!h01#z!%cb# "r"r!"%, #19%

where h(z)!'(z)/'b"1. The wall-OZ equation can be

solved, given the bulk correlation function cb(r), and a clo-

sure relation. In Sec. IVA we showed that the HNC closure

gives excellent results for effective polymer–polymer inter-

actions, and it is therefore natural to apply the same approxi-

mation here. Combining Eq. #8% with Eq. #19% we obtain

)#z;'b%!)MF#z;'b%#'b! dr!h#z!%cb# "r"r!"%. #20%

The first term is the usual potential of mean force

)MF(z;'b)!"ln*' (z)/'b+, to which )(z;'b) would reduce
in the 'b→0 limit, while the second term arises from corre-

lations between the polymer coils next to the wall. An iden-

tical equation results from the HNC density functional theory

#DFT% approach,65 and a similar one, with cb(r) replaced by
v(r;'b) obtains if a mean field DFT is used. In contrast to
simple fluids, where Eq. #20% is not very reliable, the wall-
HNC closure works remarkably well for the Gaussian core-

fluid in the regime relevant to polymer solutions.40 Using the

cb(r) extracted from the earlier bulk simulations of g(r) #see

FIG. 13. The wall–polymer CM density profile h(z)!'(z)/'b"1 for SAW
polymers at different bulk concentrations. From h(z) we can calculate the

corresponding polymer absorptions ! and find "!!0, 0.094, 0.13, 0.16,
and 0.20 in units of Rg

"2, respectively. The relative absorptions are

"!/'b!0.84, 0.59, 0.41, 0.27, and 0.14 Rg , respectively, and decrease

with increasing density as expected.

FIG. 14. The wall–monomer density profile ,(z;'b)!'(z)/'b"1 for the
same set of densities as in Fig. 13. #Inset% A magnification of the region

where there is a small correlational bump in the density profiles. The height

is less than 1% of the total density while the range is about Rg , implying

that the bump arises from polymer–polymer correlations.
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Sec. IVA!, together with Eq. "20!, we are able to extract
#(z;$b) from the density profiles. In order to calculate the

integral in Eq. "20!, we use the procedure outlined by Sulli-
van and Stell.66 In contrast to the inversion of the bulk g(r),

where we had to iterate until convergence, the wall–polymer

inversion requires only one step since cb(r) is given once

and for all. Results for various bulk concentrations are plot-

ted in Fig. 15. The range of the effective wall–polymer re-

pulsion increases with increasing concentration, while the

density profiles actually move in closer to the wall. The com-

pression and enhanced correlation in the density profiles with

increasing density resembles that of the pure Gaussian core

fluid in a fixed external potential,40 but the effect is less

pronounced in the former case since for polymer solutions

the wall–polymer potential becomes more repulsive with

density. This is due mainly to the correlation term, which is

nearly linear in $b , and so becomes relatively more impor-
tant as the density increases. Nevertheless at shorter dis-

tances the #MF(z;$b) term still dominates. The importance

of including both the potential of mean force, and the

correlation-induced component of the effective potential is

demonstrated in Fig. 16. At very low densities the potential

of mean force is adequate, but at higher densities the corre-

lation term becomes increasingly important.

The effective potentials decay exponentially, and to ob-

tain a useful analytic form for the effective potential, the

logarithm of #(z;$b) can be fitted to a cubic polynomial,
which describes the potential very well. However, as in the

bulk case, the wall–polymer potential #(z;$b) has a small
negative component that cannot be described by an exponen-

tial function. Although in this case the tail is probably not

very important, in order to be consistent, we fit #(z;$b) by a
least squares spline fit similar to the one described Sec. IVA.

The parameters for this fit are available elsewhere.53

C. Consistency of the wall–polymer inversion

To test the validity of the inversion procedure for the

wall–polymer $(z), we performed Molecular Dynamics

simulations of a system of ‘‘soft colloidal’’ particles inter-

acting with each other via the effective pair potential v(r ,$b)
and with a wall via the inverted potential #(z;$b) for the
appropriate bulk concentration $b . Such effective potential
simulations are at least an order of magnitude faster than

simulations of the original SAW model. The resulting con-

centration profile of the effective particles is shown in Fig.

