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What is Soft Matter?

A large class of material composed by mesoscopic particles (10-9m-10-6m) dispersed in a solvent of 
much smaller molecules (typical atomic size). Synonyms of Soft matter are complex fluids, colloidal 
suspensions and colloidal dispersions. 

Soft matter is abundant in the everyday life and in numerous applications in chemical, pharmacetucal 
and food industry: mayonnaise, ink, blood etc.. Microemulsions and self-organized micelles of 
detergent in water belong to the same category, sometime called association colloids. 

In these lectures I will focus on solutions of spherical mesoscopic particles in liquid solvent and I will 
review the progress done in understanding their structure and thermodynamics using the tools of 
statistical mechanics. The dispersed particles can be either solid particles (polystyrene, 
polymethylmethacrylate (PMMA), silica spheres) or “fractal” objects like polymers chains (linear or 
stars). The spherical shape of the mesoscopic objects imposes an important simplyfing symmetry in 
the structure of the theory.
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Why Soft? It is a consequence of the mesoscopic size of the constituents. 

Consider a perfect crystal of lattice constant a sheared in such a way to displace every lattice plane 
by an amount x. For small deformations, the energy u(x) and the shear stress to deform the crystal 
by a/4 are 

Fig. 1. Deformation of a crystal under shear: (a) undeformed crystal, (b) deformed crystal under a shear applied in the
direction n( .

!Though, physically, the plane slips when x"a/2, for such large displacements the assumption that !(x) is a linear
function of x breaks down and we have to limit this analysis to smaller x-values.

where G stands for any one of the several elastic constants of the solid [15]. The shear stress ! is
de"ned as the force per unit area of plane and per plane necessary to maintain such a deformation
x. With ! denoting the volume of the crystal, N the number of lattice planes and taking a cubic
crystal for simplicity, this quantity will be given by
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To roughly estimate the critical value !
!

of shear stress which is necessary to make a lattice plane
slip, we set the maximum displacement x equal to a/4.! Then, Eqs. (2.1) and (2.2) give the result
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The elastic constants can be calculated within the framework of the theory of the harmonic
crystal [15] and the expression giving these constants in terms of the microscopic interactions and
the crystal structure is rather involved and we leave it for Appendix A. Assuming that the pairwise,
spherically symmetric interaction between the particles is given by "(r) and that only nearest-
neighbor interactions are relevant, we show in Appendix A that in a simple cubic crystal the elastic
constant c

!!!!
, taken as representative for G, is given through the expression

c
!!!!

"G"1
v
a"""(r"a) , (2.4)

where v"a! is the volume of the elementary unit cell and the double primes denote the second
derivative. The length scale a is set by the interaction, so one can mimic a large class of interparticle
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To estimate G let us assume that the interactions           are pairwise additive and spherically 
symmetric and only nearest neighbours are relevant. In this case, for simple cubic lattice one 
obtains  

G = generic elastic constant

Fig. 1. Deformation of a crystal under shear: (a) undeformed crystal, (b) deformed crystal under a shear applied in the
direction n( .

!Though, physically, the plane slips when x"a/2, for such large displacements the assumption that !(x) is a linear
function of x breaks down and we have to limit this analysis to smaller x-values.

where G stands for any one of the several elastic constants of the solid [15]. The shear stress ! is
de"ned as the force per unit area of plane and per plane necessary to maintain such a deformation
x. With ! denoting the volume of the crystal, N the number of lattice planes and taking a cubic
crystal for simplicity, this quantity will be given by

!(x)" 1
NA

d
dx

(!u)"a!du
dx" . (2.2)

To roughly estimate the critical value !
!

of shear stress which is necessary to make a lattice plane
slip, we set the maximum displacement x equal to a/4.! Then, Eqs. (2.1) and (2.2) give the result

!
!
+ d

dx
1
2
G

x"

a #
!#"$%

"1
4
G . (2.3)

The elastic constants can be calculated within the framework of the theory of the harmonic
crystal [15] and the expression giving these constants in terms of the microscopic interactions and
the crystal structure is rather involved and we leave it for Appendix A. Assuming that the pairwise,
spherically symmetric interaction between the particles is given by "(r) and that only nearest-
neighbor interactions are relevant, we show in Appendix A that in a simple cubic crystal the elastic
constant c

!!!!
, taken as representative for G, is given through the expression

c
!!!!

"G"1
v
a"""(r"a) , (2.4)

where v"a! is the volume of the elementary unit cell and the double primes denote the second
derivative. The length scale a is set by the interaction, so one can mimic a large class of interparticle

274 C.N. Likos / Physics Reports 348 (2001) 267}439

Fig. 1. Deformation of a crystal under shear: (a) undeformed crystal, (b) deformed crystal under a shear applied in the
direction n( .

!Though, physically, the plane slips when x"a/2, for such large displacements the assumption that !(x) is a linear
function of x breaks down and we have to limit this analysis to smaller x-values.

where G stands for any one of the several elastic constants of the solid [15]. The shear stress ! is
de"ned as the force per unit area of plane and per plane necessary to maintain such a deformation
x. With ! denoting the volume of the crystal, N the number of lattice planes and taking a cubic
crystal for simplicity, this quantity will be given by

!(x)" 1
NA

d
dx

(!u)"a!du
dx" . (2.2)

To roughly estimate the critical value !
!

of shear stress which is necessary to make a lattice plane
slip, we set the maximum displacement x equal to a/4.! Then, Eqs. (2.1) and (2.2) give the result

!
!
+ d

dx
1
2
G

x"

a #
!#"$%

"1
4
G . (2.3)

The elastic constants can be calculated within the framework of the theory of the harmonic
crystal [15] and the expression giving these constants in terms of the microscopic interactions and
the crystal structure is rather involved and we leave it for Appendix A. Assuming that the pairwise,
spherically symmetric interaction between the particles is given by "(r) and that only nearest-
neighbor interactions are relevant, we show in Appendix A that in a simple cubic crystal the elastic
constant c

!!!!
, taken as representative for G, is given through the expression

c
!!!!

"G"1
v
a"""(r"a) , (2.4)

where v"a! is the volume of the elementary unit cell and the double primes denote the second
derivative. The length scale a is set by the interaction, so one can mimic a large class of interparticle

274 C.N. Likos / Physics Reports 348 (2001) 267}439

φ(r)

lunedì 7 dicembre 2009



Why Soft Matter?

a is set from the range of the interactions. To compare with typical atomic systems assume that we 
can use the same form for the interaction in both atomic and colloidal systems 

!This estimate of the critical shear stress of an atomic crystal is based on the assumption of a perfect lattice. In fact,
lattice defects cause a reduction of this number by as much as four orders of magnitude [15] but the extreme di!erence
between atomic and colloidal critical shears remains.

potentials for both atomic and colloidal systems by employing a parameter-dependent family of
functions !I (x; !p") with the set of parameters !p" as follows:

!(r)"#!I (r/a; !p") , (2.5)

where # is an energy scale of the order of the cohesive energy per particle. The values of the
parameters !p" determine, e.g., the range of the potential or the relative extent of its repulsive and
attractive parts. Typical values of these parameters for atomic and colloidal systems can be found
in Ref. [16]. Eqs. (2.4) and (2.5) "nally yield for the elastic constant the expression

G"1
v
#!I $(1, !p") . (2.6)

The energy scale # for atomic systems, ranges from 10"# eV for the noble gases to 10 eV for the
alkali halides and the metals [15]. For typical colloidal crystals, # ranges between k

$
¹ and 100k

$
¹,

where k
$

is Boltzmann's constant and ¹ is the absolute temperature. As k
$
¹!1/40 eV at room

temperature, we conclude that the energy scales for atomic and colloidal systems are about the
same. The family of functions !I (x, !p") is rather insensitive to the set of parameters !p", hence
a similar conclusion holds for the term !I $(1, !p"): for colloidal systems it can be only up to two
orders of magnitude higher than for atomic systems [16]. Therefore, the major di!erence in the
values of the elastic constants comes from the denominator in Eq. (2.6). As the typical length scales
involved in colloidal crystals exceed those of their atomic counterparts by three to four orders of
magnitude, the ratio between the elastic constants of colloidal and atomic systems is extremely
small:

G
!"##"$%&#

G
&'"($!

+10"#%}10"& . (2.7)

Eqs. (2.3) and (2.7) show that there is an enormous di!erence in the critical stress required to cleave
an atomic and a colloidal crystal. One can shear the latter by moving one's little "nger but one
needs to apply extreme shear stresses of the order of 10## dyn/cm% in order to shear the former.!

The calculation above demonstrates the softness of colloidal solids, i.e., of a state of matter where
the mesoscopic particles form a crystalline arrangement. There exist, of course, other states in
which a soft matter system can be and in those cases the softness can be understood in terms of the
very low densities of the colloidal particles or of the network-forming con"guration of the
supporting polymeric chains that hold the system mechanically together [17].

Colloidal suspensions have both experimental and theoretical advantages in comparison to their
atomic counterparts. In atomic systems, the (e!ective) interactions between the particles are
determined by their electronic structure and therefore cannot be in#uenced externally. As we will
see in what follows, the situation for colloidal suspensions is di!erent: a change in the quality of the
solvent, in the temperature, in the salt concentration or in the chemistry of the mixture can bring
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Microscopic (atomic) systems          ε ≈ (10−1eV ; 10eV )

Mesoscopic (colloidal) systems ε ≈ (kBT ; 100kBT ) ≈ (0.05eV ; 5eV )
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Gatomic
∼ vatomic

vcolloidal
≈ 10−12 − 10−9
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Modeling Soft Matter

Soft systems with mesoscopic particles involve an enormous number of degrees of freedom.

Assume a system with large and small spheres with size ratio R/r~100. 
The volume ratio between large and small spheres is ~106.

At packing fraction of large spheres of ~0.5, typical of a liquid of hard spheres, half of the available 
volume is occupied by large sphere and the remaining half is occupied by the small spheres. For a 
system of 100 large spheres in such condition we should consider ~108 small spheres. This rough 
estimate does not take into account the internal degrees of freedom of the mesoscopic and the 
solvent particles,

General strategy for modeling soft matter: coarse graining by elimination of solvent degrees of 
freedom.

Tools for coarse graining: Statistical Mechanics and Classical Density Functional Theory

Product of the coarse graining: effective interactions among the mesoparticles

Once the effective one component model is established, standard simulation methods can be 
exploited to describe the thermodynamics and the structure of the system.

Such strategy does not provide a model for studying dynamical properties of the system.
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The effective one-component system

Consider a system of N1 and N2 classical particles of mass M and m in a volume V. 
{P,R} and {p,r} = momenta and coordinate of particles of specie 1 and 2 respectively
The Hamiltonian is

At fixed temperature T, the relevant thermodynamic potential in the variable (T,  V, N1, N2) is the 
Helmholtz free energy Fc(T,  V, N1, N2)

H = K + H

K = K1 + K2 =
N1∑

i=1

P 2
i

2M
+

N2∑

i=1

p2
i

2m

H = H11 + H22 + H12 =
N1∑

i<j

φ11(Rij) +
N2∑

i<j

φ22(rij) +
N1∑

i=1

N2∑

j=1

φ12(|Ri − rj |)

and !dep obtained from Ref. "54#. We thus determine the
phase behavior of binary hard-sphere mixtures for size ratios

q!1.0, 0.2, 0.1, 0.05, and 0.033. As the results of these ef-
fective one-component calculations predict several striking

features at relatively low values of the density of small

spheres we were motivated to perform direct simulations of

the binary hard-sphere system in order to test these predic-

tions. The results from the two sets of simulations are in

remarkably good agreement for those values of q and pack-

ing fractions for which direct simulations are possible,

thereby justifying the use of the effective pairwise depletion

description.

III. GENERAL THEORY OF BINARY MIXTURES

A. Mapping onto an effective one-component system

Here we formally map a system with interaction Hamil-

tonian H that describes a binary mixture onto an effective

one-component system with Hamiltonian Heff by integrating

out the degrees of freedom of one species. We are concerned

with a classical fluid of two species, labeled 1 and 2, in a

macroscopic volume V. For particle numbers N1 and N2, the

total Hamiltonian H!K"H is a sum of kinetic energy K

and interaction energy H!H11"H12"H22 , given by

K!$
i!1

N1 Pi
2

2m1

"$
j!1

N2 pj
2

2m2

,

H11!$
i# j

N1

!11%Ri j&,

H22!$
i# j

N2

!22%ri j&,

H12!$
i!1

N1

$
j!1

N2

!12%Ri$rj&. %1&

Here m1 and m2 are the masses, Pi and pj the linear mo-

menta, and Ri and rj the positions of the particles of species

1 and 2, respectively. The spherically symmetric pair poten-

tials are denoted !11 , !22 , and !12 , while Ri j!Ri$Rj and

ri j!ri$rj .
At fixed inverse temperature '!1/kBT , the relevant ther-

modynamic potential of the canonical (N1 ,N2 ,V ,T) en-

semble is the Helmholtz free energy Fc(N1 ,N2 ,V ,T), given

by

exp"$'Fc#!
1

N1!(1

3N1

1

N2!(2

3N2
Tr1 Tr2 exp"$'H# , %2&

where ( i!h/!2)mikBT denotes the thermal wavelength

of species i!1,2 as follows from the integration over the

momenta. The trace Tr1 is short for the volume integral

*VdR
N1 over the coordinates of the particles of species 1,

and similarly for Tr2.

It proves more convenient to consider the system in the

(N1 ,+2 ,V ,T) ensemble, in which the chemical potential

+2!(,Fc /,N2)N1 ,V ,T of species 2 is fixed instead of the
corresponding number of particles, N2. The associated ther-

modynamic potential is denoted F(N1 ,+2 ,V ,T), and is re-

lated to Fc by the Legendre transform

F%N1 ,+2 ,V &!Fc%N1 ,N2 ,V &$+2N2 , %3&

where we omitted the explicit T dependence. Equivalently,
we can write
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Note that . depends not only on N1 , z2, and V, but also on
the instantaneous coordinates Ri for i!1,2, . . . ,N1 of the
canonically treated component 1. In fact, the right hand side
of Eq. %5& can be interpreted as the grand partition sum of a
fluid of species 2 in the external field of a fixed configuration
of N1 particles of species 1. Thus we write

.!.%/R0;N1 ,z2 ,V &. %6&

The reason why this (N1 ,+2 ,V ,T) ensemble is conve-
nient can be seen from Eq. %4&, as the right hand side is the
canonical partition sum of a one-component system of spe-
cies 1 with an effective interaction Hamiltonian

Heff!H11". . %7&

Once . , and thus Heff, is known for all values of z2, the
thermodynamics and the phase behavior of the mixture can
be determined from standard techniques for one-component
systems. We focus therefore on the calculation of . .
Throughout we assume the volume V to be macroscopically
large.

