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* Introduction to soft matter and coarse graining
e Structure of the effective hamiltonian for the effective one component system
* Depletion interactions in hard sphere mixtures
* Density functional theory for classical systems
* Applications: the electric double layer
charged stabilized colloids

* Integral equations approach and the inversion theorem
* Brief review of polymer physics

* single chain

* polymer solutions
e Coarse-graining strategy for polymer solutions
* Semidilute solutions of linear chains in good solvent conditions
e Star polymers in good solvent
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What is Soft Matter?

A large class of material composed by mesoscopic particles (10"m-10°m) dispersed in a solvent of
much smaller molecules (typical atomic size). Synonyms of Soft matter are complex fluids, colloidal
suspensions and colloidal dispersions.

Soft matter is abundant in the everyday life and in numerous applications in chemical, pharmacetucal
and food industry: mayonnaise, ink, blood etc.. Microemulsions and self-organized micelles of
detergent in water belong to the same category, sometime called association colloids.

In these lectures | will focus on solutions of spherical mesoscopic particles in liquid solvent and | will
review the progress done in understanding their structure and thermodynamics using the tools of
statistical mechanics. The dispersed particles can be either solid particles (polystyrene,
polymethylmethacrylate (PMMA), silica spheres) or “fractal” objects like polymers chains (linear or
stars). The spherical shape of the mesoscopic objects imposes an important simplyfing symmetry in
the structure of the theory.
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Why Soft?

Why Soft? It is a consequence of the mesoscopic size of the constituents.

Consider a perfect crystal of lattice constant a sheared in such a way to displace every lattice plane
by an amount x. For small deformations, the energy u(x) and the shear stress to deform the crystal
by a/4 are

1 rx\?2
° ° ° ° ° ° ° ° ° ° U\xr) — — |\ — G
\ (z) 2 (a)

° ° ° ° ° —n> ® ° ° ° °
° ° ° ° ° ° ° ° ° ° a\ du<x) B &
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° ° ° ° ° J N ° ° ° °

¢ x G = generic elastic constant

(a) (b)

To estimate G let us assume that the interactions ¢(r) are pairwise additive and spherically
symmetric and only nearest neighbours are relevant. In this case, for simple cubic lattice one
obtains

1
Cxxxx = G = ;ang”(r — a) () Cl3

lunedi 7 dicembre 2009



Why Soft Matter?

a is set from the range of the interactions. To compare with typical atomic systems assume that we
can use the same form for the interaction in both atomic and colloidal systems

d(r) = ed(r/a; {p}) . & = energy scale, {p}=set of parameters

G = ef'(1.p)).

Microscopic (atomic) systems € =~ (10~ 'eV;10eV)

Mesoscopic (colloidal) systems ¢~ (kgT';100kgT) ~ (0.05eV;5eV)

Y

Gcolloidal Vatomic —12 —9
~ 10 — 10
Gatomz’c Ucolloidal
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Modeling Soft Matter

Soft systems with mesoscopic particles involve an enormous number of degrees of freedom.

Assume a system with large and small spheres with size ratio R/r~100.
The volume ratio between large and small spheres is ~10°.

At packing fraction of large spheres of ~0.5, typical of a liquid of hard spheres, half of the available
volume is occupied by large sphere and the remaining half is occupied by the small spheres. For a
system of 100 large spheres in such condition we should consider ~10® small spheres.This rough
estimate does not take into account the internal degrees of freedom of the mesoscopic and the
solvent particles,

General strategy for modeling soft matter: coarse graining by elimination of solvent degrees of
freedom.

Tools for coarse graining: Statistical Mechanics and Classical Density Functional Theory
Product of the coarse graining: effective interactions among the mesoparticles

Once the effective one component model is established, standard simulation methods can be
exploited to describe the thermodynamics and the structure of the system.