17 for one density; it agrees to within an absolute error of

roughly !0.02 with the $(z)/$b obtained from the detailed

SAW simulations. The corresponding adsorption % also dif-
fers by less than 1% from the value obtained by the SAW

simulation, thus demonstrating the adequacy of the soft col-

FIG. 15. The wall–polymer potential #(z;$b) as obtained from the inver-

sion of h(z) via the HNC expression, Eq. "20!.

FIG. 16. Comparison between the contributions to the effective wall–

polymer potentials from the potential of mean force "solid lines! and from
the correlation part "dashed lines! &cf. Eq. "20!' for polymer concentrations
$b /$*"0.67, 1.28, 2.49, and 6.05. From top to bottom the solid lines cor-

respond to increasing density and the dashed lines correspond to decreasing

density. The solid line with the small squares denotes the potential of mean

force for infinitely diluted systems.

FIG. 17. The profile h(z) of soft colloids at $/$*#1.28 near a wall "dashed
line!. The particles interact with each other via v(r), and with the wall via
#(z;$b). This is compared with the wall-CM distribution of an explicit

SAW simulation "solid line!. The difference is shown in the lower panel and
is less than !0.02.
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loid representation of the interacting polymer coils, and the

accuracy of the HNC inversion for polymer coils near a hard

wall.

VI. DEPLETION POTENTIAL BETWEEN TWO WALLS

A. Full SAW simulations

One of the aims of this work is to show that the soft

particle description of the polymers provides a useful route

to the colloid–colloid depletion potential in mixtures of col-

loidal particles and nonadsorbing polymers. Calculating

these depletion interactions poses a severe test of the soft

colloid representation.

As a first step we calculate the depletion potential be-

tween two planar walls, which can ultimately be applied to

spherical colloids through the Derjaguin approximation. We

confined the polymers within a slit of width d, and, using

direct grand-canonical simulations of the full SAW polymer

model, we computed the osmotic pressure exerted by the

polymer coils on the walls. The insertion of polymers was

achieved by the configurational bias Monte Carlo

technique.33 The !osmotic" pressure #(d) was calculated for
different values of the spacing d between the walls by a

thermodynamic integration technique similar to the one ex-

plained in Sec. IV B. Details of these simulations can be

found in Ref. 67. The interaction free energy per unit area A,

$F/A , is then obtained by integrating the osmotic pressure
as a function of d,

$F!d "/A!!
d

%

dz!#!z ""#!%"", !21"

where #(%) denotes the bulk osmotic pressure #b . These

explicit SAW simulations are rather computer intensive, and

were only carried out for L!100.67

B. Effective potential simulations

In the soft colloid picture, the interactions of the polymer

CM’s with each other, v(r;&b), and with a wall, '(z;&b),
are calculated once with the HNC inversion procedures from

the g(r) and &(z) of a full SAW polymer simulation at the

bulk density &b . These potentials are then used in grand-
canonical MC simulations of soft particles between two

walls. The imposed chemical potential is chosen such that

for infinitely separated walls the bulk density is recovered.

The !osmotic" virial pressure is measured as a function of
wall separation d, and the interaction free energy per unit

area $F/A , is again obtained by integration of the pressure
via Eq. !21".

In Fig. 18 the soft colloid depletion interaction is com-

pared to that of the ‘‘exact’’ grand-canonical MC simula-

tions of L!100 SAW polymers, for three different densities,

&b /&*!0.28, 0.58, and 0.95. The two approaches are in
good agreement, but the soft colloid calculations are at least

two orders of magnitude faster than the SAW simulations.

As expected, the depth of the potential increases, whereas the

range of the interaction decreases as the density increases.68

At the two lowest densities, the two approaches agree very

well, but for &b /&*!0.95 they differ slightly around z

!2Rg where the soft particle picture shows a larger repulsive
barrier. The barrier height is, however, small compared to the

attractive minimum at contact, which agrees well with the

‘‘exact’’ data, as does the slope of the attraction.