B. Mayer expansion of !

In order to calculate . explicitly, we first introduce the
Mayer functions f and g associated with the pair potentials

!12 and !22 , respectively,
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In terms of these Mayer functions, we rewrite Eq. %5& as
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where . is defined in terms of the fugacity z2
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$3 exp('+2) of species 2 as
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N2!
Tr2 exp"$'%H12"H22&# . %5&

Note that . depends not only on N1 , z2, and V, but also on
the instantaneous coordinates Ri for i!1,2, . . . ,N1 of the
canonically treated component 1. In fact, the right hand side
of Eq. %5& can be interpreted as the grand partition sum of a
fluid of species 2 in the external field of a fixed configuration
of N1 particles of species 1. Thus we write

.!.%/R0;N1 ,z2 ,V &. %6&

The reason why this (N1 ,+2 ,V ,T) ensemble is conve-
nient can be seen from Eq. %4&, as the right hand side is the
canonical partition sum of a one-component system of spe-
cies 1 with an effective interaction Hamiltonian

Heff!H11". . %7&

Once . , and thus Heff, is known for all values of z2, the
thermodynamics and the phase behavior of the mixture can
be determined from standard techniques for one-component
systems. We focus therefore on the calculation of . .
Throughout we assume the volume V to be macroscopically
large.

B. Mayer expansion of !

In order to calculate . explicitly, we first introduce the
Mayer functions f and g associated with the pair potentials

!12 and !22 , respectively,
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and !dep obtained from Ref. "54#. We thus determine the
phase behavior of binary hard-sphere mixtures for size ratios

q!1.0, 0.2, 0.1, 0.05, and 0.033. As the results of these ef-
fective one-component calculations predict several striking

features at relatively low values of the density of small

spheres we were motivated to perform direct simulations of

the binary hard-sphere system in order to test these predic-

tions. The results from the two sets of simulations are in

remarkably good agreement for those values of q and pack-

ing fractions for which direct simulations are possible,

thereby justifying the use of the effective pairwise depletion

description.

III. GENERAL THEORY OF BINARY MIXTURES

A. Mapping onto an effective one-component system

Here we formally map a system with interaction Hamil-

tonian H that describes a binary mixture onto an effective

one-component system with Hamiltonian Heff by integrating

out the degrees of freedom of one species. We are concerned

with a classical fluid of two species, labeled 1 and 2, in a

macroscopic volume V. For particle numbers N1 and N2, the

total Hamiltonian H!K"H is a sum of kinetic energy K

and interaction energy H!H11"H12"H22 , given by
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Here m1 and m2 are the masses, Pi and pj the linear mo-

menta, and Ri and rj the positions of the particles of species

1 and 2, respectively. The spherically symmetric pair poten-

tials are denoted !11 , !22 , and !12 , while Ri j!Ri$Rj and

ri j!ri$rj .
At fixed inverse temperature '!1/kBT , the relevant ther-

modynamic potential of the canonical (N1 ,N2 ,V ,T) en-

semble is the Helmholtz free energy Fc(N1 ,N2 ,V ,T), given

by
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where ( i!h/!2)mikBT denotes the thermal wavelength

of species i!1,2 as follows from the integration over the

momenta. The trace Tr1 is short for the volume integral

*VdR
N1 over the coordinates of the particles of species 1,

and similarly for Tr2.

It proves more convenient to consider the system in the

(N1 ,+2 ,V ,T) ensemble, in which the chemical potential

+2!(,Fc /,N2)N1 ,V ,T of species 2 is fixed instead of the
corresponding number of particles, N2. The associated ther-

modynamic potential is denoted F(N1 ,+2 ,V ,T), and is re-

lated to Fc by the Legendre transform

F%N1 ,+2 ,V &!Fc%N1 ,N2 ,V &$+2N2 , %3&

where we omitted the explicit T dependence. Equivalently,
we can write
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Note that . depends not only on N1 , z2, and V, but also on
the instantaneous coordinates Ri for i!1,2, . . . ,N1 of the
canonically treated component 1. In fact, the right hand side
of Eq. %5& can be interpreted as the grand partition sum of a
fluid of species 2 in the external field of a fixed configuration
of N1 particles of species 1. Thus we write

.!.%/R0;N1 ,z2 ,V &. %6&

The reason why this (N1 ,+2 ,V ,T) ensemble is conve-
nient can be seen from Eq. %4&, as the right hand side is the
canonical partition sum of a one-component system of spe-
cies 1 with an effective interaction Hamiltonian

Heff!H11". . %7&

Once . , and thus Heff, is known for all values of z2, the
thermodynamics and the phase behavior of the mixture can
be determined from standard techniques for one-component
systems. We focus therefore on the calculation of . .
Throughout we assume the volume V to be macroscopically
large.

B. Mayer expansion of !

In order to calculate . explicitly, we first introduce the
Mayer functions f and g associated with the pair potentials

!12 and !22 , respectively,

f i j1 f %Ri ,rj&!exp"$'!12%Ri$rj&#$1,

gkl1g%rk ,rl&!exp"$'!22%rk$rl&#$1. %8&
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Phase diagram of highly asymmetric binary hard-sphere mixtures
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We study the phase behavior and structure of highly asymmetric binary hard-sphere mixtures. By first

integrating out the degrees of freedom of the small spheres in the partition function we derive a formal

expression for the effective Hamiltonian of the large spheres. Then using an explicit pairwise !depletion"
potential approximation to this effective Hamiltonian in computer simulations, we determine fluid-solid coex-

istence for size ratios q!0.033, 0.05, 0.1, 0.2, and 1.0. The resulting two-phase region becomes very broad in
packing fractions of the large spheres as q becomes very small. We find a stable, isostructural solid-solid

transition for q#0.05 and a fluid-fluid transition for q#0.10. However, the latter remains metastable with
respect to the fluid-solid transition for all size ratios we investigate. In the limit q→0 the phase diagram
mimics that of the sticky-sphere system. As expected, the radial distribution function g(r) and the structure

factor S(k) of the effective one-component system show no sharp signature of the onset of the freezing

transition and we find that at most points on the fluid-solid boundary the value of S(k) at its first peak is much

lower than the value given by the Hansen-Verlet freezing criterion. Direct simulations of the true binary

mixture of hard spheres were performed for q$0.05 in order to test the predictions from the effective Hamil-

tonian. For those packing fractions of the small spheres where direct simulations are possible, we find remark-

ably good agreement between the phase boundaries calculated from the two approaches—even up to the

symmetric limit q!1 and for very high packings of the large spheres, where the solid-solid transition occurs.
In both limits one might expect that an approximation which neglects higher-body terms should fail, but our

results support the notion that the main features of the phase equilibria of asymmetric binary hard-sphere

mixtures are accounted for by the effective pairwise depletion potential description. We also compare our

results with those of other theoretical treatments and experiments on colloidal hard-sphere mixtures.

%S1063-651X!99"07805-8&

PACS number!s": 82.70.Dd, 61.20.Gy, 64.70."p

I. INTRODUCTION

The theory of the structure and phase behavior of simple

!atomic" fluids relies heavily on our knowledge of the hard-
sphere system, which serves as a standard reference system

for determining the properties of more realistic models. As

such the hard-sphere system has been studied in great detail

during the past few decades and its phase behavior is now

well understood. In particular, it was shown by computer

simulations that a system of identical hard spheres has a

well-defined freezing transition %1,2& driven by purely en-
tropic effects. Pure hard spheres do not undergo a liquid-gas

transition since this requires a source of attractive interac-

tions. The state of affairs for the binary hard-sphere mixture

is less clear-cut and the phase behavior is still hotly debated.

This system plays a similar !reference" role for binary mix-
tures of simple fluids and also serves as a model for mixtures

of colloids and polymers, or other colloidal systems. The

main issue is whether a binary fluid mixture of large and
small hard spheres is miscible for all size ratios and compo-
sitions or whether a fluid-fluid demixing transition takes
place and, if it does, whether such a transition is stable or
metastable with respect to the fluid-solid transition. The dis-
cussion was instigated in 1991 by Biben and Hansen, who
showed within an integral equation theory that the binary
hard-sphere mixture exhibits a spinodal instability in a high-
density fluid when the size ratio of the two species is more
extreme than 1:5 %3&. As this result was in contradiction with
a classic study by Lebowitz and Rowlinson, who had con-
cluded that the mixture is stable against demixing regardless

of the state point and the size ratio %4&, it initiated renewed
interest in this system. Despite all the work that has since

been devoted to this issue, it remains an unresolved question

as to whether a stable fluid-fluid demixing transition exists in

hard-sphere mixtures. The physical mechanism behind !pos-
sible" demixing in hard-sphere mixtures is the depletion ef-
fect. This is based on the idea that clustering of the large

spheres allows more free volume for the small ones which

may lead to an increase in the entropy, i.e., to a lowering of

the free energy. The depletion effect is known to lead to

demixing in colloid-polymer mixtures but it is not known

whether this is sufficiently strong to bring about demixing in

additive mixtures of hard spheres. In such mixtures the pair-

wise potential between species 1 and 2 is described by a

diameter '12 which is the mean of those for like-like inter-
actions: '12!('11#'22)/2. Colloid-polymer mixtures are
usually treated by a model which assumes the polymer-

polymer interactions to be ideal so that the hard-sphere di-
ameters are nonadditive. Here we focus on additive binary
hard-sphere mixtures, thereby ignoring recent work on bi-
nary hard-core mixtures of nonspherical particles %5,6& and
polydispersity %7&, and we mention briefly results for nonad-
ditive mixtures where these are relevant.
One might suppose that computer simulations should

have resolved the issues concerning the phase behavior.
However, direct simulations of highly asymmetric binary
mixtures are prohibited by slow equilibration when the pack-
ing fraction of the small spheres becomes substantial and
there have been no systematic attempts to calculate phase
diagrams for the asymmetric cases which are of most inter-
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The effective one-component system

Legendre-transform to the semi-grand canonical ensemble of the system in contact with a bath of 
particles of species 2 at fixed chemical potential µ2

and !dep obtained from Ref. "54#. We thus determine the
phase behavior of binary hard-sphere mixtures for size ratios

q!1.0, 0.2, 0.1, 0.05, and 0.033. As the results of these ef-
fective one-component calculations predict several striking

features at relatively low values of the density of small

spheres we were motivated to perform direct simulations of

the binary hard-sphere system in order to test these predic-

tions. The results from the two sets of simulations are in

remarkably good agreement for those values of q and pack-

ing fractions for which direct simulations are possible,

thereby justifying the use of the effective pairwise depletion

description.

III. GENERAL THEORY OF BINARY MIXTURES

A. Mapping onto an effective one-component system

Here we formally map a system with interaction Hamil-

tonian H that describes a binary mixture onto an effective

one-component system with Hamiltonian Heff by integrating

out the degrees of freedom of one species. We are concerned

with a classical fluid of two species, labeled 1 and 2, in a

macroscopic volume V. For particle numbers N1 and N2, the

total Hamiltonian H!K"H is a sum of kinetic energy K

and interaction energy H!H11"H12"H22 , given by

K!$
i!1

N1 Pi
2

2m1

"$
j!1

N2 pj
2

2m2

,

H11!$
i# j

N1

!11%Ri j&,

H22!$
i# j

N2

!22%ri j&,

H12!$
i!1

N1

$
j!1

N2

!12%Ri$rj&. %1&

Here m1 and m2 are the masses, Pi and pj the linear mo-

menta, and Ri and rj the positions of the particles of species

1 and 2, respectively. The spherically symmetric pair poten-

tials are denoted !11 , !22 , and !12 , while Ri j!Ri$Rj and

ri j!ri$rj .
At fixed inverse temperature '!1/kBT , the relevant ther-

modynamic potential of the canonical (N1 ,N2 ,V ,T) en-

semble is the Helmholtz free energy Fc(N1 ,N2 ,V ,T), given

by

exp"$'Fc#!
1

N1!(1

3N1

1

N2!(2

3N2
Tr1 Tr2 exp"$'H# , %2&

where ( i!h/!2)mikBT denotes the thermal wavelength

of species i!1,2 as follows from the integration over the

momenta. The trace Tr1 is short for the volume integral

*VdR
N1 over the coordinates of the particles of species 1,

and similarly for Tr2.

It proves more convenient to consider the system in the

(N1 ,+2 ,V ,T) ensemble, in which the chemical potential

+2!(,Fc /,N2)N1 ,V ,T of species 2 is fixed instead of the
corresponding number of particles, N2. The associated ther-

modynamic potential is denoted F(N1 ,+2 ,V ,T), and is re-

lated to Fc by the Legendre transform

F%N1 ,+2 ,V &!Fc%N1 ,N2 ,V &$+2N2 , %3&

where we omitted the explicit T dependence. Equivalently,
we can write

exp"$'F#! $
N2!0

-

exp"$'%Fc$+2N2&#

!
1

N1!(1

3N1
Tr1 exp"$'%H11".&# , %4&

where . is defined in terms of the fugacity z2
!(2

$3 exp('+2) of species 2 as

exp"$'.#! $
N2!0

- z
2

N2

N2!
Tr2 exp"$'%H12"H22&# . %5&

Note that . depends not only on N1 , z2, and V, but also on
the instantaneous coordinates Ri for i!1,2, . . . ,N1 of the
canonically treated component 1. In fact, the right hand side
of Eq. %5& can be interpreted as the grand partition sum of a
fluid of species 2 in the external field of a fixed configuration
of N1 particles of species 1. Thus we write

.!.%/R0;N1 ,z2 ,V &. %6&

The reason why this (N1 ,+2 ,V ,T) ensemble is conve-
nient can be seen from Eq. %4&, as the right hand side is the
canonical partition sum of a one-component system of spe-
cies 1 with an effective interaction Hamiltonian

Heff!H11". . %7&

Once . , and thus Heff, is known for all values of z2, the
thermodynamics and the phase behavior of the mixture can
be determined from standard techniques for one-component
systems. We focus therefore on the calculation of . .
Throughout we assume the volume V to be macroscopically
large.

B. Mayer expansion of !

In order to calculate . explicitly, we first introduce the
Mayer functions f and g associated with the pair potentials

!12 and !22 , respectively,

f i j1 f %Ri ,rj&!exp"$'!12%Ri$rj&#$1,

gkl1g%rk ,rl&!exp"$'!22%rk$rl&#$1. %8&

In terms of these Mayer functions, we rewrite Eq. %5& as
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and !dep obtained from Ref. "54#. We thus determine the
phase behavior of binary hard-sphere mixtures for size ratios

q!1.0, 0.2, 0.1, 0.05, and 0.033. As the results of these ef-
fective one-component calculations predict several striking

features at relatively low values of the density of small

spheres we were motivated to perform direct simulations of

the binary hard-sphere system in order to test these predic-

tions. The results from the two sets of simulations are in

remarkably good agreement for those values of q and pack-

ing fractions for which direct simulations are possible,

thereby justifying the use of the effective pairwise depletion

description.

III. GENERAL THEORY OF BINARY MIXTURES

A. Mapping onto an effective one-component system

Here we formally map a system with interaction Hamil-

tonian H that describes a binary mixture onto an effective

one-component system with Hamiltonian Heff by integrating

out the degrees of freedom of one species. We are concerned

with a classical fluid of two species, labeled 1 and 2, in a

macroscopic volume V. For particle numbers N1 and N2, the

total Hamiltonian H!K"H is a sum of kinetic energy K

and interaction energy H!H11"H12"H22 , given by
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Here m1 and m2 are the masses, Pi and pj the linear mo-

menta, and Ri and rj the positions of the particles of species

1 and 2, respectively. The spherically symmetric pair poten-

tials are denoted !11 , !22 , and !12 , while Ri j!Ri$Rj and

ri j!ri$rj .
At fixed inverse temperature '!1/kBT , the relevant ther-

modynamic potential of the canonical (N1 ,N2 ,V ,T) en-

semble is the Helmholtz free energy Fc(N1 ,N2 ,V ,T), given

by
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where ( i!h/!2)mikBT denotes the thermal wavelength

of species i!1,2 as follows from the integration over the

momenta. The trace Tr1 is short for the volume integral

*VdR
N1 over the coordinates of the particles of species 1,

and similarly for Tr2.