Such strategy does not provide a model for studying dynamical properties of the system.
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The effective one-component system

PHYSICAL REVIEW E VOLUME 59, NUMBER 5 MAY 1999

Phase diagram of highly asymmetric binary hard-sphere mixtures

Marjolein Dijkstra, René van Roij, and Robert Evans

Consider a system of N; and N; classical particles of mass M and m in a volume V.
{PR} and {p,r} = momenta and coordinate of particles of specie | and 2 respectively
The Hamiltonian is

H = K+H

p2 N2

1
h= K1+K2_ZZM 2m

1—=1 1=1

H = H11+H22+H12—Z¢11 ij +Z¢22 rii) +YY¢12 (|[Rs — 7))

1<J 1< 1=1 5=1

At fixed temperature T, the relevant thermodynamic potential in the variable (T, V, Ni, N2) is the
Helmholtz free energy Fc(T, V, N, N2)

1 1

expl — BF.|=
PL=pFI= N AT NG IAS

3N2Tr1 Tr, expl — BH], B=1/kgT

A;=hiN2mmkgT
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The effective one-component system

Legendre-transform to the semi-grand canonical ensemble of the system in contact with a bath of
particles of species 2 at fixed chemical potential (/2

F(Nl ’ILL29V):FC(N1 aN2’V)_/'L2N2a

o8]

1
eXp[—BF]=N;O expl — B(F.— u,N,) | =1\71!A?N1Tr1 exp[ — B(H,;+ Q)] (1)
%z exp(Bps)
eXP[_,BQ]:NE:O NLZ!TrZ expl — B(H ,+Hy)] 22 = A3 -

Q= Q{R}, N1,25,V,T) isthe grand-potential of a fluid species 2 in the external field of a
fixed configuration of N, particles of species |

From (1): H'"=H,,+Q.

How to compute ()2

lunedi 7 dicembre 2009



The effective one-component system

i) By diagrammatic expansion for models with short range (integrable) interactions
ii) By Density Functional Theory for long range potentials
iii) By approximated integral equations (liquid state theory)

Diagrammatic expansion (Dijkstra et al. PRE 59,5744 (1999))

n

No
Define: H!Y = Z Z p12(R; —75)

i=1 j=1

00
= ﬁ fé V) = Zé\b drV2 —BHS) —BHaa
‘—'n( 1y -5 dln, 22, ) — N, ! r-e €
_ 2 JV
N2=0

Ny
It can be proved that — 30 =->, BQ,,
n=0

n=0

(22, V) = —kpTlog[=0(22, V)] = —Vp(z2) EOS of the solvent - independent on R
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The effective one-component system

— N1w1(22, R) — Vp1w1(2’2)

from the solvent at fugacity z2

(1)> contribution to the chemical potential of specie |
: independent on R for homogeneous solvents

(exp[-BHY3 (i) )
<eXp[—ﬁH S)]>2

2 Effective two-body interaction induced

wa(Rij,22) = —kpT log
by the solvent

<2
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The effective one-component system

n=3
Al =3(Ri, Rj, R, 22, V) =3 Ny
Q3 = —kpT IOg [“—‘3 79 j; ky <2, _ _ —1 - ] w3 R,“R 7Rk’z2)
Z = SHEMER R P IR

(expl-pHE (e, Ry, B)]) (oxpl-5HY))’

<2

(exp[-BH{ (Riy)]) (expl-BH} (Ra)])  (expl-AH} (Rye)])

<2

Ny
n>4 Formally Q,({REN 2= 2 0,R52)),
i1 <ip<---<i,
N1 Nl
Heff — \_Vp(z2) -+ lel (22)1—|— Z[¢11(RZ‘7) -+ WQ(Rij, ZQ)] + Z w3(RZ) R]j Rk) 22) +
~ i<j i<j<k
volume term two-body three-body
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The effective one-component system

Remarks:
* General derivation valid for any two-component system with integrable pair interactions. The
rate of convergence of the expansion depends on the form of the pair interactions @15, @99

* the effective interaction is state dependent: a change in temperature or in composition of the
mixture can change the effective interaction which can therefore be externally controlled.

ethe terms 2y = —Vp(z2); Q1 = Vpiwi(z2) that represent the zero and the first order terms in
the effective hamiltonian do not depend on the instantaneous coordinates of the mesoparticles
and therefore do not affect the structure of the effective system. Moreover they do not affect the
thermodynamic behaviour because of their trivial dependence on density (at most linear) which do
not affect any double tangent construction. This is in constrast with analogous terms appearing in
system with long-ranged Coulomb interactions (not integrable) for which the Mayer expansion
does not converge and for which the present derivation cannot be applied. In that case the volume
term does affect the thermodynamics.