Liquid state theories for fluids with repulsive particle–

particle interactions predict a repulsive barrier,69 so it is not

surprising that the soft particle picture shows a small repul-

sive barrier as well. Instead, it is the lack of a significant

barrier for the pure SAW polymer simulations which re-

quires explanation. We trace the repulsive barrier to the

breakdown of the ‘‘potential overlap approximation’’ !POA"
described in the Appendix. Under close confinement, the in-

teraction of the soft particles with two parallel walls a dis-

tance d apart can no longer be written as the sum of the two

FIG. 18. Depletion free-energy $F(d)/Rg
2 between two plates separated by

d, for three densities, &b /&*!0.95, &b /&*!0.58, &b /&*!0.24. The sym-
bols denote the ‘‘exact’’ MC simulations, while the dashed, dashed–dotted,

and solid lines are the soft-colloid simulations for the same densities. !Inset"
$F(d)/$F(0) for the SAW simulations, the solid lines are to guide the eye.

The long-dashed line is the ideal Gaussian polymer result calculated in the

Appendix. Note that the range decreases with density, and that, even for the

lowest density, the AO ideal polymer approximation overestimates the in-

teraction range.

FIG. 19. Comparison of normalized pressure between the walls, #(d)/#b ,

as a function of separation d, for SAW polymers and soft particles for a

density &b /&*!0.95.
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loid representation of the interacting polymer coils, and the

accuracy of the HNC inversion for polymer coils near a hard

wall.

VI. DEPLETION POTENTIAL BETWEEN TWO WALLS

A. Full SAW simulations

One of the aims of this work is to show that the soft

particle description of the polymers provides a useful route

to the colloid–colloid depletion potential in mixtures of col-

loidal particles and nonadsorbing polymers. Calculating

these depletion interactions poses a severe test of the soft

colloid representation.

As a first step we calculate the depletion potential be-

tween two planar walls, which can ultimately be applied to

spherical colloids through the Derjaguin approximation. We

confined the polymers within a slit of width d, and, using

direct grand-canonical simulations of the full SAW polymer

model, we computed the osmotic pressure exerted by the

polymer coils on the walls. The insertion of polymers was

achieved by the configurational bias Monte Carlo

technique.33 The !osmotic" pressure #(d) was calculated for
different values of the spacing d between the walls by a

thermodynamic integration technique similar to the one ex-

plained in Sec. IV B. Details of these simulations can be

found in Ref. 67. The interaction free energy per unit area A,

$F/A , is then obtained by integrating the osmotic pressure
as a function of d,

$F!d "/A!!
d

%

dz!#!z ""#!%"", !21"

where #(%) denotes the bulk osmotic pressure #b . These

explicit SAW simulations are rather computer intensive, and

were only carried out for L!100.67

B. Effective potential simulations

In the soft colloid picture, the interactions of the polymer

CM’s with each other, v(r;&b), and with a wall, '(z;&b),
are calculated once with the HNC inversion procedures from

the g(r) and &(z) of a full SAW polymer simulation at the

bulk density &b . These potentials are then used in grand-
canonical MC simulations of soft particles between two

walls. The imposed chemical potential is chosen such that

for infinitely separated walls the bulk density is recovered.

The !osmotic" virial pressure is measured as a function of
wall separation d, and the interaction free energy per unit

area $F/A , is again obtained by integration of the pressure
via Eq. !21".

In Fig. 18 the soft colloid depletion interaction is com-

pared to that of the ‘‘exact’’ grand-canonical MC simula-

tions of L!100 SAW polymers, for three different densities,

&b /&*!0.28, 0.58, and 0.95. The two approaches are in
good agreement, but the soft colloid calculations are at least

two orders of magnitude faster than the SAW simulations.

As expected, the depth of the potential increases, whereas the

range of the interaction decreases as the density increases.68

At the two lowest densities, the two approaches agree very

well, but for &b /&*!0.95 they differ slightly around z

!2Rg where the soft particle picture shows a larger repulsive
barrier. The barrier height is, however, small compared to the

attractive minimum at contact, which agrees well with the

‘‘exact’’ data, as does the slope of the attraction.

Liquid state theories for fluids with repulsive particle–

particle interactions predict a repulsive barrier,69 so it is not

surprising that the soft particle picture shows a small repul-

sive barrier as well. Instead, it is the lack of a significant

barrier for the pure SAW polymer simulations which re-

quires explanation. We trace the repulsive barrier to the

breakdown of the ‘‘potential overlap approximation’’ !POA"
described in the Appendix. Under close confinement, the in-

teraction of the soft particles with two parallel walls a dis-

tance d apart can no longer be written as the sum of the two

FIG. 18. Depletion free-energy $F(d)/Rg
2 between two plates separated by

d, for three densities, &b /&*!0.95, &b /&*!0.58, &b /&*!0.24. The sym-
bols denote the ‘‘exact’’ MC simulations, while the dashed, dashed–dotted,

and solid lines are the soft-colloid simulations for the same densities. !Inset"
$F(d)/$F(0) for the SAW simulations, the solid lines are to guide the eye.