It proves more convenient to consider the system in the

(N1 ,+2 ,V ,T) ensemble, in which the chemical potential

+2!(,Fc /,N2)N1 ,V ,T of species 2 is fixed instead of the
corresponding number of particles, N2. The associated ther-

modynamic potential is denoted F(N1 ,+2 ,V ,T), and is re-

lated to Fc by the Legendre transform

F%N1 ,+2 ,V &!Fc%N1 ,N2 ,V &$+2N2 , %3&

where we omitted the explicit T dependence. Equivalently,
we can write
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where . is defined in terms of the fugacity z2
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Note that . depends not only on N1 , z2, and V, but also on
the instantaneous coordinates Ri for i!1,2, . . . ,N1 of the
canonically treated component 1. In fact, the right hand side
of Eq. %5& can be interpreted as the grand partition sum of a
fluid of species 2 in the external field of a fixed configuration
of N1 particles of species 1. Thus we write

.!.%/R0;N1 ,z2 ,V &. %6&

The reason why this (N1 ,+2 ,V ,T) ensemble is conve-
nient can be seen from Eq. %4&, as the right hand side is the
canonical partition sum of a one-component system of spe-
cies 1 with an effective interaction Hamiltonian

Heff!H11". . %7&

Once . , and thus Heff, is known for all values of z2, the
thermodynamics and the phase behavior of the mixture can
be determined from standard techniques for one-component
systems. We focus therefore on the calculation of . .
Throughout we assume the volume V to be macroscopically
large.

B. Mayer expansion of !

In order to calculate . explicitly, we first introduce the
Mayer functions f and g associated with the pair potentials

!12 and !22 , respectively,

f i j1 f %Ri ,rj&!exp"$'!12%Ri$rj&#$1,

gkl1g%rk ,rl&!exp"$'!22%rk$rl&#$1. %8&

In terms of these Mayer functions, we rewrite Eq. %5& as
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and !dep obtained from Ref. "54#. We thus determine the
phase behavior of binary hard-sphere mixtures for size ratios

q!1.0, 0.2, 0.1, 0.05, and 0.033. As the results of these ef-
fective one-component calculations predict several striking

features at relatively low values of the density of small

spheres we were motivated to perform direct simulations of

the binary hard-sphere system in order to test these predic-

tions. The results from the two sets of simulations are in

remarkably good agreement for those values of q and pack-

ing fractions for which direct simulations are possible,

thereby justifying the use of the effective pairwise depletion

description.

III. GENERAL THEORY OF BINARY MIXTURES

A. Mapping onto an effective one-component system

Here we formally map a system with interaction Hamil-

tonian H that describes a binary mixture onto an effective

one-component system with Hamiltonian Heff by integrating

out the degrees of freedom of one species. We are concerned

with a classical fluid of two species, labeled 1 and 2, in a

macroscopic volume V. For particle numbers N1 and N2, the

total Hamiltonian H!K"H is a sum of kinetic energy K

and interaction energy H!H11"H12"H22 , given by
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Here m1 and m2 are the masses, Pi and pj the linear mo-

menta, and Ri and rj the positions of the particles of species

1 and 2, respectively. The spherically symmetric pair poten-

tials are denoted !11 , !22 , and !12 , while Ri j!Ri$Rj and

ri j!ri$rj .
At fixed inverse temperature '!1/kBT , the relevant ther-

modynamic potential of the canonical (N1 ,N2 ,V ,T) en-

semble is the Helmholtz free energy Fc(N1 ,N2 ,V ,T), given

by
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where ( i!h/!2)mikBT denotes the thermal wavelength

of species i!1,2 as follows from the integration over the

momenta. The trace Tr1 is short for the volume integral

*VdR
N1 over the coordinates of the particles of species 1,

and similarly for Tr2.

It proves more convenient to consider the system in the

(N1 ,+2 ,V ,T) ensemble, in which the chemical potential

+2!(,Fc /,N2)N1 ,V ,T of species 2 is fixed instead of the
corresponding number of particles, N2. The associated ther-

modynamic potential is denoted F(N1 ,+2 ,V ,T), and is re-

lated to Fc by the Legendre transform

F%N1 ,+2 ,V &!Fc%N1 ,N2 ,V &$+2N2 , %3&

where we omitted the explicit T dependence. Equivalently,
we can write

exp"$'F#! $
N2!0

-

exp"$'%Fc$+2N2&#

!
1

N1!(1

3N1
Tr1 exp"$'%H11".&# , %4&

where . is defined in terms of the fugacity z2
!(2

$3 exp('+2) of species 2 as

exp"$'.#! $
N2!0

- z
2

N2

N2!
Tr2 exp"$'%H12"H22&# . %5&

Note that . depends not only on N1 , z2, and V, but also on
the instantaneous coordinates Ri for i!1,2, . . . ,N1 of the
canonically treated component 1. In fact, the right hand side
of Eq. %5& can be interpreted as the grand partition sum of a
fluid of species 2 in the external field of a fixed configuration
of N1 particles of species 1. Thus we write

.!.%/R0;N1 ,z2 ,V &. %6&

The reason why this (N1 ,+2 ,V ,T) ensemble is conve-
nient can be seen from Eq. %4&, as the right hand side is the
canonical partition sum of a one-component system of spe-
cies 1 with an effective interaction Hamiltonian

Heff!H11". . %7&

Once . , and thus Heff, is known for all values of z2, the
thermodynamics and the phase behavior of the mixture can
be determined from standard techniques for one-component
systems. We focus therefore on the calculation of . .
Throughout we assume the volume V to be macroscopically
large.

B. Mayer expansion of !

In order to calculate . explicitly, we first introduce the
Mayer functions f and g associated with the pair potentials

!12 and !22 , respectively,

f i j1 f %Ri ,rj&!exp"$'!12%Ri$rj&#$1,

gkl1g%rk ,rl&!exp"$'!22%rk$rl&#$1. %8&

In terms of these Mayer functions, we rewrite Eq. %5& as

exp"$'.#! $
N2!0

- z
2

N2

N2!
!
V

drN22
i!1

N1

2
j!1

N2

%1" f i j&2
k#l

N2

%1"gkl&

!1"z2!
V

dr12
i!1

N1

%1" f i1&"
z2
2

2
!
V

dr1dr2

%2
i!1

N1

%1" f i1&%1" f i2&%1"g12&

"
z2
3

3!
!
V

dr1dr2dr32
i!1

N1

%1" f i1&%1" f i2&

%%1" f i3&%1"g12&%1"g13&%1"g23&"O%z2
4&.

%9&
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and !dep obtained from Ref. "54#. We thus determine the
phase behavior of binary hard-sphere mixtures for size ratios

q!1.0, 0.2, 0.1, 0.05, and 0.033. As the results of these ef-
fective one-component calculations predict several striking

features at relatively low values of the density of small

spheres we were motivated to perform direct simulations of

the binary hard-sphere system in order to test these predic-

tions. The results from the two sets of simulations are in

remarkably good agreement for those values of q and pack-

ing fractions for which direct simulations are possible,

thereby justifying the use of the effective pairwise depletion

description.

III. GENERAL THEORY OF BINARY MIXTURES

A. Mapping onto an effective one-component system

Here we formally map a system with interaction Hamil-

tonian H that describes a binary mixture onto an effective

one-component system with Hamiltonian Heff by integrating

out the degrees of freedom of one species. We are concerned

with a classical fluid of two species, labeled 1 and 2, in a

macroscopic volume V. For particle numbers N1 and N2, the

total Hamiltonian H!K"H is a sum of kinetic energy K

and interaction energy H!H11"H12"H22 , given by

K!$
i!1

N1 Pi
2

2m1

"$
j!1

N2 pj
2

2m2

,

H11!$
i# j

N1

!11%Ri j&,

H22!$
i# j

N2

!22%ri j&,

H12!$
i!1

N1

$
j!1

N2

!12%Ri$rj&. %1&

Here m1 and m2 are the masses, Pi and pj the linear mo-

menta, and Ri and rj the positions of the particles of species

1 and 2, respectively. The spherically symmetric pair poten-

tials are denoted !11 , !22 , and !12 , while Ri j!Ri$Rj and

ri j!ri$rj .
At fixed inverse temperature '!1/kBT , the relevant ther-

modynamic potential of the canonical (N1 ,N2 ,V ,T) en-

semble is the Helmholtz free energy Fc(N1 ,N2 ,V ,T), given

by

exp"$'Fc#!
1

N1!(1

3N1

1

N2!(2

3N2
Tr1 Tr2 exp"$'H# , %2&

where ( i!h/!2)mikBT denotes the thermal wavelength

of species i!1,2 as follows from the integration over the

momenta. The trace Tr1 is short for the volume integral

*VdR
N1 over the coordinates of the particles of species 1,

and similarly for Tr2.

It proves more convenient to consider the system in the

(N1 ,+2 ,V ,T) ensemble, in which the chemical potential

+2!(,Fc /,N2)N1 ,V ,T of species 2 is fixed instead of the
corresponding number of particles, N2. The associated ther-

modynamic potential is denoted F(N1 ,+2 ,V ,T), and is re-

lated to Fc by the Legendre transform

F%N1 ,+2 ,V &!Fc%N1 ,N2 ,V &$+2N2 , %3&

where we omitted the explicit T dependence. Equivalently,
we can write

exp"$'F#! $
N2!0

-

exp"$'%Fc$+2N2&#

!
1

N1!(1

3N1
Tr1 exp"$'%H11".&# , %4&

where . is defined in terms of the fugacity z2
!(2

$3 exp('+2) of species 2 as

exp"$'.#! $
N2!0

- z
2

N2

N2!
Tr2 exp"$'%H12"H22&# . %5&

Note that . depends not only on N1 , z2, and V, but also on
the instantaneous coordinates Ri for i!1,2, . . . ,N1 of the
canonically treated component 1. In fact, the right hand side
of Eq. %5& can be interpreted as the grand partition sum of a
fluid of species 2 in the external field of a fixed configuration
of N1 particles of species 1. Thus we write

.!.%/R0;N1 ,z2 ,V &. %6&

The reason why this (N1 ,+2 ,V ,T) ensemble is conve-
nient can be seen from Eq. %4&, as the right hand side is the
canonical partition sum of a one-component system of spe-
cies 1 with an effective interaction Hamiltonian

Heff!H11". . %7&

Once . , and thus Heff, is known for all values of z2, the
thermodynamics and the phase behavior of the mixture can
be determined from standard techniques for one-component
systems. We focus therefore on the calculation of . .
Throughout we assume the volume V to be macroscopically
large.

B. Mayer expansion of !

In order to calculate . explicitly, we first introduce the
Mayer functions f and g associated with the pair potentials

!12 and !22 , respectively,

f i j1 f %Ri ,rj&!exp"$'!12%Ri$rj&#$1,

gkl1g%rk ,rl&!exp"$'!22%rk$rl&#$1. %8&

In terms of these Mayer functions, we rewrite Eq. %5& as

exp"$'.#! $
N2!0

- z
2

N2

N2!
!
V

drN22
i!1

N1

2
j!1

N2

%1" f i j&2
k#l

N2

%1"gkl&

!1"z2!
V

dr12
i!1

N1

%1" f i1&"
z2
2

2
!
V

dr1dr2

%2
i!1

N1

%1" f i1&%1" f i2&%1"g12&

"
z2
3

3!
!
V

dr1dr2dr32
i!1

N1

%1" f i1&%1" f i2&

%%1" f i3&%1"g12&%1"g13&%1"g23&"O%z2
4&.
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is the grand-potential of a fluid species 2 in the external field of a 
fixed configuration of N1 particles of species 1

Ω = Ω({R}, N1, z2, V, T )

(1)

From (1): 

and !dep obtained from Ref. "54#. We thus determine the
phase behavior of binary hard-sphere mixtures for size ratios

q!1.0, 0.2, 0.1, 0.05, and 0.033. As the results of these ef-
fective one-component calculations predict several striking

features at relatively low values of the density of small

spheres we were motivated to perform direct simulations of

the binary hard-sphere system in order to test these predic-

tions. The results from the two sets of simulations are in

remarkably good agreement for those values of q and pack-

ing fractions for which direct simulations are possible,

thereby justifying the use of the effective pairwise depletion

description.

III. GENERAL THEORY OF BINARY MIXTURES

A. Mapping onto an effective one-component system

Here we formally map a system with interaction Hamil-

tonian H that describes a binary mixture onto an effective

one-component system with Hamiltonian Heff by integrating

out the degrees of freedom of one species. We are concerned

with a classical fluid of two species, labeled 1 and 2, in a

macroscopic volume V. For particle numbers N1 and N2, the

total Hamiltonian H!K"H is a sum of kinetic energy K

and interaction energy H!H11"H12"H22 , given by

K!$
i!1

N1 Pi
2

2m1

"$
j!1

N2 pj
2

2m2

,

H11!$
i# j

N1

!11%Ri j&,

H22!$
i# j

N2

!22%ri j&,

H12!$
i!1

N1

$
j!1

N2

!12%Ri$rj&. %1&

Here m1 and m2 are the masses, Pi and pj the linear mo-

menta, and Ri and rj the positions of the particles of species

1 and 2, respectively. The spherically symmetric pair poten-

tials are denoted !11 , !22 , and !12 , while Ri j!Ri$Rj and

ri j!ri$rj .
At fixed inverse temperature '!1/kBT , the relevant ther-

modynamic potential of the canonical (N1 ,N2 ,V ,T) en-

semble is the Helmholtz free energy Fc(N1 ,N2 ,V ,T), given

by

exp"$'Fc#!
1

N1!(1

3N1

1

N2!(2

3N2
Tr1 Tr2 exp"$'H# , %2&

where ( i!h/!2)mikBT denotes the thermal wavelength

of species i!1,2 as follows from the integration over the

momenta. The trace Tr1 is short for the volume integral

*VdR
N1 over the coordinates of the particles of species 1,

and similarly for Tr2.

It proves more convenient to consider the system in the

(N1 ,+2 ,V ,T) ensemble, in which the chemical potential

+2!(,Fc /,N2)N1 ,V ,T of species 2 is fixed instead of the
corresponding number of particles, N2. The associated ther-

modynamic potential is denoted F(N1 ,+2 ,V ,T), and is re-

lated to Fc by the Legendre transform

F%N1 ,+2 ,V &!Fc%N1 ,N2 ,V &$+2N2 , %3&

where we omitted the explicit T dependence. Equivalently,
we can write

exp"$'F#! $
N2!0

-

exp"$'%Fc$+2N2&#

!
1

N1!(1

3N1
Tr1 exp"$'%H11".&# , %4&

where . is defined in terms of the fugacity z2
!(2

$3 exp('+2) of species 2 as

exp"$'.#! $
N2!0

- z
2

N2

N2!
Tr2 exp"$'%H12"H22&# . %5&

Note that . depends not only on N1 , z2, and V, but also on
the instantaneous coordinates Ri for i!1,2, . . . ,N1 of the
canonically treated component 1. In fact, the right hand side
of Eq. %5& can be interpreted as the grand partition sum of a
fluid of species 2 in the external field of a fixed configuration
of N1 particles of species 1. Thus we write

.!.%/R0;N1 ,z2 ,V &. %6&

The reason why this (N1 ,+2 ,V ,T) ensemble is conve-
nient can be seen from Eq. %4&, as the right hand side is the
canonical partition sum of a one-component system of spe-
cies 1 with an effective interaction Hamiltonian

Heff!H11". . %7&

Once . , and thus Heff, is known for all values of z2, the
thermodynamics and the phase behavior of the mixture can
be determined from standard techniques for one-component
systems. We focus therefore on the calculation of . .
Throughout we assume the volume V to be macroscopically
large.