* wy(R;;;2,) is the grand-potential difference between the solvent, of fugacity z,, containing two
particles of species | at a finite separation Rjj and at infinite separation Rj=x. In other word it is
the work done to bring two particles from infinity to a distance Rj within the solvent at fixed
chemical potential
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PHYSICAL REVIEW E VOLUME 59, NUMBER 5 MAY 1999

Phase diagram of highly asymmetric binary hard-sphere mixtures

Marjolein Dijkstra, René van Roij, and Robert Evans

Mixture of large size (01) and small size (02) hard spheres with size ratio q=02/01.
For hard spheres very accurate expression for €2p (Carnahan-Starling EOS) and €2; (Henderson) are
available.

The two body effective interactions is the ® O ®
depletion interaction, a solvent induced O
attraction between solute hard spheres. It is of ®

entropic origin and arises from exclusion of the
small particles between two large particles at
separation less than the size of the small particles. ® ® o O
The exclusion of small particles induces an O

osmotic pressure unbalance which results in an O

attraction between large spheres. O
It is a mechanism for effective attraction through ® ‘

pure repulsions and may induce phase separation.

To first order in the density of small spheres the ® O O
depletion potential is represented by the ®
Asakura-0Oosawa model.

Q2 is the volume of the
overlapping depletion zone
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Depletion interactions

Asakura-Oosawa model:
assumes the small spheres to be an ideal gas (neglects correlations) Il = kpTz

(oo, r<o Vao(r,m) = =IIQ(r, 01 + 03)
Vert(r; ) = Vao(rim),c <r<o+0o’ U 2) 3 B 3
/ rax) = — — — 4+ —
\ 0, r>0-+0 ) 6 2% 93
0.1 —T— T [ T T T T Tt T [ T T T 02 ————/————T T T
0.0 |
0.1 q=0.10
g )
% w2t —— BIl’ =100 <%
N S S N
> ) BIlo’ = 50.0 >
-03F /
-04 -//
-05 M B S R U -2, NP BRI R B Ll N B
1.00 1.05 1.10 1.15 1.20 1.00 1.05 1.10 1.15 1.20 1.25 1.30
(a) R/ (b) R/c

Fig. 28. The Asakura-Oosawa depletion potential [second and third lines in Eq. (4.8) above] for different parameter
values: (a) ¢ = 0.10 at fII¢> = 10.0 and 50.0; (b) flIc> = 50.0 for g = 0.10 and 0.20.

AO is valid for very small fugacity.
AO is a good model for colloids and ideal polymers mixtures (Dijkstra et al., ] Phys. Cond. Mat. I 1, 10079 (1999))
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Depletion interactions

More refined model from DFT (Goetzelmann et al, PRE 57, 6785 (1998)) valid for higher solvent
density (up to 77, ~0.4)

1+q 2 _r 2 ry\2
qudep(Rij):_ﬁ[:sx 7,+(9x+12x7)(7;)
+(36x+30x%)(75)°] for —1<x<0, x=R;/lo,—1/g—1

N5 is the packing fraction of a reservoir of small spheres at fugacity z> (via EOS)

40 v I ' ' 1 1 i N I ' ) ' ) i 30 ' I M I ' I M I ' I ' ) ' I
AY
// \
20 11 \\ - 20y
N \ 02/(51—0.10 | _ 02/01— 0.20
10}
~ ~ 00 F ==
&) X _
& 2
N N U — 1,=0.10
. A i -
A —— nz - 0.20
200 M, =0.30
-———-1n,=040
300 "
_8'0 X 1 N 1 L 1 ! l 1 | " | L | n _4.0 1 l 1 1 1 | 1 | X | " | 1 | 1
100 105 110 115 120 125 130 135 140 100 110 120 130 140 150 160 170 1.80
(2) Rfs, (b) R/o,

Fig. 29. The depletion potential V4., (R) between two large hard spheres at center-to-center distance R due to the
presence of a sea of small ones, at different packing fractions #, of the small. (a) Size ratio g,/6; = 0.10 and (b) size ratio
g,/a, = 0.20. Notice the effects of #, and of the size ratio on the range and strength of the depletion. The curves were
produced using the analytical fit to the density-functional results given in Ref. [221].
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PHYSICAL REVIEW E

Phase diagram of highly asymmetric binary hard-sphere mixtures

Marjolein Dijkstra, René van Roij, and Robert Evans

VOLUME 59, NUMBER 5
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MAY 1999
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q=0.05
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F=fluid phase; S=solid (fcc) phase; F+S=fluid-solid coexistences region; F+F= metastable fluid-fluid
coexistence; S+S=metastable solid-solid coexistence.