The long-dashed line is the ideal Gaussian polymer result calculated in the

Appendix. Note that the range decreases with density, and that, even for the

lowest density, the AO ideal polymer approximation overestimates the in-

teraction range.

FIG. 19. Comparison of normalized pressure between the walls, #(d)/#b ,

as a function of separation d, for SAW polymers and soft particles for a

density &b /&*!0.95.
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Depletion potential: 
the interaction free energy per unit area can be obtained by integrating the osmotic pressure

excellent agreement between effective and full 
monomer simulations

individual wall–particle interactions as would be the case for

simple liquids. This is caused mainly by the deformation of

the polymers due to the two walls, and also holds for ideal

polymers. The failure of the POA can be clearly seen in Fig.

19, where we compare the pressure !or force" profiles for the
SAW calculations and the effective potentials. In the soft

particle picture the pressure starts to rise at a larger interwall

distance than the pressure for the SAW polymers, an effect

also seen when noninteracting polymers are represented by

an effective particle representation based on the CM !see the
Appendix". Note that the over and underestimates of the
pressure cancel each other, so that the free energy at contact,

#F(0), for the effective potentials is in good agreement with
the SAW calculations.

The MC simulations for the soft colloid model were car-

ried out with effective wall–polymer and polymer–polymer

potentials appropriate for L!100, since longer polymers are
not easily handled in the full SAW model. However, we

checked that the data obtained with effective interactions ap-

propriate for longer polymers (L!500), are very close to the
L!100 results, as is shown in Fig. 20. Therefore, we are
confident that we are close enough to the scaling regime for

the properties under consideration.

C. Comparison with the Asakura–Oosawa approach

The first !and still most popular" approach to the deple-
tion interaction in colloid–polymer mixtures was pioneered

by Asakura and Oosawa in 1954,25 when they approximated

the polymers as ideal !Gaussian", and calculated the induced
attraction between two walls. We shall refer to this neglect of

polymer–polymer repulsion as the AO approximation, in

contrast to the AO model, where a further step is taken and

the polymers are approximated as inter-penetrable spheres of

radius Rg .
24

The exact depletion potential induced by ideal polymers

between two plates of area A a distance d apart is given by

#F!d "/A!$b#V id!d ", !22"

where #V id(d) is the gain in volume accessible to an ideal
Gaussian polymer of size Rg , due to overlap of the exclusion

volumes close to the plates. This can be exactly calculated as

shown in the Appendix. To treat interacting polymers, a

widely used phenomenological improvement !see for ex-
ample Ref. 10" replaces the ideal polymer density by the
bulk osmotic pressure %b of the interacting polymers in the

left over free-volume,

#F!d "/A!%b#V id!d ". !23"

In Fig. 21 we plot these two versions of the AO approxima-

tion for the largest density considered above, $b /$*!0.95,
and compare them to the effective potential and ‘‘exact’’

SAW simulation results. The two approaches result in rather

poor representations of both the depth and the range of the

true potential, even though we are technically not yet in the

semidilute regime where one might expect the approaches to

break down !see also the inset of Fig. 18". For the lower
densities the AO approximation works somewhat better, as

expected.

D. HNC wall–wall approximation

Following arguments similar to those used to derive the

wall–polymer HNC equations of Sec. VB, one can also de-

rive a HNC-type equation for the depletion interaction free

energy per unit area between two walls separated by a dis-

tance d,70

#F!d "

A
!"$b!

"&

&

h!s "h!d"s "ds

#$b!
"&

&

h!d"s "'(!s;$b""(MF!s;$b")ds .

!24"

FIG. 20. Depletion free-energy #F(d)/Rg
2 between two plates separated by

d based on the soft particle representation for polymers of length L!100
and L!500. Here $b /$*!0.95.