B. Mayer expansion of !

In order to calculate . explicitly, we first introduce the
Mayer functions f and g associated with the pair potentials

!12 and !22 , respectively,

f i j1 f %Ri ,rj&!exp"$'!12%Ri$rj&#$1,

gkl1g%rk ,rl&!exp"$'!22%rk$rl&#$1. %8&

In terms of these Mayer functions, we rewrite Eq. %5& as

exp"$'.#! $
N2!0

- z
2

N2

N2!
!
V

drN22
i!1

N1

2
j!1

N2

%1" f i j&2
k#l

N2

%1"gkl&

!1"z2!
V

dr12
i!1

N1

%1" f i1&"
z2
2

2
!
V

dr1dr2

%2
i!1

N1

%1" f i1&%1" f i2&%1"g12&

"
z2
3

3!
!
V

dr1dr2dr32
i!1

N1

%1" f i1&%1" f i2&

%%1" f i3&%1"g12&%1"g13&%1"g23&"O%z2
4&.

%9&
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How to compute     ? Ω

z2 =
exp(βµ2)

Λ3
2
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The effective one-component system
i)  By diagrammatic expansion for models with short range (integrable) interactions
ii) By Density Functional Theory for long range potentials
iii) By approximated integral equations (liquid state theory)

Diagrammatic expansion (Dijkstra et al. PRE  59, 5744 (1999))

Define: H(n)
12 =

n∑

i=1

N2∑

j=1

φ12("Ri − "rj)

Ξn("R1, .., "Rn, z2, V ) =
∞∑

N2=0

zN2
2

N2!

∫

V
drN2e−βH(n)

12 e−βH22

It can be proved that 

We now introduce a diagrammatic technique !62", in which #i$ each black circle represents a factor z2 and an integral of ri over
the volume V, #ii$ each line between two black circles represents a g bond, and #iii$ each open big circle connected with a black
circle represents an f bond and a summation over all different particles of species 1 at positions Ri for i!1, . . . ,N1. Then the
expansion of Eq. #9$ is equivalent to

exp!"%&"!1#'the sum of all distinct diagrams consisting of one or more black circles and some or no
g bonds and of one or more open big circles with one or more f bonds( #10$

or, explicitly,

#11$

where O„(!—)n#(•)m… denotes all diagrams involving n or
more distinct particles of species 1 and m black circles with

or without g bonds.

Using the Goldstone theorem !62", i.e., using ln(1#x)

!)n!1
* (")n#1xn/n , the only diagrams that survive after

taking the logarithm of the diagrammatic expansion are the

connected ones #i.e., those which are extensive in V). Thus
we can write

#12$

Each of the diagrams above can be classified according to the

number n of open big circles in it. This amounts to a decom-

position of & that can be written as

"%&!" )
n!0

N1

%&n , #13$

where n labels the number of particles of species 1 that si-

multaneously interact with the ‘‘sea’’ of particles of species

2 at fugacity z2. Below we show that &n corresponds to

n-body interactions between the large spheres, and we give

explicit, albeit formal, expressions for &n for n!0,1,2,3. For
convenience later we introduce the notation

H12
#n $!)

i!1

n

)
j!1

N2

+12#Ri"rj$, #14$

which describes the interaction between N2 particles of spe-

cies 2 and n,1 of species 1.

C. Expressions for !n

It can be shown explicitly that the sum of diagrams with-

out any open big circle, i.e., representing "%&0, can be

reexponentiated to give

exp!"%&0"! )
N2!0

* z
2

N2

N2!
Tr2 exp!"%H22"-.0#z2 ,V $,

#15$

where the grand partition sum .0(z2 ,V) is that of a pure

system of species 2 at fixed fugacity z2 in a thermodynamic

volume V. Extensivity requires that
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EOS of the solvent - independent on RΩ0(z2, V ) = −kBT log [Ξ0(z2, V )] = −V p(z2)

n=0
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The effective one-component system

ω1(z2, R) = −kBT log
〈
e−βH(1)

12

〉

z2

contribution to the chemical potential of specie 1 
from the solvent at fugacity z2 

independent on R for homogeneous solvents

n=1

n=2

Ω2 = −kBT
N1∑

i<j

log
[
Ξ2(Rij , z2, V )/Ξ0

(Ξ1/Ξ0)2

]
=

N1∑

i<j

ω2(Rij , z2)

ω2(Rij , z2) = −kBT log

〈
exp[−βH(2)

12 (Rij)]
〉

z2〈
exp[−βH(1)

12 ]
〉2

z2

Effective two-body interaction induced 
by the solvent

Ω1(!R, z2, V ) = −kBTN1 log

[
Ξ1(!R, z2, V )
Ξ0(z2, V )

]
= N1ω1(z2, R) = V ρ1ω1(z2)

lunedì 7 dicembre 2009



The effective one-component system

n=3

n>4          Formally:

effective three-body interaction

Ω3 = −kBT
N1∑

i<j<k

log
[
Ξ3(Ri, Rj , Rk, z2, V )

Ξ0

Ξ3
1

Ξ2(Rij)Ξ2(Rik)Ξ2(Rjk)

]
=

N1∑

i<j<k

ω3(Ri, Rj , Rk, z2)

ω3(Ri, Rj , Rk, z2) = −kBT log

〈
exp[−βH(3)

12 (Ri, Rj , Rk)]
〉

z2

〈
exp[−βH(1)

12 ]
〉3

z2〈
exp[−βH(2)

12 (Rij)]
〉

z2

〈
exp[−βH(2)

12 (Rik)]
〉

z2

〈
exp[−βH(2)

12 (Rjk)]
〉

z2

!0"z2 ,V #!"Vp"z2#, "16#

where p(z2) is the negative of the grand-potential density, or

the pressure, of this one-component system.

The diagrams involving only one open big circle, repre-

senting "$!1, are recovered exactly by the identification

exp%"$!1&!! '1"z2 ,V #

'0"z2 ,V # " N1, "17#

where '0 is defined in Eq. "15# and where

'1"z2 ,V #! (
N2!0

) z
2

N2

N2!
#
V

drN2 exp%"$H12
"1 #&exp%"$H22&

"18#

is the grand partition sum of a system of volume V consisting

of a single particle of species 1 and a ‘‘sea’’ of particles of

species 2 at fugacity z2. It follows from Eq. "17# that !1 can

be written as

!1"N1 ,z2#!N1*1"z2#, "19#

where *1 is defined by

exp%"$*1"z2#&

!$ (
N2!0

) z
2

N2

N2!
#
V

drN2 exp%"$H12
"1 #&exp%"$H22&%

#$ (
N2!0

) z
2

N2

N2!
#
V

drN2 exp%"$H22&%"1

+, exp%"$H12
"1 #&-z2. "20#

The brackets ,•••-z2 denote a statistical average in the res-
ervoir of particles of species 2. It follows directly from Eqs.

"17# and "19# that *1(z2) is actually the grand-potential dif-

ference between a sea of small spheres at fugacity z2 with

and without a single particle of species 1. Another interpre-

tation of *1 stems from the analogy between Eq. "20# and
the Widom-insertion theorem %62&; i.e., *1(z2) is seen to be

a contribution to the chemical potential of species 1 due to

the presence of a sea of species 2 at fugacity z2. This latter

interpretation is, of course, consistent with the linear depen-

dence on N1 in Eq. "19#.
It can also be shown explicitly that the exponential of the

sum of connected diagrams involving two open big circles is

given by

exp%"$!2&!.
i$ j

N1 '2"Ri j ;z2 ,V #/'0"z2 ,V #

'1
2"z2 ,V #/'0

2"z2 ,V #
, "21#

where '1 is given in Eq. "18# and

'2"Ri j ;z2 ,V #! (
N2!0

) z
2

N2

N2!
#
V

drN2 exp%"$H12
"2 #&

#exp%"$H22& . "22#

One recognizes that '2(Ri j ;z2 ,V) is the grand partition sum

of a system in a volume V containing two particles of species

1 "at positions Ri and Rj) and a ‘‘sea’’ of particles of species

2 at fugacity z2. It follows directly from Eq. "21# that

!2"/R0;N1 ,z2#!(
i$ j

N1

*2"Ri j ;z2# "23#

is a pairwise sum of the pair potential *2 defined by

exp%"$*2"Ri j ;z2#&!
'2"Ri j ;z2 ,V #/'0"z2 ,V #

'1
2"z2 ,V #/'0

2"z2 ,V #

!
, exp%"$H12

"2 #"Ri j#&-z2
, exp%"$H12

"1 #&-z2
2

. "24#

Arguments along the same lines yield, for the exponential

of the three-body contribution !3,

exp%"$!3&! .
i$ j$k

N1 ! '3"Ri , j ,k ;z2 ,V #

'0"z2 ,V #

'1
3"z2 ,V #

'2"Ri j ;z2 ,V #'2"Rik ;z2 ,V #'2"Rjk ;z2 ,V # " , "25#

where the 'n for n!0,1, and 2 are defined in Eqs. "15#,
"18#, and "22#, and where '3(Ri , j ,k ;z2 ,V) is the grand-

canonical partition sum of the sea of species 2 at fugacity z2
in the external field of three particles of species 1 at positions

Ri , j ,k . It follows directly from Eq. "25# that

!3! (
i$ j$k

N1

*3"Ri , j ,k ;z2#, "26#

where the three-body potential *3 can be rewritten in terms

of the corresponding interaction Hamiltonians H12
(n) for n

!1,2,3 as

exp%"$*3"Ri , j ,k#&

!, exp%"$H12
"3 #"Ri , j ,k#&-z2

# .
"mn #!" i j #," ik #," jk #

, exp%"$H12
"1 #&-z2

, exp%"$H12
"2 #"Rmn#&-z2

. "27#

In principle this process can be continued for any integer
n, with the result

!n"/R0;N1 ,z2#! (
i1$i2$•••$in

N1

*n"Ri1 , . . . ,in;z2#, "28#
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Heff = −V p(z2) + N1ω1(z2)︸ ︷︷ ︸ +
N1∑

i<j

[φ11(Rij) + ω2(Rij , z2)]

︸ ︷︷ ︸

+
N1∑

i<j<k

ω3(Ri, Rj , Rk, z2)

︸ ︷︷ ︸

+ . . .

two-body three-bodyvolume term
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The effective one-component system

Remarks:
• General derivation valid for any two-component system with integrable pair interactions. The 
rate of convergence of the expansion depends on the form of the pair interactions
 
• the effective interaction is state dependent: a change in temperature or in composition of the 
mixture can change the effective interaction which can therefore be externally controlled.

•the terms                                                    that represent the zero and the first order terms in 
the effective hamiltonian do not depend on the instantaneous coordinates of the mesoparticles 
and therefore do not affect the structure of the effective system.  Moreover they do not affect the 
thermodynamic behaviour because of their trivial dependence on density (at most linear) which do 
not affect any double tangent construction. This is in constrast with analogous terms appearing in 
system with long-ranged Coulomb interactions (not integrable) for which the Mayer expansion 
does not converge and for which the present derivation cannot be applied. In that case the volume 
term does affect the thermodynamics.

•                    is the grand-potential difference between the solvent, of fugacity z2, containing two 
particles of species 1 at a finite separation Rij and at infinite separation Rij=∞. In other word it is 
the work done to bring two particles from infinity to a distance Rij within the solvent at fixed 
chemical potential 

φ12, φ22

where the interaction !n between n particles of species 1 can

be expressed in terms of grand-canonical averages of the

Boltzmann factors associated with the Hamiltonians H12
(m)

with 1"m"n , as we showed explicitly for n!1,2,3. Of
course, we are still left with the problem of calculating !n

for n#1, but the present analysis shows that the effective
Hamiltonian $7% for species 1 is of the form

Heff!"p$z2%V#N1!1$z2%#&
i$ j

N1

'(11$Ri j%#!2$Ri j ;z2%)

# &
i$ j$k

N1

!3$Ri jk ;z2%#••• , $29%

where the ellipsis represents the terms *n for n#4, and
where we used Eqs. $16%, $19%, $23%, and $26%.
We make four remarks on the results obtained so far. $i%

We wish to emphasize that the derivation of Heff holds for

any two-component mixture with integrable pair interactions,

and is not restricted to binary hard-sphere mixtures. The rate

of convergence of the expansion of the effective Hamiltonian

depends on the particular form of the pair potentials (12 and

(22 ; one could expect a relatively fast convergence for

short-ranged potentials, although correlations will generally

cause the effective interactions to be longer ranged than the

bare pair potentials (12 and (22 . $ii% As a check on the
results obtained it is instructive to consider the following:

exp'"+*) is the grand-partition sum of a fluid of species

2 in the external field of a fixed configuration of N1 part-

icles of species 1 and the decomposition of * given in

Eq. $13% is equivalent to the factorization exp'"+*)
!,

n!0
N1 exp'"+*n). For N1!0, i.e., no particles of species

1 in the sea of species 2, we recover from Eq. $15% that
exp'"+*)!exp'"+*0)!-0(z2 ,V). For N1!1 we

find exp'"+*)!exp'"+*0)exp'"+*1)!-0(-1 /-0)!-1,

where we used Eqs. $15% and $17%. Similarly, we find, for
N1!2, exp'"+*)!-0(-1 /-0)

2(-2-0)/(-1)
2!-2, and

for N1!3 that exp'"+*)!-3. For arbitrary N1, we indeed

find that exp'"+*) can always be factorized into zero-,
one-, two-, three-, . . . , and N1-body terms so that exp

'"+*)!-N1
, as required. This scheme to factorize the par-

tition function is actually similar in spirit to that of Ref. '63),
where it is applied to a one-component imperfect gas. $iii%
The terms *0!"p(z2)V and *1!N1!1(z2 ,V) that repre-

sent the zero- and one-body terms in the effective Hamil-

tonian $29% do not depend on the instantaneous coordinates
.R/ of the particles of species 1, and therefore do not affect
the structure of the $uniform% system. Moreover, these two
terms do not affect the phase behavior of the two-component

system because of the trivial N1 dependence or, equivalently,

the trivial dependence on density 01!N1 /V: *0 /V is in-

dependent of 01, and *1 /V depends only linearly on 01.
Since two coexisting phases must have the same chemical

potential of species 2, and hence the same z2, the two terms

under consideration do not affect the common tangent con-

structions, as explained further in the Appendix. This in-

nocuous character of *0 and *1 is to be contrasted with

analogous terms for systems with long-ranged Coulomb in-

teractions, for which the Mayer expansion diverges so that

the present derivation does not apply directly. Recently, it

was shown '64,65) that a system of charged colloids sus-

pended in a solvent with coions and counterions can be

mapped onto an effective one-component colloidal system

by integrating out the degrees of freedom of the coions and

counterions. The usual Derjaguin-Landau-Verwey-Overbeek

$screened-Coulomb% potential was recovered for the two-
body term, as expected. However, the charge neutrality con-

straint gives a nontrivial dependence of the one-body term on

the colloid density which has dramatic consequences for the

phase behavior at low salt concentrations '64,65). $iv% We
see from Eq. $24% that !2(Ri j ;z2) is the grand-potential dif-

ference between the sea, of fugacity z2, containing two par-

ticles of species 1 at a finite separation Ri j and at infinite

separation Ri j!1 . In other words !2 is the work done in

bringing a particle of species 1 from infinity, but still in the

reservoir of fixed z2, to a finite distance from another particle

of species 1 located at the origin.