Solid lines: results of the effective one component system
Data points: results from the fully microscopic binary mixture

Remarks:

- simulations of the full mixture to low enough packing fraction of specie 2

- comparison between the effective one component model and the mixture suggests that higher
order interaction terms are irrelevant to the thermodynamics of the mixture
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The effective one-component system

Density Functional Theory:

o N,
Z, exp(Bp2)
expl — BOI= 2 1 Tr expl— B(H it Ha)] 2=

Q0 =QHR}, N1,22,V,T) grand-potential of a fluid species 2 in the external field of a fixed

configuration of N particles of species |
Heff: Hll + Q .

Consider 2 a functional of the external field, i.e. the interaction of the solvent with the large

particles: Q= Q(T,V, 2z, [®]) Ny )
3(F) = dia(F — Ro)
The partition function is also a functional: i=1

o0 No
2(T,V, 22, [®]) = 5 =2 / drN2e—BHz o —B [y drp(r)®(r)
Vv

No
p(r) = Z o(r —73) density operator of specie 2
i=1
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Using functional differentiation of Q wrt U(r)=u2—®(r) (“local” chemical potential) we get a
hierarchy of correlation functions:

0§
du(r) == < pr) >=—plr)
000 e pa)p) > — < plr) >< pr') >] = —HG) (x,x'

A

<p(r) >=p=

Homogeneous and isotropic fluid:
G (r,1") = p*lg(r — ") = 1] + pé(r — 1)

In DFT one focus on functional of the density p rather than on functional of the external field.The
density itself is a functional of u(r). p(r) and u(r) are conjugated fields and p(r) can be consider as

independent variable by operating a Legendre transform

Flp] = Qlp] + /v drp(r)u(r) Helmhlotz free energy for inhomogeneous systems

F[p] is a unique functional of the density without any reference to the external potential. It is an

intrinsic property of the system (i.e. of the many body interactions).
At fixed “local” chemical potential u(r), p(r) plays the role of an “order” parameter and the
equilibrium local density is that which minimize the generalization of Q2 (Landau free energy

functional)

(jl = FIf)— [ drp)ute

lunedi 7 dicembre 2009



The equilibrium density is obtained at the minimum

0y |p
. 4l =0 = Q] =P
p(r) p=p(r)
which corresponds to ?F([’O)] +B(r) = ps (1) Euler-Lagrange
p(r

Theorem |:the intrinsic free energy functional F[p] is a unique functional of the one particle density
p(r), i.e.for a given potential interaction Hay, F[p] has the same functional form whatever the external
potential ®(r). This statement is equivalent to saying that there is only one external potential that can

be associated with a given density profile p(r), the equilibrium profile.

Theorem 2: the auxiliary functional Qv [p] = F[p| — / drp(r)u(r)
1%

reaches its minimum when the trial density profile p(7) coincides with the equilibrium density profile
(see R Evans, Adv. Phys. 28, 143 (1979) for the proofs)

Equation (I) allows, in principle, a determination of the equilibrium density for any given external

potential. However, F[p] being a property of an interacting many-body system, is in general a highly non
trivial object which is unknown. For classical systems it factors in ideal and excess part

Flp]l = Fialp] + Fez[pl  and the ideal part is local Fialp] = kBT/dI'P(I‘) log (Ap(r)) —1]
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|deal gas

F; [P] — /drfid(p(r)) Fz [,0] — kBT/drp(r) [log (ASP(r)) o 1]
fialp(x)) = kpTp [log (A%p) — 1]

Using eq. (I) we obtain:

(=2 (r)]/kBT
p(r) = - e = ze~ ®()/kBT Barometric law
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Excess free energy

Fex[p] can be used to derive another hierarchy of the so called “direct correlation functions”

0BF,.|p
(r) = - 5/?(7“)[ |
€@ (ry, 1q) = oc) (rq) _ 0PBFalp] €@ (ry 1)
T dn(ra)  dp(r)ap(ra) o
(n—1)
c(”)(rl,...,rn): o (r1, -5 Tn-1)

0p(ry)

Using the definition of c(!) above and the ideal gas free energy in the Euler-Lagrange equation we
obtain

log(A%p(r)) — eV (r) + fO(r) = B == | p(r) = zel 2O+ OL | (g)

c() represents the part of the density profile coming from the direct many-body interactions. It is
the classical analogous of the effective one-body potential in the Kohn-Sham theory.