FIG. 21. Depletion free-energy #F(d)/Rg
2 between two plates separated by

d for $b /$*!0.95. Circles are the ‘‘exact’’ MC simulations of SAW poly-

mers. The long-dashed and dashed–dotted lines denote the two AO approxi-

mations mentioned in the text. The short-dashed line denotes the more ac-

curate wall-HNC approximation of Eq. !24", which is, in fact, very close to
the simulations in the soft particle picture shown in Fig. 18.
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Star polymers in good solvent

Star polymers consist of f linear polymer chains chemically anchored to a common centre. Typical 
values of f can go from f=1 (linear chain) to f~500.

Fig. 37. Snapshots of star polymers in good solvents as obtained from MD simulations employing the model of Grest
et al. [330] with: (a) f"10, N"50, and (b) f"50, N"50. For small f, the star looks like a fractal, aspherical object
whereas for large f it resembles a spherical, colloidal particle. (Taken from Ref. [331].)

neutron scattering experiments using neutron spin-echo spectroscopy [296], as well as dynamical
light scattering are used to study the collective and single-chain dynamics of arms of the star
polymers, for a recent review see Ref. [290]. Third, star polymers constitute an important
soft-condensed matter system, linking the "elds of polymer physics and colloid physics, thus
attracting also interest from a purely theoretical point of view. Star polymers with small arm
numbers ( f"1,2) resemble linear polymers. Thus, their chain-averaged con"gurations show
a considerable asphericity [297}299], although their averaged number density of monomers, c(r), is
spherically symmetric around the center of mass of the polymer. With increasing arm number f,
the asphericity of the stars has been shown to decrease considerably [300}307], leading to
`sti!a spherical particles in the limit of high f. This evolution of the shape of the star with increas-
ing functionality is shown in Fig. 37. It is essentially in the limit f<1 where a description of
star polymers as sterically stabilized colloidal particles holds. This polymer}colloid hybrid
character of star polymers has been explored in a number of publications dealing with the
structural [288,290,295,308}319] and dynamical [288,311,312,320}329] properties of star
polymers.

The synthesis of star polymers is an art of its own. Producing samples with a narrow molecular
weight distribution, i.e., as monodisperse as possible, is a major challenge for the chemist. The
problem of polydispersity becomes more acute as the functionality grows. Typically, anionic
polymerization is employed to produce branches with narrow molecular weight distributions and
postpolymerization linking, involving the still active chain ends, can then be done to produce
branched polymers with a predetermined number of arms. These species are then excellent
models for testing the theories. The two most common linking agents are chlorosilanes and
divinylbenzene. We will not go any deeper into this specialized domain here; for more details
we refer the reader to the review of Grest et al. [290]. Moreover, in line with the spirit of this work,
we will not discuss the dynamical properties of star polymer solutions in this section, rather only
the static ones. The latter are amenable to a treatment through an e!ective Hamiltonian, to be
introduced in Section 5.6.
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• Small f: the star looks like a fractal object
• Large f: the star looks more compact like a colloidal particle

• Full monomer simulation of many starts in a wide range of f is out of reach.
• Full monomer simulation of two stars to extract the zero density two body effective potential and 
use in in many stars effective simulation.
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Interaction between two stars

Fig. 42. Typical con"guration for two stars with f"30 and N"50, as obtained from a snapshot during the MD
simulation of Ref. [78], with r denoting the distance between their centers. (Courtesy of Arben Jusu".)

5.6.3. Simulations
As mentioned in Section 2.3.3, it is possible in a standard simulation to measure the e!ective

force between the remaining degrees of freedom after the remaining ones have been traced out. For
the case of star polymers, Jusu" et al. [78] performed extensive molecular dynamics simulations for
a large variety of combinations of arm numbers and degrees of polymerization of the stars. The
simulations involved two star polymers, whose centers were kept "xed at a distance r, as shown in
Fig. 42, while the monomeric degrees of freedom in the arms were moved.

The monomer}monomer interactions used were the truncated and shifted Lennard-Jones
potential of Eq. (5.30) between all monomers and, in addition, the FENE potential of Eq. (5.31)
for monomers along the same chain. Due to the large number of arm numbers f, which could
not be accommodated in the small region at the center of the star [330,338], the arms had to
be attached on a spherical particle of microscopic size R

!
&!

!"
, with the precise value

depending on the number of arms and the degree of polymerization. Accordingly, the interactions
between the monomers and the central particle were introduced. All monomers had a repulsive
interaction <!