IV. APPLICATION TO A BINARY MIXTURE

OF HARD SPHERES

In the previous section we showed that we can describe a

classical binary fluid by an effective one-component Hamil-

tonian 'Eq. $29%). In this section we apply this approach to
the particular case of a mixture of large and small hard

spheres with diameters 21 and 22, respectively. The size
ratio is denoted q!22 /21"1. The pair potentials ( i j(r) are

the usual additive hard-sphere potentials, i.e., infinite for 0

$r$(2 i#2 j)/2 and zero otherwise. The zeroth-order term

*0 is equal to the grand potential of a pure system of small

hard spheres at fugacity z2:

*0$z2 ,V %!"Vphs$z2%, $30%

where phs(z2) is the pressure of the small hard-sphere sys-

tem. This pressure is accurately described by the Carnahan-

Starling equation of state for the fluid state values of z2 of

interest. An explicit scaled particle expression for !1(z2) is

given by Henderson, and consists of a volume, a surface, and

a 21-independent term K(z2) '66):

N1!1$z2%!phs$z2%V31$1#q %3#4hs$z2 ,R1%521
2N1

#K$z2%N1 , $31%

where 4hs(z2 ,R1) is the surface tension of a hard-sphere
fluid at a hard-spherical wall with a radius R1!21/2, and
31!521

3N1/6V is the large-sphere packing fraction '67).
The two-body term *2 can be written as a sum of pair po-

tentials !2; see Eq. $23%. In the case of hard spheres this pair
potential can be identified with the depletion potential:

!2$Ri j ;z2%!(dep$Ri j ;z2%. $32%

Attard '50) has derived an exact expression for the depletion
force between two large spheres and this has been employed

in simulation studies of depletion '51). Recently, Mao et al.
calculated the depletion potential within the Derjaguin ap-

proximation up to third order in 32
r , and found excellent

agreement with simulations for q!0.1 and for 32
r as large as

0.34 '52,53). Here 32
r is the packing fraction of a reservoir of

small hard spheres at fugacity z2. In this work, we use the
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Phase diagram of highly asymmetric binary hard-sphere mixtures

Marjolein Dijkstra, René van Roij, and Robert Evans
H. H. Wills Physics Laboratory, University of Bristol, Royal Fort, Bristol BS8 1TL, United Kingdom

!Received 23 December 1998"

We study the phase behavior and structure of highly asymmetric binary hard-sphere mixtures. By first

integrating out the degrees of freedom of the small spheres in the partition function we derive a formal

expression for the effective Hamiltonian of the large spheres. Then using an explicit pairwise !depletion"
potential approximation to this effective Hamiltonian in computer simulations, we determine fluid-solid coex-

istence for size ratios q!0.033, 0.05, 0.1, 0.2, and 1.0. The resulting two-phase region becomes very broad in
packing fractions of the large spheres as q becomes very small. We find a stable, isostructural solid-solid

transition for q#0.05 and a fluid-fluid transition for q#0.10. However, the latter remains metastable with
respect to the fluid-solid transition for all size ratios we investigate. In the limit q→0 the phase diagram
mimics that of the sticky-sphere system. As expected, the radial distribution function g(r) and the structure

factor S(k) of the effective one-component system show no sharp signature of the onset of the freezing

transition and we find that at most points on the fluid-solid boundary the value of S(k) at its first peak is much

lower than the value given by the Hansen-Verlet freezing criterion. Direct simulations of the true binary

mixture of hard spheres were performed for q$0.05 in order to test the predictions from the effective Hamil-

tonian. For those packing fractions of the small spheres where direct simulations are possible, we find remark-

ably good agreement between the phase boundaries calculated from the two approaches—even up to the

symmetric limit q!1 and for very high packings of the large spheres, where the solid-solid transition occurs.
In both limits one might expect that an approximation which neglects higher-body terms should fail, but our

results support the notion that the main features of the phase equilibria of asymmetric binary hard-sphere

mixtures are accounted for by the effective pairwise depletion potential description. We also compare our

results with those of other theoretical treatments and experiments on colloidal hard-sphere mixtures.

%S1063-651X!99"07805-8&

PACS number!s": 82.70.Dd, 61.20.Gy, 64.70."p

I. INTRODUCTION

The theory of the structure and phase behavior of simple

!atomic" fluids relies heavily on our knowledge of the hard-
sphere system, which serves as a standard reference system

for determining the properties of more realistic models. As

such the hard-sphere system has been studied in great detail

during the past few decades and its phase behavior is now

well understood. In particular, it was shown by computer

simulations that a system of identical hard spheres has a

well-defined freezing transition %1,2& driven by purely en-
tropic effects. Pure hard spheres do not undergo a liquid-gas

transition since this requires a source of attractive interac-

tions. The state of affairs for the binary hard-sphere mixture

is less clear-cut and the phase behavior is still hotly debated.

This system plays a similar !reference" role for binary mix-
tures of simple fluids and also serves as a model for mixtures

of colloids and polymers, or other colloidal systems. The

main issue is whether a binary fluid mixture of large and
small hard spheres is miscible for all size ratios and compo-
sitions or whether a fluid-fluid demixing transition takes
place and, if it does, whether such a transition is stable or
metastable with respect to the fluid-solid transition. The dis-
cussion was instigated in 1991 by Biben and Hansen, who
showed within an integral equation theory that the binary
hard-sphere mixture exhibits a spinodal instability in a high-
density fluid when the size ratio of the two species is more
extreme than 1:5 %3&. As this result was in contradiction with
a classic study by Lebowitz and Rowlinson, who had con-
cluded that the mixture is stable against demixing regardless

of the state point and the size ratio %4&, it initiated renewed
interest in this system. Despite all the work that has since

been devoted to this issue, it remains an unresolved question

as to whether a stable fluid-fluid demixing transition exists in

hard-sphere mixtures. The physical mechanism behind !pos-
sible" demixing in hard-sphere mixtures is the depletion ef-
fect. This is based on the idea that clustering of the large

spheres allows more free volume for the small ones which

may lead to an increase in the entropy, i.e., to a lowering of

the free energy. The depletion effect is known to lead to

demixing in colloid-polymer mixtures but it is not known

whether this is sufficiently strong to bring about demixing in

additive mixtures of hard spheres. In such mixtures the pair-

wise potential between species 1 and 2 is described by a

diameter '12 which is the mean of those for like-like inter-
actions: '12!('11#'22)/2. Colloid-polymer mixtures are
usually treated by a model which assumes the polymer-

polymer interactions to be ideal so that the hard-sphere di-
ameters are nonadditive. Here we focus on additive binary
hard-sphere mixtures, thereby ignoring recent work on bi-
nary hard-core mixtures of nonspherical particles %5,6& and
polydispersity %7&, and we mention briefly results for nonad-
ditive mixtures where these are relevant.
One might suppose that computer simulations should

have resolved the issues concerning the phase behavior.
However, direct simulations of highly asymmetric binary
mixtures are prohibited by slow equilibration when the pack-
ing fraction of the small spheres becomes substantial and
there have been no systematic attempts to calculate phase
diagrams for the asymmetric cases which are of most inter-
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Mixture of large size (σ1) and small size (σ2) hard spheres with size ratio q=σ2/σ1. 
For hard spheres very accurate expression for Ω0 (Carnahan-Starling EOS) and Ω1 (Henderson) are 
available. 214 8 Phases of Matter

Fig. 8.9 Depletion mechanism. Two large hard spheres of diameter σ in a sea of small spheres
of diameter σ .́ The spherical shell with thickness σ /́2 surrounding each large sphere is called the
depletion layer. When the depletion layers do not overlap (upper case), there is an isotropic osmotic
pressure acting on each large sphere. When the depletion layers overlap (lower case), there is an
unbalanced osmotic pressure driving the large spheres together

and of the reservoir, the osmotic pressure difference π is given by π = p− pR. Let
us assume for simplicity that the colloidal particles and the polymer molecules can
be considered as hard spheres of diameters σ and σ ′ (σ > σ ′) , respectively. On an
isolated colloidal particle the polymer suspension exerts an isotropic osmotic pres-
sure π . But if two colloidal particles approach each other so that the center-to-center
separation r is smaller than σ +σ ′, polymer molecules will be excluded from a well-
defined region between the particles (the depletion region). The resulting effect is
an unbalanced osmotic pressure driving the particles together. Integration of this os-
motic pressure over the portion of available surface area of the two particles gives
rise to the following effective pair potential between two colloidal hard spheres:

Veff(r;π) =






∞, r < σ
VAO(r;π), σ < r < σ + σ ′

0, r > σ + σ ′
(8.99)

In (8.99) VAO(r;Π) = −πΩ(r;σ + σ ′) is the Asakura–Oosawa depletion poten-
tial, with Ω(r;σ +σ ′) denoting the volume of the overlapping depletion zones, i.e.,

The two body effective interactions is the 
depletion interaction, a solvent induced 
attraction between solute hard spheres. It is of 
entropic origin and arises from exclusion of the 
small particles between two large particles at 
separation less than the size of the small particles. 
The exclusion of small particles induces an 
osmotic pressure unbalance which results in an 
attraction between large spheres. 
It is a mechanism for effective attraction through 
pure repulsions and may induce phase separation.
To first order in the density of small spheres the 
depletion potential is represented by the 
Asakura-Oosawa model.

Ω is the volume of the 
overlapping depletion zone
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Depletion interactions

214 8 Phases of Matter

Fig. 8.9 Depletion mechanism. Two large hard spheres of diameter σ in a sea of small spheres
of diameter σ .́ The spherical shell with thickness σ /́2 surrounding each large sphere is called the
depletion layer. When the depletion layers do not overlap (upper case), there is an isotropic osmotic
pressure acting on each large sphere. When the depletion layers overlap (lower case), there is an
unbalanced osmotic pressure driving the large spheres together

and of the reservoir, the osmotic pressure difference π is given by π = p− pR. Let
us assume for simplicity that the colloidal particles and the polymer molecules can
be considered as hard spheres of diameters σ and σ ′ (σ > σ ′) , respectively. On an
isolated colloidal particle the polymer suspension exerts an isotropic osmotic pres-
sure π . But if two colloidal particles approach each other so that the center-to-center
separation r is smaller than σ +σ ′, polymer molecules will be excluded from a well-
defined region between the particles (the depletion region). The resulting effect is
an unbalanced osmotic pressure driving the particles together. Integration of this os-
motic pressure over the portion of available surface area of the two particles gives
rise to the following effective pair potential between two colloidal hard spheres:

Veff(r;π) =






∞, r < σ
VAO(r;π), σ < r < σ + σ ′

0, r > σ + σ ′
(8.99)

In (8.99) VAO(r;Π) = −πΩ(r;σ + σ ′) is the Asakura–Oosawa depletion poten-
tial, with Ω(r;σ +σ ′) denoting the volume of the overlapping depletion zones, i.e.,

Asakura-Oosawa model: 
assumes the small spheres to be an ideal gas (neglects correlations)  Π = kBTz2

VAO(r, π) = −ΠΩ(r, σ1 + σ2)

Ω(r, x) =
πx3

6

(
1− 3r

2x
+

r3

2x3

)

Fig. 28. The Asakura}Oosawa depletion potential [second and third lines in Eq. (4.8) above] for di!erent parameter
values: (a) q"0.10 at !!"!"10.0 and 50.0; (b) !!"!"50.0 for q"0.10 and 0.20.

Putting everything together, we obtain the e!ective interaction <
!""

(R) between two colloidal
spheres in the AO model as

!<
!""

(R)"!
R for R(" ,

!!!"!
!(1#q)!

6 "1! 3R
2(1#q)"

# R!

2(1#q)!"!# for "(R((1#q)" ,

0 for R'(1#q)" .

(4.8)

The depth of the e!ective potential can also be externally controlled by changing the osmotic
pressure of the polymer solution, i.e., their density and it is also a!ected by changing q. A plot of the
depletion potential<

"#
(R) for di!erent values of the corresponding parameters is shown in Fig. 28,

where it can be seen that changing the concentration and size of the polymers allows us to tune the
depletion attraction. Verma et al. [193] measured the depletion attraction between a pair of
micron-sized colloidal spheres in DNA solutions using a line-scanned optical tweezer and found
excellent agreement with the predictions of the AO theory.

The original analysis in Refs. [190,191] was based on considering only two large colloidal
spheres in the presence of a sea of interpenetrating ones. However, according to the general
discussion in Section 2.3, e!ective interactions are rigorously de"ned for an arbitrary
number of large particles, not just two. Though to achieve this is prohibitively complicated
in general, the task has been accomplished for the case of the AO model in the recent work of
Dijkstra et al. [67], who used exact diagrammatic expansions of the partition function in terms if
Mayer bonds. Three exact results have now been established through this work, namely the
following:

1. The e!ective pair potential between the colloids is given by Eq. (4.8), irrespective of the colloid
density, i.e., the Asakura}Oosawa depletion potential is exact on the pair level.

C.N. Likos / Physics Reports 348 (2001) 267}439 349

AO is valid for very small fugacity.
AO is a good model for colloids and ideal polymers mixtures (Dijkstra et al., J Phys. Cond. Mat. 11, 10079 (1999))
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More refined model from DFT (Goetzelmann et al, PRE 57, 6785 (1998)) valid for higher solvent 
density (up to       ~0.4)

simpler expression given by Götzelmann et al. which, up to

third order in !2
r , is equally accurate and reads "54#

$%dep&Ri j'!"
1#q

2q
"3x2!2

r#&9x#12x2'&!2
r '2

#&36x#30x2'&!2
r '3# for "1$x$0,

&33'

where x!Ri j /(2"1/q"1. Contact corresponds to Ri j!(1
or x!"1. The total effective pair potential is from Eq. &29':

%eff!%11#%dep , &34'

where %11 is the bare hard-sphere potential between two

large spheres. Examples of %eff are shown in Fig. 1 for size

ratios q!0.2 and 0.1 at several values of reservoir packing
fraction !2

r . This pair potential contains a deep and narrow

potential well close to the surface of the large sphere, fol-

lowed by a small repulsive barrier. The range of the potential

is equal to q times the large sphere diameter. For simplicity

&see "54#' we set %dep!0 for Ri j%(1#(2, and thus we ne-
glect longer-ranged and weaker oscillations; we expect these

to be unimportant for the phase behavior of the mixture. It is

worthwhile noting that exact expressions for the depletion

potential were given in Ref. "54# within the context of the
Derjaguin approximation. However, these expressions give a

poor account of the simulation results of Ref. "53# for q
!0.1 and !2

r%0.3, thereby casting doubts on the validity of
the Derjaguin approximation for these values of q and !2

r .