Eq. (2) is the link between single body correlations p{')(r) and c(")(r). An analogous link between
two body correlations h?)(r,r’) and cd(r,r’) is the Ornstein-Zernike relation

h(2) (7", T,) — C<2) (,’a’ /ro/) + / d,rmc(Q) (7", r” )p(’l"” )h(2) (,rn 7 ,r/)
|4
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Excess free energy: weak inhomogeneity

® be a weak perturbation applied to the homogeneous reference system.To linear order in the field,
the induced density profile is (Linear Response Theory)

Ap(r) = p(r) — po = /d?’?" Xo(r —7r") ®(r") with
op(r) op(r)

=BG (r — 1) = ~Bpo [poh®(r — 1) + 3(r 1)
In a periodic system
1 tk-r
O(r) = % Ek e

Apr = —BpoSo(k)dr

1 .
So(k) = N < prp—r >= 1+ pohyg Structure factor
) - Apy
Xo(k) — E — —6,0030(]{) FDT (YVOH)
From OZ for the homogeneous systems: So(k) = } . XT
1 — pée) (k) xg))

which is the linear response of the local density to a variation of pressure
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Excess free energy: weak inhomogeneity

The LRT is closely related to the quadratic approximation for the intrinsic free energy functional. For

weakly inhomogeneous density perturbations (|Ap|/p<<I) we can expand the functional up to
second order around the equilibrium uniform state (minimum)

F[p] ~ Fpo] + /dgr d>r" Ap(r)A(r,r") Ap(r')

a) F[po]=Vf(po) is the free energy of the uniform system
b) at equilibrium the linear term vanishes
c) the reference system is homogenous and isotropic: ~ A(r,r’)=A(|r-r’|)

Flp] =V f(po) +—ZAkApkAp -+ O0(0p°)

Using this form in the variational principle one gets:

A N ]_ k‘BT

To quadratic order in the density fluctuations

1 AprAp_y 3
F Apl| ~ )
po + 8l = Vf(po) + 557 > Sy T 06
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Excess free energy: slow modulation limit

Long wavelenght inhomogeneities: |Ap|/p=I1/E<<I/Eo with & the typical correlation lenght in the
bulk. It is possible to define a local free energy density and assume local thermodynamic equilibrium:

Local Density Approximation (LDA):  F'|p] = / drf(p(r))
1%

At variance with electronic problems, it is an approximation for Fex[p] only.

Variational principle within LDA f(p(r) = P(p(r)) (—l—)f(p(r)) — 1 — B(r)
p(r
VP(r)=—p(r)Vo(r) mechanical equilibrium

Gradient corrections: expansion of the intrinsic free energy functional in powers of the |/g

Flo] = /V dr [fo(p(r)) + Fa(p(r)|Vol?]

Expanding to second order in Ap Flp] = / dr {fo(po) + %fo” (po) [Ap]2 + f2(ﬂ0)|VAp|2}
1%
= Vfolpo) + % > [fo7(po) + f2(p)K?] AprAp_y
So (k) SO 4 g (RPA) '

~ 7 T e2)2
&% = p0S0(0) f2(po)
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Long range interactions: mean field theory

For long range interactions a local approximation (even with gradient corrections) is in general not
adequate. To perform perturbation theory we can split the interaction potential v(r) in two parts:a

reference potential vo(r) and a “perturbation” w(r)

Considering F a functional of the pair interaction

and integrating this expression one gets

- Mean Field approximation (MFA): Feorr[p]=0

2
dv(r,r’)

F corr [,0]

ox(r, ") = vo(r,r") + dw(r, ") 0<A<1

5FM = p® (r,1")

/d)\/dB &' p® (r, 7 Yw(r, 1) =

Folp] + 2/d3 d*r" p(r)yw(r,r")p(r') + Feorr|p]
d3

%/Old)\/ r d®r" B2 (ror") p(r)w(r, ) p(r)

- Starting point for the Poisson-Boltzmann theory of electric double layers

- Taking the second functional derivative of F[p] within MFA provides the RPA for c®?

D) = e (r77)

— Bw(r,r")

lunedi 7 dicembre 2009



Electric double layers

Charge surfaces or mesoparticles in water will assume a net free charge by releasing anions or cations
(counterions) because ot the highly dielectric permettivity of the solvent. There is a balance between
electrostatic attraction between polyions and counterions and their thermal motion. Moreover in
water dissolved electrolytes carrying positive and negative free charges (salt) are also present. The
region in which the charge distribution of microions varies around the polyion is called electric double
layer.