#
(r) of the truncated and shifted Lennard-Jones type with the central

particle,

<!
#
(r)"!

R if r4R
!

,

<
#
(r!R

!
) if r'R

!
,

(5.60)
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Direct simulation of two stars for many vaules of f

•Small f (≤10): log-Gauss potential

• Large f (>10): log-Yukawa potential
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where a is the corona diameter of a single star measuring the spatial extent of
the monomeric density. For large distances r ) the interaction is Gaussian as
for linear chains. It then crosses over, at the corona diameter of the star, to a
logarithmic behaviour for overlapping coronae as predicted by scaling theory
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l52l which implies a \rery mild divergence as r -+ 0+ . The matching at r - o

is done such that the force -dr-ld, is continuous. In (6.23) , ,(f) it known

from a fit to computer simr-rlation results; for f
line with the Gaussian potential (6.20) used for linear chains.

For larger arm numbers. f >

picture of f cones around the star centre. each containing one linear chain

is justified i53] . The effective force for nearly touching coronae decays expo-

nentially with r, the associated decay length is the outermost blob-diameter

2o lr/T This motivates a log-Yukawa form of u(r) l5a] :

b (-In( :)+--r- forrlo
t'(r )

(6.24)

again matched at the corona diameter r - o such that the force is continuous.

This potential was verified in monomer-resolved simulations 155] for a large

range of arm numbers.

IJsing scaling theory and monomer-resolved simulations of a triangular

configuration of three stars 112), triplet interactions were shown to be negli-

gibly small outside the corona and at most 11 percent of the pairwise forces

for penetrating triplets inside the corona: consequentlt' the effective pair-wise

description for the many-body system is adequate provided the number den-

sity p, of the stars is not much higher than the overlap density I I ot. Large

scale simulations involving many stars were performed using the pair poten-

tial of (6.24) 156,57). Due the crossor,'er of ,(r) at r - o from a harsh Yukawa

to a soft logarithmic behaviour) uncommon structural and thermodynamical

properties were obtained. First. the main peak of the liquid structtrre factor

changes non-monotonically with increasing density l5i] . Secondly, the bulk

phase diagram exhibits 156] a reentrant melting behaviollr for 34 <

and stable anisotropic crystal lattices. The latter finding has been supported

by experiments 158]

Next let us briefly discus s star polymers in ú poor soluenú. The only work in

this direction is close to the @-point rn'here the chains are weakly interacting.

Consequently the resulting effective repulsion is weaker than in good solvent.

More quantitatively, an effective potential betr,veen two plates is available

within a self-consistent field approach for polymers grafted on flat plates

where the grafting density is high and the self-avoidance is weak [59] . This was

extended to spherical particles by employing the Derjaguin approximation

[60,61] providing an analytical expression for the effective pair potential t'(t).

In the limit of small core sizes. this expression has been successfully tested

against scattering data for f :61arm stars in a solvent close to O conditions

[62] . What is stilt unexplored is a systematic approach for arbitrary solvent

quality which continously switches between good solvent quality to the O

point and beyond.

Much more stretched configurations are achieved for polyelectrolyte stars

("porcupines" ) due to the strong Coulomb repulsion of the charged monomers

σ is the size of the corona:  σ =1.26Rg 

Three stars interaction is negligible small outside the corona and ~10% of the energy for penetrating 
coronae. 
Two body interaction is adeguate for many stars systems provided the number density of stars is not 
much higher than the overlapping density ρ*=1/σ3.
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The phase diagram of star polymer solutions in a good solvent is obtained over a wide range of
densities and arm numbers by Monte Carlo simulations. The effective interaction between the stars
is modeled by an ultrasoft pair potential which is logarithmic in the core-core distance. Among the
stable phases are a fluid as well as body-centered cubic, face-centered cubic, body-centered orthogonal,
and diamond crystals. In a limited range of arm numbers, reentrant melting and reentrant freezing
transitions occur for increasing density. [S0031-9007(99)09465-X]