In all our effective one-component calculations we set

)n!0 for n*3. This approximation was tested for q!0.1
in computer simulations by Biben et al., who found that the

three-body term, denoted +3 above, contributes less than

0.5% at !2
r!0.3 "53#. The neglect of +3 can be made plau-

sible by geometric arguments for q$0.154, since then three
or more nonoverlapping large spheres cannot simultaneously

overlap with a small one; i.e., the first and dominant diagram

in the three-body term )3 vanishes. However, it is important

to realize that other diagrams in )3 are not necessarily zero,

even for q$0.154, so that the neglect of all three-body and
higher-body terms is an approximation. At this stage it is not

evident that q plays the &formal' role of a small parameter.
Thus we arrive at the effective one-component Hamil-

tonian

Heff!H0#,
i$ j

N1

%eff&Ri j', &35'

where, as mentioned in Sec. III,

H0!"phs&z2'"1"!1&1#q '3#V#-hs&z2 ,R1'.(1
2N1

#K&z2'N1 &36'

is irrelevant for the phase behavior of the fluid, and where

%eff is defined in Eq. &34'. We have now mapped the binary
hard-sphere mixture onto an &approximate' effective one-
component system of large spheres, which can be treated

with standard techniques.

V. RESULTS OF SIMULATIONS OF THE EFFECTIVE

HAMILTONIAN

A. Phase diagram

At first sight, one might think that the phase behavior of

the effective one-component system characterized by Eqs.

&34' and &35' can be determined by standard perturbation
theory using the pure hard-sphere system at the same pack-

ing fraction as a reference system. Using first-order pertur-

bation theory for q!0.1, we did not find any indication of a
fluid-fluid spinodal for packing fractions !1$0.5. This result
was also found in Ref. "54#. However, our simulations of the
system described by %eff given in Eq. &34' yield radial dis-
tribution functions g(r) that differ enormously from those of

the reference hard-sphere fluid at the same !1. This is illus-
trated in Fig. 2, where we plot g(r) for !1!0.35, !2

r

!0.25, and q!0.1. We find that g((1)/42, which should
be compared with the much lower contact value /3 for the
hard-sphere reference system. Similar large contact values,

FIG. 1. The effective large-sphere pair potential, i.e., the sum of

the depletion potential &33' and the large hard-sphere potential %11 ,

of a binary hard-sphere mixture with size ratio &a' q!0.2 and &b'
q!0.1, for several small-sphere reservoir packing fractions !2

r .

FIG. 2. The radial distribution function g(r/(1) for the effective
one-component system with packing fractions !1!0.35, !2

r!0.25,
and q!0.1 calculated using the depletion potential &33' with and
without the small repulsive barrier. Note that this state point falls

well inside the fluid-solid coexistence region "see Fig. 4&b'#.
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simpler expression given by Götzelmann et al. which, up to

third order in !2
r , is equally accurate and reads "54#

$%dep&Ri j'!"
1#q

2q
"3x2!2

r#&9x#12x2'&!2
r '2

#&36x#30x2'&!2
r '3# for "1$x$0,

&33'

where x!Ri j /(2"1/q"1. Contact corresponds to Ri j!(1
or x!"1. The total effective pair potential is from Eq. &29':

%eff!%11#%dep , &34'

where %11 is the bare hard-sphere potential between two

large spheres. Examples of %eff are shown in Fig. 1 for size

ratios q!0.2 and 0.1 at several values of reservoir packing
fraction !2

r . This pair potential contains a deep and narrow

potential well close to the surface of the large sphere, fol-

lowed by a small repulsive barrier. The range of the potential

is equal to q times the large sphere diameter. For simplicity

&see "54#' we set %dep!0 for Ri j%(1#(2, and thus we ne-
glect longer-ranged and weaker oscillations; we expect these

to be unimportant for the phase behavior of the mixture. It is

worthwhile noting that exact expressions for the depletion

potential were given in Ref. "54# within the context of the
Derjaguin approximation. However, these expressions give a

poor account of the simulation results of Ref. "53# for q
!0.1 and !2

r%0.3, thereby casting doubts on the validity of
the Derjaguin approximation for these values of q and !2
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In all our effective one-component calculations we set

)n!0 for n*3. This approximation was tested for q!0.1
in computer simulations by Biben et al., who found that the

three-body term, denoted +3 above, contributes less than

0.5% at !2
r!0.3 "53#. The neglect of +3 can be made plau-

sible by geometric arguments for q$0.154, since then three
or more nonoverlapping large spheres cannot simultaneously

overlap with a small one; i.e., the first and dominant diagram

in the three-body term )3 vanishes. However, it is important

to realize that other diagrams in )3 are not necessarily zero,

even for q$0.154, so that the neglect of all three-body and
higher-body terms is an approximation. At this stage it is not

evident that q plays the &formal' role of a small parameter.
Thus we arrive at the effective one-component Hamil-

tonian

Heff!H0#,
i$ j

N1

%eff&Ri j', &35'

where, as mentioned in Sec. III,

H0!"phs&z2'"1"!1&1#q '3#V#-hs&z2 ,R1'.(1
2N1
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is irrelevant for the phase behavior of the fluid, and where

%eff is defined in Eq. &34'. We have now mapped the binary
hard-sphere mixture onto an &approximate' effective one-
component system of large spheres, which can be treated

with standard techniques.

V. RESULTS OF SIMULATIONS OF THE EFFECTIVE

HAMILTONIAN

A. Phase diagram

At first sight, one might think that the phase behavior of

the effective one-component system characterized by Eqs.

&34' and &35' can be determined by standard perturbation
theory using the pure hard-sphere system at the same pack-

ing fraction as a reference system. Using first-order pertur-

bation theory for q!0.1, we did not find any indication of a
fluid-fluid spinodal for packing fractions !1$0.5. This result
was also found in Ref. "54#. However, our simulations of the
system described by %eff given in Eq. &34' yield radial dis-
tribution functions g(r) that differ enormously from those of

the reference hard-sphere fluid at the same !1. This is illus-
trated in Fig. 2, where we plot g(r) for !1!0.35, !2
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!0.25, and q!0.1. We find that g((1)/42, which should
be compared with the much lower contact value /3 for the
hard-sphere reference system. Similar large contact values,

FIG. 1. The effective large-sphere pair potential, i.e., the sum of

the depletion potential &33' and the large hard-sphere potential %11 ,

of a binary hard-sphere mixture with size ratio &a' q!0.2 and &b'
q!0.1, for several small-sphere reservoir packing fractions !2
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FIG. 2. The radial distribution function g(r/(1) for the effective
one-component system with packing fractions !1!0.35, !2

r!0.25,
and q!0.1 calculated using the depletion potential &33' with and
without the small repulsive barrier. Note that this state point falls

well inside the fluid-solid coexistence region "see Fig. 4&b'#.
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ηr
2 is the packing fraction of a reservoir of small spheres at fugacity z2 (via EOS)

ηr
2

Fig. 29. The depletion potential <
!"#$

(R) between two large hard spheres at center-to-center distance R due to the
presence of a sea of small ones, at di!erent packing fractions !

!
of the small. (a) Size ratio "

!
/"

"
"0.10 and (b) size ratio

"
!
/"

"
"0.20. Notice the e!ects of !

!
and of the size ratio on the range and strength of the depletion. The curves were

produced using the analytical "t to the density-functional results given in Ref. [221].

et al. have performed a calculation of the depletion potential in hard-sphere mixtures which
compares extremely well with simulation results [221,222]. The calculation was further extended to
depletion forces near curved surfaces, for both cases of positive and negative surface curvatures
[223].

Representative results for the depletion potential between two large hard spheres in a sea of
small ones, as a function of the packing fraction of the small spheres, !

!
"!#

!
"#
!
/6, are shown in

Fig. 29. The characteristic oscillations become more pronounced with increasing !
!

and only at
very low values of !

!
is the depletion similar to the AO model (cf. Fig. 28). The depletion potential

has also been experimentally measured by Crocker et al. [224] using a line-scanned optical tweezer,
and very good agreement with the theoretical predictions has been obtained [221].

Once more, the aforementioned results were obtained by considering two isolated large spheres
in the presence of many small ones. A full, statistical}mechanical treatment of the two-component
system was performed by Dijkstra et al. [64,66] and the theoretical results using the depletion
picture of GoK tzelmann et al. [219] were compared with those from a direct simulation of the
two-component mixture and its phase behavior [65,66]. As far as the quality of the depletion
picture is concerned, the main conclusions now read as follows:

1. Contrary to the results for the simpler, AO model, the pair potential approximation is never
exact, i.e., higher-order e!ective interactions between the large spheres are always present, no
matter how small the size ratio "

!
/"

"
is.

2. Application of the e!ective depletion potential of GoK tzelmann et al. [219] in an e!ective,
one-component description of the mixture, yields nevertheless results for the phase behavior of
the system, which are very close to those obtained from a full, two-component direct simulation.
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Phase diagram of highly asymmetric binary hard-sphere mixtures
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We study the phase behavior and structure of highly asymmetric binary hard-sphere mixtures. By first

integrating out the degrees of freedom of the small spheres in the partition function we derive a formal

expression for the effective Hamiltonian of the large spheres. Then using an explicit pairwise !depletion"
potential approximation to this effective Hamiltonian in computer simulations, we determine fluid-solid coex-

istence for size ratios q!0.033, 0.05, 0.1, 0.2, and 1.0. The resulting two-phase region becomes very broad in
packing fractions of the large spheres as q becomes very small. We find a stable, isostructural solid-solid

transition for q#0.05 and a fluid-fluid transition for q#0.10. However, the latter remains metastable with
respect to the fluid-solid transition for all size ratios we investigate. In the limit q→0 the phase diagram
mimics that of the sticky-sphere system. As expected, the radial distribution function g(r) and the structure

factor S(k) of the effective one-component system show no sharp signature of the onset of the freezing

transition and we find that at most points on the fluid-solid boundary the value of S(k) at its first peak is much

lower than the value given by the Hansen-Verlet freezing criterion. Direct simulations of the true binary

mixture of hard spheres were performed for q$0.05 in order to test the predictions from the effective Hamil-

tonian. For those packing fractions of the small spheres where direct simulations are possible, we find remark-

ably good agreement between the phase boundaries calculated from the two approaches—even up to the

symmetric limit q!1 and for very high packings of the large spheres, where the solid-solid transition occurs.
In both limits one might expect that an approximation which neglects higher-body terms should fail, but our

results support the notion that the main features of the phase equilibria of asymmetric binary hard-sphere

mixtures are accounted for by the effective pairwise depletion potential description. We also compare our

results with those of other theoretical treatments and experiments on colloidal hard-sphere mixtures.

%S1063-651X!99"07805-8&

PACS number!s": 82.70.Dd, 61.20.Gy, 64.70."p

I. INTRODUCTION

The theory of the structure and phase behavior of simple

!atomic" fluids relies heavily on our knowledge of the hard-
sphere system, which serves as a standard reference system

for determining the properties of more realistic models. As

such the hard-sphere system has been studied in great detail

during the past few decades and its phase behavior is now

well understood. In particular, it was shown by computer

simulations that a system of identical hard spheres has a

well-defined freezing transition %1,2& driven by purely en-
tropic effects. Pure hard spheres do not undergo a liquid-gas

transition since this requires a source of attractive interac-

tions. The state of affairs for the binary hard-sphere mixture

is less clear-cut and the phase behavior is still hotly debated.

This system plays a similar !reference" role for binary mix-
tures of simple fluids and also serves as a model for mixtures

of colloids and polymers, or other colloidal systems. The

main issue is whether a binary fluid mixture of large and
small hard spheres is miscible for all size ratios and compo-
sitions or whether a fluid-fluid demixing transition takes
place and, if it does, whether such a transition is stable or
metastable with respect to the fluid-solid transition. The dis-
cussion was instigated in 1991 by Biben and Hansen, who
showed within an integral equation theory that the binary
hard-sphere mixture exhibits a spinodal instability in a high-
density fluid when the size ratio of the two species is more
extreme than 1:5 %3&. As this result was in contradiction with
a classic study by Lebowitz and Rowlinson, who had con-
cluded that the mixture is stable against demixing regardless

of the state point and the size ratio %4&, it initiated renewed
interest in this system. Despite all the work that has since

been devoted to this issue, it remains an unresolved question

as to whether a stable fluid-fluid demixing transition exists in

hard-sphere mixtures. The physical mechanism behind !pos-
sible" demixing in hard-sphere mixtures is the depletion ef-
fect. This is based on the idea that clustering of the large

spheres allows more free volume for the small ones which

may lead to an increase in the entropy, i.e., to a lowering of

the free energy. The depletion effect is known to lead to

demixing in colloid-polymer mixtures but it is not known

whether this is sufficiently strong to bring about demixing in

additive mixtures of hard spheres. In such mixtures the pair-

wise potential between species 1 and 2 is described by a

diameter '12 which is the mean of those for like-like inter-
actions: '12!('11#'22)/2. Colloid-polymer mixtures are
usually treated by a model which assumes the polymer-

polymer interactions to be ideal so that the hard-sphere di-
ameters are nonadditive. Here we focus on additive binary
hard-sphere mixtures, thereby ignoring recent work on bi-
nary hard-core mixtures of nonspherical particles %5,6& and
polydispersity %7&, and we mention briefly results for nonad-
ditive mixtures where these are relevant.
One might suppose that computer simulations should

have resolved the issues concerning the phase behavior.
However, direct simulations of highly asymmetric binary
mixtures are prohibited by slow equilibration when the pack-
ing fraction of the small spheres becomes substantial and
there have been no systematic attempts to calculate phase
diagrams for the asymmetric cases which are of most inter-
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be stable with respect to fluid-solid coexistence, in contrast

to the effective one-component prediction. The present re-

sults provide further evidence for a fluid-solid coexistence

broadening with increasing !2
r for all q, and do not support

the narrowing predicted by some theoretical approaches

"46,49#. Unfortunately, ergodicity problems prevented us

from reaching the fluid-fluid demixing regime by direct

simulation, so that this feature of the effective one-

component results could not be tested. Nevertheless, the

quantitative agreement at the accessible values of !2
r does

not give any indication that breakdown of the depletion po-

tential picture will occur at higher !2
r—at least not until the

small spheres freeze.

As we computed the average number of small particles,

$N2%z2, in the (N1 ,V ,z2) ensemble by direct simulation of
the true binary mixture, we can convert our phase diagrams

from the (!1 ,!2
r ) plane to the (!1 ,!2) plane. In Fig. 15, we

show the converted phase diagrams &open squares and aster-
isks' for q!0.2, 0.1, and 0.05. Note that the tie lines are no
longer horizontal.

In Fig. 16, we show snapshots of typical configurations of

a binary hard-sphere mixture with a size ratio q!0.1 at
small-sphere packing fractions !2

r!0.121 and large-sphere
packing fractions !1!0.30 and !1!0.72. These state points
lie in single-phase regions but the densities are close to the

coexisting fluid (!1!0.355) and solid (!1!0.712) densities
at this value of !2

r . In the solid phase, the large hard spheres

form a face-centered-cubic lattice structure, while the small

spheres are still disordered and fluidlike. Note that in both

the fluid and solid phases !2 is considerably smaller than
!2
r ; in the present case !2 for the coexisting fluid is 0.069
while !2 in the coexisting solid is 0.0174. These values are,
of course, reflected in the pronounced &negative' slope of the
tie lines in Fig. 15.