Primitive model of electrolytes: on the scale of the thickness of the double-layer, the discrete nature of
the solvent can be ighored and water is replace by a dielectric continuum with permittivity €

Single charged plane

Impenetrable plane at z=0 with surface charge
O (<0) and monovalent counterions.

Compute the density profile within mean field
approximation neglecting interactions between
microions:

o \et)

Flp+(2),p-(2)] = Fualp+] + Fialp-] + Feour|pe(2)]
- Ykt | dzpa) Qo8 [20a(2)] =1} + 5 [ delpa(2) = p- (0
P (2) = i[er (2) — p—(2)] Poisson equation

dz> €Q€E
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Electric double layers

applying the Variational principle

kT log [A)pa(2)] £ e¥(2) = pq a=+

pe(z2) = poeﬂFeB‘P(Z)

Boltzmann eq.

po = positive and negative charge density at infinity

Substituting Boltzmann into Poisson we get Poisson-Boltzmann equation

d*W(z) 2epo .
T3 " sinh [BeW(z)]
dw
lim d(z) 0 boundary conditions
Z—00 z
dVU(z) o
— €in = €out
dz |,_g €0€
Counterions number density:  pN=pP++p- From Boltzmann
dpn(2) , e d (dU(z)\” €0€ 5
— BT _ 5 = _ 1 fo¢
o =By —p-] =50 — = kpTlpn(2) —pl = 5 E7(2)

Mechanical equilibrium condition:
the variation of osmotic pressure with z must
be balanced by the electrostatic pressure
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Electric double layers

0.2

Enanchment of the microions concentration at contact is quadratic with o. pn(0) —p = e
For large o, PB breaks down predicting density corresponding to packing

fraction larger than close-packing. Remedy by introducing a Stern layer of tightly bound counterions
which partially screen the surface charge. PB theory now applies to the diffusive layer only.

The thickness of the Stern layer can be treated as a phenomenological parameter.

Solution of PB (analytical)

AkpT

U(z) = arctanh (g e~ "P%)
€
2
eV (0) 1Fge"P?
—= — —
g tanh(zlkBT) o pollige—’wz]
2
Kp = )\51 — /< P+ +p-) inverse Debye screening lenght
kpTepe

Linear Poisson-Boltzmann: if (eW<1) PB can be linearized (sinh(x)~x)

0}
\IJ — \Ij O —KpZ — —KpDZ
(2) (0)e e

o —RKpDZ
pr = poi/fpue b
2€
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Electric double layers

Two charged planes: o I .

- The solvent confined between the two planes contains
monovalent co and counterions in equilibrium with a
solution in an infinite reservoir fixing the chemical potential
of the non-interacting ions ue=ksT log(A3«pP«).

- The midplane z=0 is a symmetry plane and E(0)=0.

- The electronutrality condition is

eJ._OL/z P(2)dz=¢ oL/2 pele)dz =0
dy(z) -9
dz |_1p &, boundary
dy(z)l  _, conder
dz |,

The disjoining ressure, i.e. the force per unit area to keep the two repelling plane at distance L apart, is
obtained from the mechanical equilibrium condition

] = kpTpn(2) — - [B(2)]° = kpTpn (0)

P(L) = w(z)— 5

€0 | dV(2)
2 dz

— P(L) — P(c0) = kgT[px(0) — p] Disjoining Pressure
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Electric double layers

In this case PB is not analytically solvable.We can solve the linearized version obtaining

w L]
- 2 h -
V() sinh(x , L/2) cosh () with v, =0/(e,ex)

AP(L) = ’g‘[ﬁew(O)]z =0t Exponential decay of the disjoining pressure
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Charged stabilized colloidal suspensions

PHYSICAL REVIEW E VOLUME 59, NUMBER 2 FEBRUARY 1999

Phase diagram of charge-stabilized colloidal suspensions:
van der Waals instability without attractive forces

René van Roij and Marjolein Dijkstra
Jean-Pierre Hansen

Highly charged mesoscopic spherical polyions plus microscopic coions and counterions dissolved in
solvent (water).

N, polyions of charge -Ze;

N=ZN; counterions of charge +e;

N; fully dissociated pairs of monovalent salt ions of charge +/-e

Primitive model of water.

Short range hard-core repulsion between polyions and between microions and polyions.