PACS numbers: 64.70.–p, 61.25.Hq, 82.70.Dd

A major challenge in statistical physics is to understand
and predict the macroscopic phase behavior from a mi-
croscopic many-body theory for a given interaction be-
tween the particles [1]. For a simple classical fluid [2], this
interaction is specified in terms of a radially symmetric pair
potential V !r" where r is the particle separation. Signifi-
cant progress has been made during the last decades in
predicting the thermodynamically stable phases for simple
intermolecular pair potentials, such as for Lennard-Jones
systems, plasmas or hard spheres, using computer simu-
lations [1], and density functional theory [3]. Important
realizations of classical many-body systems are suspen-
sions of colloidal particles dispersed in a fluid medium. A
striking advantage of such colloidal samples over molecu-
lar ones is that their effective pair interaction is eminently
tunable through experimental control of particle and sol-
vent properties [4]. This brings about more extreme pair
interactions, leading to novel phase transformations. For
instance, if the colloidal particles are sterically stabilized
against coagulation, the “softness” of the interparticle re-
pulsion is governed by the length of the polymer chains
grafted onto the colloidal surface, their surface grafting
density, and solvent quality. Computer simulations and
theory have revealed that a fluid freezes into a body-
centered-cubic (bcc) crystal for soft long-ranged repul-
sions and into a face-centered-cubic (fcc) one for strong
short-ranged repulsions [5]. This was confirmed in experi-
ments on sterically stabilized colloidal particles [6]. A
similar behavior occurs for charge-stabilized suspensions
where the softness of V !r" is now controlled by the con-
centration of added salt [7]. Less common effects were
observed for potentials involving an attractive part aside
from a repulsive core. In reducing the range of the attrac-
tion, a vanishing liquid phase has been observed [8] and an
isostructural solid-solid transition was predicted [9]. More
complicated pair potentials can even lead to stable qua-
sicrystalline phases and a quadruple point in the phase di-
agram [10].
The aim of this Letter is to study the phase diagram of an

ultrasoft repulsive pair potential V !r" which is logrithmic
in r inside a core of diameter s and vanishes exponen-

tially in r outside the core. The motivation to do this is
twofold: first, such a potential is a good model for the ef-
fective interaction between star polymers in a good solvent
[11,12], which can be regarded as sterically stabilized par-
ticles where the size of the particles is much smaller than
the length of the grafted polymer chains [13]. These stars
are characterized by their arm number (or functionality) f,
i.e., the number of polymer chains tethered to the central
particle, and their corona diameter s which measures the
spatial extension of the monomer density around a single
star center. Second, more fundamentally, phase transitions
for such soft potentials are expected to be rather different
from that for stronger repulsions. From a study of the pure
logarithmic potential in two spatial dimensions [14], it is
known that one needs a critical prefactor to freeze the sys-
tem, which is quite different from, e.g., inverse-power po-
tentials. Furthermore, the potential crossover at r ! s is
expected to influence drastically the freezing transition, if
the number density r of the stars is near the overlap con-
centration, r! # 1$s3.
We obtain the full phase diagram of star polymer so-

lutions by Monte Carlo simulation and theory. As a re-
sult, among the stable phases are a fluid as well as bcc,
fcc, body-centered orthogonal (bco), and diamond crys-
tals. We emphasize that the stability of a bco crystal
with anisotropic rectangular elementary cell and a diamond
structure was never obtained before for a radially symmet-
ric pair potential. In fact, there is a widespread belief in the
literature that anisotropic or three-body forces are solely
responsible for a stable diamond lattice [15]. We show
that both the crossover at r ! s and the ultrasoftness of
the core are crucial for the stability of the bco and the
diamond phase. Moreover, we get reentrant melting for
34 & f & 60, and reentrant freezing for 44 & f & 60 as
r is increasing. Some features of the presented phase dia-
gram have already been observed in a system of copolymer
micelles exhibiting a very similar interaction to star poly-
mers [6,16].
With kBT denoting the thermal energy, our effective pair

potential between two star centers is a combination of a
logarithm inside the core of size s and a Yukawa potential
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Fig. 48. The phase diagram of star polymer solutions in a good solvent, as obtained from the simulations, drawn on the
(!, f )-plane. The squares indicate the phase boundaries. The lines, drawn as a guide to the eye, should in principle be
double but the density gaps between coexisting phases are so narrow that this would only crowd the "gure without
adding signi"cant information. (Taken from Ref. [319].)

For f ! f
!
"34, the #uid phase is the only stable one and freezing is impossible at all densities.