The coexisting densities obtained from direct simulations

of the binary mixture are tabulated in Tables V, VI, and VII.

VII. DISCUSSION

A. Comparison with experiments and previous

simulation studies

In order to compare our phase diagrams with experimen-

tal data and other simulation studies, we need to convert the

reservoir packing fraction !2
r of the small spheres to that in

the binary mixture, !2. In the case of direct simulations, we
computed the average number of small particles explicitly in

the (N1 ,V ,z2) ensemble and this allows us to convert the

phase diagrams directly to the (!1 ,!2) plane. Figure 15
shows the converted phase diagrams for q!0.2, 0.1, and
0.05. However, ergodicity problems prevented us from going

to high !2
r , and only a small part of the phase diagram could

be studied directly by simulations of the true binary mixture.

Using the effective Hamiltonian approach we could map out

the phase diagram for higher !2
r . In principle, the phase

diagrams based on the effective Hamiltonian can be con-

verted by employing the exact thermodynamic relation

FIG. 14. Phase diagram of binary hard-sphere mixtures with

size ratios &a' q!0.2, &b' q!0.1, and &c' q!0.05 as a function of
the large-sphere packing fraction !1 and the small-sphere reservoir
packing fraction !2

r . F and S denote the stable fluid and solid

&fcc' phase. F"S , F"F , and S"S denote, respectively, the stable

fluid-solid, the metastable fluid-fluid, and the &meta'stable solid-
solid coexistence regions. The solid and dashed lines are the effec-

tive one-component results; the squares and the asterisks &joined by
lines to guide the eye' denote, respectively, the fluid-solid and the
solid-solid transition obtained from direct simulations of the true

binary mixture.
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fluid-solid, the metastable fluid-fluid, and the &meta'stable solid-
solid coexistence regions. The solid and dashed lines are the effec-

tive one-component results; the squares and the asterisks &joined by
lines to guide the eye' denote, respectively, the fluid-solid and the
solid-solid transition obtained from direct simulations of the true

binary mixture.
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to the effective one-component prediction. The present re-

sults provide further evidence for a fluid-solid coexistence

broadening with increasing !2
r for all q, and do not support

the narrowing predicted by some theoretical approaches
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quantitative agreement at the accessible values of !2
r does

not give any indication that breakdown of the depletion po-

tential picture will occur at higher !2
r—at least not until the

small spheres freeze.

As we computed the average number of small particles,

$N2%z2, in the (N1 ,V ,z2) ensemble by direct simulation of
the true binary mixture, we can convert our phase diagrams

from the (!1 ,!2
r ) plane to the (!1 ,!2) plane. In Fig. 15, we

show the converted phase diagrams &open squares and aster-
isks' for q!0.2, 0.1, and 0.05. Note that the tie lines are no
longer horizontal.

In Fig. 16, we show snapshots of typical configurations of

a binary hard-sphere mixture with a size ratio q!0.1 at
small-sphere packing fractions !2

r!0.121 and large-sphere
packing fractions !1!0.30 and !1!0.72. These state points
lie in single-phase regions but the densities are close to the

coexisting fluid (!1!0.355) and solid (!1!0.712) densities
at this value of !2

r . In the solid phase, the large hard spheres

form a face-centered-cubic lattice structure, while the small

spheres are still disordered and fluidlike. Note that in both

the fluid and solid phases !2 is considerably smaller than
!2
r ; in the present case !2 for the coexisting fluid is 0.069
while !2 in the coexisting solid is 0.0174. These values are,
of course, reflected in the pronounced &negative' slope of the
tie lines in Fig. 15.

The coexisting densities obtained from direct simulations

of the binary mixture are tabulated in Tables V, VI, and VII.

VII. DISCUSSION

A. Comparison with experiments and previous

simulation studies

In order to compare our phase diagrams with experimen-

tal data and other simulation studies, we need to convert the

reservoir packing fraction !2
r of the small spheres to that in

the binary mixture, !2. In the case of direct simulations, we
computed the average number of small particles explicitly in

the (N1 ,V ,z2) ensemble and this allows us to convert the

phase diagrams directly to the (!1 ,!2) plane. Figure 15
shows the converted phase diagrams for q!0.2, 0.1, and
0.05. However, ergodicity problems prevented us from going

to high !2
r , and only a small part of the phase diagram could

be studied directly by simulations of the true binary mixture.

Using the effective Hamiltonian approach we could map out

the phase diagram for higher !2
r . In principle, the phase

diagrams based on the effective Hamiltonian can be con-

verted by employing the exact thermodynamic relation

FIG. 14. Phase diagram of binary hard-sphere mixtures with

size ratios &a' q!0.2, &b' q!0.1, and &c' q!0.05 as a function of
the large-sphere packing fraction !1 and the small-sphere reservoir
packing fraction !2

r . F and S denote the stable fluid and solid

&fcc' phase. F"S , F"F , and S"S denote, respectively, the stable

fluid-solid, the metastable fluid-fluid, and the &meta'stable solid-
solid coexistence regions. The solid and dashed lines are the effec-

tive one-component results; the squares and the asterisks &joined by
lines to guide the eye' denote, respectively, the fluid-solid and the
solid-solid transition obtained from direct simulations of the true

binary mixture.
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F=fluid phase; S=solid (fcc) phase; F+S=fluid-solid coexistences region; F+F= metastable fluid-fluid 
coexistence; S+S=metastable solid-solid coexistence.
Solid lines: results of the effective one component system
Data points: results from the fully microscopic binary mixture

Remarks:
- simulations of the full mixture to low enough packing fraction of specie 2
- comparison between the effective one component model and the mixture suggests that higher 
order interaction terms are irrelevant to the thermodynamics of the mixture 
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The effective one-component system

Density Functional Theory: 

and !dep obtained from Ref. "54#. We thus determine the
phase behavior of binary hard-sphere mixtures for size ratios

q!1.0, 0.2, 0.1, 0.05, and 0.033. As the results of these ef-
fective one-component calculations predict several striking

features at relatively low values of the density of small

spheres we were motivated to perform direct simulations of

the binary hard-sphere system in order to test these predic-

tions. The results from the two sets of simulations are in

remarkably good agreement for those values of q and pack-

ing fractions for which direct simulations are possible,

thereby justifying the use of the effective pairwise depletion

description.

III. GENERAL THEORY OF BINARY MIXTURES

A. Mapping onto an effective one-component system

Here we formally map a system with interaction Hamil-

tonian H that describes a binary mixture onto an effective

one-component system with Hamiltonian Heff by integrating

out the degrees of freedom of one species. We are concerned

with a classical fluid of two species, labeled 1 and 2, in a

macroscopic volume V. For particle numbers N1 and N2, the

total Hamiltonian H!K"H is a sum of kinetic energy K

and interaction energy H!H11"H12"H22 , given by

K!$
i!1

N1 Pi
2

2m1

"$
j!1

N2 pj
2

2m2

,

H11!$
i# j

N1

!11%Ri j&,

H22!$
i# j

N2

!22%ri j&,

H12!$
i!1

N1

$
j!1

N2

!12%Ri$rj&. %1&

Here m1 and m2 are the masses, Pi and pj the linear mo-

menta, and Ri and rj the positions of the particles of species

1 and 2, respectively. The spherically symmetric pair poten-

tials are denoted !11 , !22 , and !12 , while Ri j!Ri$Rj and

ri j!ri$rj .
At fixed inverse temperature '!1/kBT , the relevant ther-

modynamic potential of the canonical (N1 ,N2 ,V ,T) en-

semble is the Helmholtz free energy Fc(N1 ,N2 ,V ,T), given

by

exp"$'Fc#!
1

N1!(1

3N1

1

N2!(2

3N2
Tr1 Tr2 exp"$'H# , %2&

where ( i!h/!2)mikBT denotes the thermal wavelength

of species i!1,2 as follows from the integration over the

momenta. The trace Tr1 is short for the volume integral

*VdR
N1 over the coordinates of the particles of species 1,

and similarly for Tr2.

It proves more convenient to consider the system in the

(N1 ,+2 ,V ,T) ensemble, in which the chemical potential

+2!(,Fc /,N2)N1 ,V ,T of species 2 is fixed instead of the
corresponding number of particles, N2. The associated ther-

modynamic potential is denoted F(N1 ,+2 ,V ,T), and is re-

lated to Fc by the Legendre transform

F%N1 ,+2 ,V &!Fc%N1 ,N2 ,V &$+2N2 , %3&

where we omitted the explicit T dependence. Equivalently,
we can write

exp"$'F#! $
N2!0

-

exp"$'%Fc$+2N2&#

!
1

N1!(1

3N1
Tr1 exp"$'%H11".&# , %4&

where . is defined in terms of the fugacity z2
!(2

$3 exp('+2) of species 2 as

exp"$'.#! $
N2!0

- z
2

N2

N2!
Tr2 exp"$'%H12"H22&# . %5&

Note that . depends not only on N1 , z2, and V, but also on
the instantaneous coordinates Ri for i!1,2, . . . ,N1 of the
canonically treated component 1. In fact, the right hand side
of Eq. %5& can be interpreted as the grand partition sum of a
fluid of species 2 in the external field of a fixed configuration
of N1 particles of species 1. Thus we write

.!.%/R0;N1 ,z2 ,V &. %6&

The reason why this (N1 ,+2 ,V ,T) ensemble is conve-
nient can be seen from Eq. %4&, as the right hand side is the
canonical partition sum of a one-component system of spe-
cies 1 with an effective interaction Hamiltonian

Heff!H11". . %7&

Once . , and thus Heff, is known for all values of z2, the
thermodynamics and the phase behavior of the mixture can
be determined from standard techniques for one-component
systems. We focus therefore on the calculation of . .
Throughout we assume the volume V to be macroscopically
large.

B. Mayer expansion of !

In order to calculate . explicitly, we first introduce the
Mayer functions f and g associated with the pair potentials

!12 and !22 , respectively,

f i j1 f %Ri ,rj&!exp"$'!12%Ri$rj&#$1,

gkl1g%rk ,rl&!exp"$'!22%rk$rl&#$1. %8&

In terms of these Mayer functions, we rewrite Eq. %5& as

exp"$'.#! $
N2!0

- z
2

N2

N2!
!
V

drN22
i!1

N1

2
j!1

N2

%1" f i j&2
k#l

N2

%1"gkl&

!1"z2!
V

dr12
i!1

N1

%1" f i1&"
z2
2

2
!
V

dr1dr2

%2
i!1

N1

%1" f i1&%1" f i2&%1"g12&

"
z2
3

3!
!
V

dr1dr2dr32
i!1

N1

%1" f i1&%1" f i2&

%%1" f i3&%1"g12&%1"g13&%1"g23&"O%z2
4&.

%9&

5748 PRE 59DIJKSTRA, van ROIJ, AND EVANS

grand-potential of a fluid species 2 in the external field of a fixed 
configuration of N1 particles of species 1

Ω = Ω({R}, N1, z2, V, T )

and !dep obtained from Ref. "54#. We thus determine the
phase behavior of binary hard-sphere mixtures for size ratios

q!1.0, 0.2, 0.1, 0.05, and 0.033. As the results of these ef-
fective one-component calculations predict several striking

features at relatively low values of the density of small

spheres we were motivated to perform direct simulations of

the binary hard-sphere system in order to test these predic-

tions. The results from the two sets of simulations are in

remarkably good agreement for those values of q and pack-

ing fractions for which direct simulations are possible,

thereby justifying the use of the effective pairwise depletion

description.
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lated to Fc by the Legendre transform

F%N1 ,+2 ,V &!Fc%N1 ,N2 ,V &$+2N2 , %3&

where we omitted the explicit T dependence. Equivalently,
we can write

exp"$'F#! $
N2!0

-

exp"$'%Fc$+2N2&#

!
1

N1!(1

3N1
Tr1 exp"$'%H11".&# , %4&

where . is defined in terms of the fugacity z2
!(2

$3 exp('+2) of species 2 as

exp"$'.#! $
N2!0

- z
2

N2

N2!
Tr2 exp"$'%H12"H22&# . %5&

Note that . depends not only on N1 , z2, and V, but also on
the instantaneous coordinates Ri for i!1,2, . . . ,N1 of the
canonically treated component 1. In fact, the right hand side
of Eq. %5& can be interpreted as the grand partition sum of a
fluid of species 2 in the external field of a fixed configuration
of N1 particles of species 1. Thus we write

.!.%/R0;N1 ,z2 ,V &. %6&

The reason why this (N1 ,+2 ,V ,T) ensemble is conve-
nient can be seen from Eq. %4&, as the right hand side is the
canonical partition sum of a one-component system of spe-
cies 1 with an effective interaction Hamiltonian

Heff!H11". . %7&

Once . , and thus Heff, is known for all values of z2, the
thermodynamics and the phase behavior of the mixture can
be determined from standard techniques for one-component
systems. We focus therefore on the calculation of . .
Throughout we assume the volume V to be macroscopically
large.

B. Mayer expansion of !

In order to calculate . explicitly, we first introduce the
Mayer functions f and g associated with the pair potentials

!12 and !22 , respectively,

f i j1 f %Ri ,rj&!exp"$'!12%Ri$rj&#$1,

gkl1g%rk ,rl&!exp"$'!22%rk$rl&#$1. %8&

In terms of these Mayer functions, we rewrite Eq. %5& as

exp"$'.#! $
N2!0

- z
2

N2

N2!
!
V

drN22
i!1

N1

2
j!1

N2

%1" f i j&2
k#l

N2

%1"gkl&

!1"z2!
V

dr12
i!1

N1

%1" f i1&"
z2
2

2
!
V

dr1dr2

%2
i!1

N1

%1" f i1&%1" f i2&%1"g12&

"
z2
3

3!
!
V

dr1dr2dr32
i!1

N1

%1" f i1&%1" f i2&

%%1" f i3&%1"g12&%1"g13&%1"g23&"O%z2
4&.