Remarks:
a) dispersion interaction between polyions are absent: justified in the law salt-weak screening regime.
At high salt concentration the coulomb repulsion competes with the dispersion attractive force (1/R®).
b) hard sphere repulsion between microions is not necessary for the stability within the mean field
treatment
c) the model hamiltonian admits a well defined thermodynamic limit because of the global charge
neutrality
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Charged stabilized colloidal suspensions

DFT: Flpr,p-] = Fualp+|+ Fialp—] + Feoutlpe] + Feat|lp+; 0] + Feorr|p1, p—|
Fy = Z kBT/ dzpa(2) {log [AS pa(2)] — 1}
o= 0
o= C [ g g () = p=(llp+ () = p- ()]
2€ I — /|
Fea:t — Z /dgrpa (T)Ua (T)
a=d=
Feorr = 0 Mean Field approx.
p
U.(r)= D, u+(r—R;) Polyions-counterions interactions
=1
J 5 .
+———, r>R
r
I/l—|—(r) — <
Z€2 1+ Y=+ « N kL . . :
+ R <R pseudopotential” constant inside the polyion

lunedi 7 dicembre 2009



Charged stabilized colloidal suspensions

Expanding the functional to quadratic order in the fluctuations the final result for the effective two
body interaction between polyions is N

P
V;;ff({Ri}) =®dy+ E Vert(Rij) 5

i<j

(o0 <2R
’ ' Hard sphere repulsive Yukawa - DLVO potential

2 2
Vaer)=13 Z2e” exp(— Kkr
e 7) > p( ) F>2R.
| € r
exp( kR)
Z-=7 T <R |- effective polyion charge
(I)()(V,T,np ,ns)=Fid(V,T,n+)+Fid(V,T,n_)
_ 2n.n_ 2n.n_
Z%e? NpKR o= i =7
_ n,+n_ n
2eR 1+ kR 3
4R . . .
_ n= n..  Ppolyions packing fraction
1 47re? 3
no T 5
—I_kBTl_??V_E 12 (an) 4 k>=41ln Debye inverse screening
[=Be*/e Bjerrum length

the volume term dominates the phase diagram now
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Charged stabilized colloidal suspensions

Repulsive Yukawa system:
single fluid phase at high T with a freezing line to a fcc phase for large K and to a bcc phase for small

fluid-fcc-bec triple point at  knpy'3~4.9

Charge stabilized colloids: at T=300K

30 - . - T 25 - T - T
F
G
F FCC | 20 | Gel 1 -
20 .
15 .
S S
= =
= F+FCC c 10 G+FCC |
10 | -
° FCC '
0 L | 0 L | " |
0.0 0.1 0.2 0.00 0.05 0.10
n n
FIG. 3. Room-temperature phase diagram of aqueous colloidal FIG. 5. As in Fig. 3, but with Z=2086 and D =349 nm. There
suspension (charge Z=7300 and diameter D =652 nm) as a func- is now stable coexistence of a gas (G) and liquid (L) phase between
tion of colloid packing fraction # and salt concentration n, (uM). a critical point (X) and triple points (A). Above the critical point
The narrow fluid (F) to fcc-solid transition at n,>20 uM broadens the homogeneous fluid (F) phase is stable at low 7 and freezes into
and narrows again at lower salt concentrations. The (thinner) tie the fcc solid at higher 7. Below the triple point, there is G-fcc
lines connect coexisting state points on the (thicker) phase bound- coexistence.
aries.

lunedi 7 dicembre 2009



Charged stabilized colloidal suspensions

30 . . - . 25
F
oo | = -
S =
= =
[2) ]
c c
10 F+FCC |
FCC
0 n l L 1 L 1 L 0 b | L
0.00 0.05 0.10 0.15 0.20 0.00 0.05 0.10
n n
FIG. 4. As in Fig. 3, but with Z=3650 and D=461 nm. The FIG. 6. As in Fig. 3, but with Z=1217 and D =266 nm. Here
dotted curve denotes a metastable gas-liquid binodal with the criti-  the van der Waals—like instability only persists at such low 7 that it
cal point indicated by X. is decoupled from the freezing transition. The G-L coexistence ex-

hibits two critical points (X) while the freezing transition does not
show any broadening at low n; .

Due to the volume term a fluid-fluid transition and a triple point (gas-fluid-solid) appear even in
absence of direct attractions between the particles.
A fluid-gas or solid-gas coexistence is in qualitative agreement with experimental observations
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