The order-of-magnitude estimate of Witten et al. [308], f
!
"100, has been made precise. The same

holds for the reentrant melting scenario, which has also been con"rmed, with the bcc crystal being
nested between a low- and a high-density liquid at about the overlap packing fraction !H"0.50.
For f 5 f

!
, four stable crystal structures exist and, depending on f, a given system will have at least

one stable crystalline phase. In the domain of intermediate densities, 0.2!!!0.7, the bcc phase is
stable for f

!
(f!54, whereas for f#70 the fcc crystal wins. In the regime 54! f !70, the system

will "rst freeze into a bcc lattice but then it will undergo a structural phase transition into a fcc
crystal. The interplay between bcc and fcc can be easily understood here, as at these densities only
the Yukawa tail of the interaction is visible to the particles. Hence, for large f (strong screening),
packing e!ects dominate and stabilize the fcc, whereas for smaller f energy plays an important
role stabilizing the more open, bcc structure. This is completely analogous to the phase be-
havior observed in charge-stabilized colloids [375,378,379] as well as in copolymer micelles
[288,289,355,356]. The HS-type behavior, formally corresponding to fPR sets in at very high
f-values, typically f"10 000, due to an interplay between the steeply increasing logarithmic core
and the Yukawa tail, for details see Ref. [77].

Quite more unexpected phases show up for high packing fractions, !#0.7. An bco phase with
a strong anisotropy along its three principal space axes is stable in the region 0.70!!!1.1 and
a diamond lattice becomes stable for 1.1!!!1.4. The density domain in which these phases show
up is precisely the one in which the #uid displays an anomalous structure factor with two length
scales, "!"#$ and #. Moreover, at these densities the particles start to overlap within their ultrasoft
logarithmic cores. Hence, a close relationship exists between ultrasoftness, S(Q)-anomalies in the
#uid and the exotic crystal structures, as explained below.

The ratios of the lattice constants in the bco crystal turned out to be nearly independent of f and
increasing from b/a"2.24 and c/a"1.32 at !"0.7 to b/a"3.14 and c/a"1.81 at !"1.0. This
means that, throughout the range of stability of the bco phase, the anisotropy in the conventional
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packing fraction:

Fig. 43. Simulation results (symbols) and the theoretical prediction (lines) for the magnitude of the reduced e!ective force
!"F"R

!
between the centers two star polymers, plotted against the normalized distance (r!2R

"
)/R

!
. (a) N"100 for f"5,

10 and 18; (b) N"50 for f"18, 30 and 50.

5.7. Anomalous structure factor

A wealth of information regarding the macroscopic behavior of star polymer solutions can be
gained by calculating structural liquid properties with the logarithmic-Yukawa potential of Eq.
(5.57) as input. Watzlawek et al. [77,317] carried out extensive Monte-Carlo simulations, accom-
panied by integral equation theories in order to calculate g(r) and S(Q) for a wide range of densities
and arm numbers. As a dimensionless measure of the former, again the `packing fractiona # of the
solution was introduced:

#"!
6
$%! . (5.63)

Taking $H%!!1 as an estimate for the overlap density $H , the corresponding overlap packing
fraction #H!0.5 can be introduced. Attention was focused on the case f"32 which turns out to be
interesting.

The Rogers}Young closure [81] yielded results that were practically identical with those from
MC simulations. In Fig. 44(a), we show the resulting structure factor S(Q) for small and intermedi-
ate packing fractions. An anomalous evolution of S(Q) with # can be seen, which is quite similar to
that observed in the Gaussian core model, see Fig. 22. As for the GCM, this behavior strongly
suggests a reentrant melting scenario. The structure factor increases up to about the overlap
packing fraction #H and thereafter it decreases again. This is in full agreement with the
scaling predictions of Witten et al. [308,309] who indeed predicted this phenomenon to occur
at about the overlap concentration. Moreover, a decrease in the intensity of the highest peak
of S(Q) above #H has also been observed experimentally [77,310,314,354] in star polymer solutions
but is otherwise unknown for the usual, `harda interactions, such as the Yukawa potential
[372}380].
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• f<34: no stable crystal phase
• 34<f<50:  fluid-bcc-fluid reentrant phase diagram for increasing packing
• f>50: the fluid is only stable at very low packing
• 0.2<η<0.7:  bcc to fcc transition for increasing f
• η>0.7, f>50: highly anisotropic crystal structures are favoured even with a sperically symmetric 
pair potential
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