%9&
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z2 =
exp(βµ2)

Λ3
2

Consider Ω a functional of the external field, i.e. the interaction of the solvent with the large 
particles: 

The partition function is also a functional: 

ρ̂(r) =
N2∑

i=1

δ(#r − #ri) density operator of specie 2

Ω = Ω(T, V, z2, [Φ])
Φ(!r) =

N1∑

i=1

φ12(!r − !Ri)

Ξ(T, V, z2, [Φ]) =
∞∑

N2=0

zN2
2

N2!Λ3N2
2

∫

V
drN2e−βH(n)

22 e−β
R

V drρ̂(r)Φ(r)

lunedì 7 dicembre 2009



Using functional differentiation of Ω wrt u(r)=µ2-Φ(r) (“local” chemical potential) we get a 
hierarchy of correlation functions:

Homogeneous and isotropic fluid:
< ρ̂(r) >= ρ =

N

V

G(2)(r, r′) = ρ2[g(r − r′)− 1] + ρδ(r − r′)

In DFT one focus on functional of the density ρ rather than on functional of the external field. The 
density itself is a functional of u(r). ρ(r) and u(r) are conjugated fields and ρ(r) can be consider as 
independent variable by operating a Legendre transform

Helmhlotz free energy for inhomogeneous systems

F[ρ] is a unique functional of the density without any reference to the external potential. It is an 
intrinsic property of the system (i.e. of the many body interactions).
At fixed “local” chemical potential u(r), ρ(r) plays the role of an “order” parameter and the 
equilibrium local density is that which minimize the generalization of Ω (Landau free energy 
functional) 

F [ρ] = Ω[ρ] +
∫

V
drρ(r)u(r)

ΩV [ρ̃] = F [ρ̃]−
∫

V
drρ̃(r)u(r)

δΩ
δu(r)

= − < ρ̂(r) >= −ρ(r)

δ2Ω
δu(r)δu(r′)

= − δρ(r)
δu(r′)

= −β [< ρ̂(r)ρ̂(r′) > − < ρ̂(r) >< ρ̂(r′) >] = −βG(2)(r, r′)
. . . . . .
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The equilibrium density is obtained at the minimum

δΩV [ρ̃]
δ ˜ρ(r)

∣∣∣∣∣
ρ̃=ρ(r)

= 0 ⇐⇒ ΩV [ρ] = Ω[Φ]

which corresponds to δF [ρ]
δρ(r)

+ Φ(r) = µ2

Theorem 1: the intrinsic free energy functional F[ρ] is a unique functional of the one particle density 
ρ(r), i.e. for a given potential interaction H22, F[ρ] has the same functional form whatever the external 
potential Φ(r).  This statement is equivalent to saying that there is only one external potential that can 
be associated with a given density profile ρ(r), the equilibrium profile.

Theorem 2: the auxiliary functional                                               

reaches its minimum when the trial density profile         coincides with the equilibrium density profile 
(see R Evans, Adv. Phys. 28, 143 (1979) for the proofs) 

ΩV [ρ̃] = F [ρ̃]−
∫

V
drρ̃(r)u(r)

ρ̃(r)

(1)

Equation (1) allows, in principle, a determination of the equilibrium density for any given external 
potential. However, F[ρ] being a property of an interacting many-body system, is in general a highly non 
trivial object which is unknown. For classical systems it factors in ideal and excess part  

F [ρ] = Fid[ρ] + Fex[ρ] and the ideal part is local Fid[ρ] = kBT

∫
drρ(r)

[
log

(
Λ3ρ(r)

)
− 1

]

Euler-Lagrange

lunedì 7 dicembre 2009



Ideal gas

Fid[ρ] =
∫

drfid(ρ(r))

fid(ρ(r)) = kBTρ
[
log

(
Λ3ρ

)
− 1

]
Fid[ρ] = kBT

∫
drρ(r)

[
log

(
Λ3ρ(r)

)
− 1

]

Using eq. (1) we obtain:

ρ(r) =
e[µ−Φ(r)]/kBT

Λ3
= ze−Φ(r)/kBT Barometric law

δFid

δρ(r)
= kBT log

[
Λ3ρ(r)

]
= µ− Φ(r)
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Excess free energy

Fex[ρ] can be used to derive another hierarchy of the so called “direct correlation functions”

Using the definition of c(1) above and the ideal gas free energy in the Euler-Lagrange equation we 
obtain 

log(Λ3ρ(r))− c(1)(r) + βΦ(r) = βµ =⇒ ρ(r) = ze[−βΦ(r)+c(1)(r)]

c(1) represents the part of the density profile coming from the direct many-body interactions. It is 
the classical analogous of the effective one-body potential in the Kohn-Sham theory.

(2)

Eq. (2) is the link between single body correlations ρ(1)(r) and c(1)(r).  An analogous link between 
two body correlations h(2)(r,r’) and c(2)(r,r’) is the Ornstein-Zernike relation

h(2)(r, r′) = c(2)(r, r′) +
∫

V
dr”c(2)(r, r”)ρ(r”)h(2)(r”, r′)

c(1)(r) = −δβFex[ρ]
δρ(r)

c(2)(r1, r2) =
δc(1)(r1)
δρ(r2)

= − δ2βFex[ρ]
δρ(r1)δρ(r2)

= c(2)(r2, r1)
. . .

. . .

c(n)(r1, . . . , rn) =
δc(n−1)(r1, . . . , rn−1)

δρ(rn)
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Excess free energy: weak inhomogeneity
Φ be a weak perturbation applied to the homogeneous reference system. To linear order in the field, 
the induced density profile is (Linear Response Theory)

∆ρ(r) = ρ(r)− ρ0 =
∫

d3r χ0(r − r′) Φ(r′) with

χ0(r − r′) =
δρ(r)
δΦ(r′)

∣∣∣∣
Φ=0

=
δρ(r)
δu(r′)

∣∣∣∣
u=µ

= −βG(2)(r − r′) = −βρ0

[
ρ0h

(2)(r − r′) + δ(r − r′)
]

In a periodic system 

Φ(r) =
1
V

∑

k

φkeik·r

∆ρ̂k = −βρ0S0(k)φk

S0(k) =
1
N

< ρ̂kρ̂−k >= 1 + ρ0ĥk Structure factor

χ̂0(k) =
∆ρ̂k

φk
= −βρ0S0(k) FDT (Yvon)

From OZ for the homogeneous systems: 

which is the linear response of the local density to a variation of pressure

S0(k) =
1

1− ρĉ(2)(k)
−−→
k→0

χT

χ(0)
T
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Excess free energy: weak inhomogeneity
The LRT is closely related to the quadratic approximation for the intrinsic free energy functional. For 
weakly inhomogeneous density perturbations (|Δρ|/ρ<<1) we can expand the functional up to 
second order around the equilibrium uniform state (minimum)

a) F[ρ0]=Vf(ρ0) is the free energy of the uniform system
b) at equilibrium the linear term vanishes
c) the reference system is homogenous and isotropic:     A(r,r’)=A(|r-r’|)

F [ρ] ! F [ρ0] +
∫

d3r d3r′ ∆ρ(r)A(r, r′) ∆ρ(r′)

F [ρ] ! V f(ρ0) +
1

2V

∑

k

Âk∆ρk∆ρ−k + O(δρ3)

Using this form in the variational principle one gets:

To quadratic order in the density fluctuations 

Âk∆ρk = −Φk =⇒ Âk = − 1
χ̂0(k)

=
kBT

ρ0S0(k)

F [ρ0 + ∆ρ] ! V f(ρ0) +
1

2V ρ0

∑

k

∆ρk∆ρ−k

S0(k)
+ O(δρ3)
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Excess free energy: slow modulation limit

Long wavelenght inhomogeneities:  |Δρ|/ρ=1/ξ<<1/ξ0 with ξ0 the typical correlation lenght in the 
bulk. It is possible to define a local free energy density and assume local thermodynamic equilibrium: 

Local Density Approximation (LDA): F [ρ] =
∫

V
drf(ρ(r))

At variance with electronic problems, it is an approximation for Fex[ρ] only.

Variational principle within LDA

Gradient corrections: expansion of the intrinsic free energy functional in powers of the 1/ξ

F [ρ] =
∫

V
dr

[
f0(ρ(r)) + f2(ρ(r)))|∇ρ|2

]

Expanding to second order in Δρ 

S0(k) ∼ S0(0)
1 + ξ2k2

k → 0 (RPA)

ξ2 = ρ0S0(0)f2(ρ0)

F [ρ] =
∫

V
dr

{
f0(ρ0) +

1
2
f0”(ρ0) [∆ρ]2 + f2(ρ0)|∇∆ρ|2

}

= V f0(ρ0) +
1

2V

∑

k

[
fo”(ρ0) + f2(ρ)k2

]
∆ρk∆ρ−k

f ′(ρ(r)) =
P (ρ(r)) + f(ρ(r))

ρ(r)
= µ− Φ(r)

∇P (r) = −ρ(r)∇Φ(r) mechanical equilibrium
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Long range interactions: mean field theory
For long range interactions a local approximation (even with gradient corrections) is in general not 
adequate. To perform perturbation theory we can split the interaction potential v(r) in two parts: a 
reference potential v0(r) and a “perturbation” w(r)

vλ(r, r′) = v0(r, r′) + λw(r, r′) 0 ≤ λ ≤ 1

Considering F a functional of the pair interaction

and integrating this expression one gets 

2
δF [v]

δv(r, r′)
= ρ(2)(r, r′)

F [ρ] = F0[ρ] +
1
2

∫ 1

0
dλ

∫
d3r d3r′ ρ(2)

λ (r, r′)w(r, r′) =

= F0[ρ] +
1
2

∫
d3r d3r′ ρ(r)w(r, r′)ρ(r′) + Fcorr[ρ]

Fcorr[ρ] =
1
2

∫ 1

0
dλ

∫
d3r d3r′ h(2)

λ (r, r′)ρ(r)w(r, r′)ρ(r′)

- Mean Field approximation (MFA): Fcorr[ρ]=0

- Starting point for the Poisson-Boltzmann theory of electric double layers

- Taking the second functional derivative of F[ρ] within MFA provides the RPA for c(2)

c(2)(r, r′) = c(2)
0 (r, r′)− βw(r, r′)
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Electric double layers
Charge surfaces or mesoparticles in water will assume a net free charge by releasing anions or cations 
(counterions) because ot the highly dielectric permettivity of the solvent. There is a balance between 
electrostatic attraction between polyions and counterions and their thermal motion. Moreover in 
water dissolved electrolytes carrying positive and negative free charges (salt) are also present. The 
region in which the charge distribution of microions varies around the polyion is called electric double 
layer. 
Primitive model of electrolytes: on the scale of the thickness of the double-layer, the discrete nature of 
the solvent can be ignored and water is replace by a dielectric continuum with permittivity ε

Single charged plane

1.I Double layer near a single charged plane

Consider an infinite planar surface separating a dielectric medium (e.g. glass, or

polystyrene) extending to the left, from an ionic solution on the right, as shown in Fig.

J .L. The surface carries a uniform charge density o (charge per unit area), which will

be assumed to be negative. For the sake of simplicity, the positive counterions and

negative coions will be assumed to be monovalent (e.g. |.la* and C1-). The

corresponding density profiles p-(z) and p-(z) depend only on z, the coordinate

orthogonal to the plane; the microions cannot penetrate to the left of the planar surface, so

that pt(z < 0) - 0.
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Fig. 7 .L

To compute the density profiles approximately, we adopt a mean tield free energy

functional which neglects correlations between microions. The latter behave as an ideal

gas of independent point charges moving in a self-consistent electric potential Vk). The

corresponding free energy functional (per unit area) is the sum of ideal and Coulomb

terms:

Flp.(.), p-(z)l=

where ep,(.) - tfp*k) - p-(z)l is the charge

electrostatic potential by Poisson's equation :

78

(7 .r)

density, which is related to the local

+ifl o,k)vQ)dz

Impenetrable plane at z=0 with surface charge 
σ (<0) and monovalent counterions.
Compute the density profile within mean field 
approximation neglecting interactions between 
microions:

F [ρ+(z), ρ−(z)] = Fid[ρ+] + Fid[ρ−] + Fcoul[ρc(z)]

=
∑

α=±
kBT

∫ ∞

0
dzρα(z)

{
log

[
Λ3

αρα(z)
]
− 1

}
+

e2

2

∫ ∞

0
dz[ρ+(z)− ρ−(z)]Ψ(z)

d2Ψ(z)
dz2

=
e2

ε0ε
[ρ+(z)− ρ−(z)] Poisson equation
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Electric double layers
applying the Variational principle

Substituting Boltzmann into Poisson we get Poisson-Boltzmann equation

d2Ψ(z)
dz2

=
2eρ0

ε0ε
sinh [βeΨ(z)]

lim
z→∞

dΨ(z)
dz

= 0 boundary conditions

−dΨ(z)
dz

∣∣∣∣
z=0

=
σ

ε0ε
εin = εout

Counterions number density:     ρN=ρ++ρ-                        From Boltzmann

Mechanical equilibrium condition:
the variation of osmotic pressure with z must 
be balanced by the electrostatic pressure 

kBT log
[
Λ3

αρα(z)
]
± eΨ(z) = µα α = ±

ρ±(z) = ρ0e
∓eβΨ(z) Boltzmann eq. ρ0 = positive and negative charge density at infinity

dρN (z)
dz

= eβΨ′(z)[ρ+ − ρ−] =
ε0ε

2
β

d

dz

(
dΨ(z)

dz

)2

=⇒ kBT [ρN (z)− ρ] =
ε0ε

2
E2(z)
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Electric double layers
Enanchment of the microions concentration at contact is quadratic with σ. 
For large σ, PB breaks down predicting density corresponding to packing 
fraction larger than close-packing. Remedy by introducing a Stern layer of tightly bound counterions 
which partially screen the surface charge. PB theory now applies to the diffusive layer only.
The thickness of the Stern layer can be treated as a phenomenological parameter.

ρN (0)− ρ =
σ2

2ε0ε

Solution of PB (analytical)

Ψ(z) =
4kBT

e
arctanh

(
g e−κDz

)

g = tanh
(

eΨ(0)
4kBT

)

κD = λ−1
D =

√
e2(ρ+ + ρ−)

kBT ε0ε
inverse Debye screening lenght

=⇒ ρ± = ρ0

[
1∓ g e−κDz

1± g e−κDz

]2

Linear Poisson-Boltzmann: if (βeΨ<1) PB can be linearized (sinh(x)~x)

Ψ(z) = Ψ(0)e−κDz =
σ

ε0εκD
e−κDz

ρ± = ρ0 ± κD
|σ|
2ε

e−κDz
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Electric double layers

Two charged planes:

If the surface potential is less than about 25 mV at room temperature, the r.h.s. may be

lineartzed to yield o - !o!KDVo,showing that for low surface potentials, the electric

double-layer behaves as a condenser of width equal to the Debye length. Since

Vk)< Vo for z>0, the r.h.s. of the PB equation (1 .I2) inay be lineaÍtzed with respect

to Q < I . The resulting linear differential equation is easily solved with the result

o - (s p 
"!, 

o!k u46'?rr"n[ ffi)

ry(z) =Vo e-Koz = * e-Koz
uouK p

while the corresponding density protiles reduce to:

p*(z) = po t K ,i4 e-K oz, u2e

(7 .16)

(7 .r7)

showing that the co and counterion

bulk value; the width of the electric

I ^tpr '

(7.19)

decay exponentially towards their

of the order of I D, which varies as

density protiles

double-layer is

p-(')

7

,l,Q)

z=0

Fig. 7.2

7.2 Two parallel charged planes

Now consider the case of two infinite planar surfaces carrying identical charge densities

o , and placed at z - t Llz, 3s shown in Fig . 7 .2 The solvent confined between the two

planes contains monovalent co and counterions, which are in equilibrium with a solution

in an infinite reservoir fixing the chemical potentials of non-interacting ions,

Fo = kuT tn(tf-p") ( go being the bulk concentrations). The midplane z = 0 is a

__ LL-TLz--T

82

- The solvent confined between the two planes contains 
monovalent co and counterions in equilibrium with a 
solution in an infinite reservoir fixing the chemical potential 
of the non-interacting ions µα=kBT log(Λ3αρα).
- The midplane z=0 is a symmetry plane and E(0)=0. 
- The electronutrality condition is 

symmetry plane for the potential

particular E(z- 0) = - dry (z) I dzl.=o

slab now reads:

Vk) and for the ion density

- 0 while the electroneutrality

profiles p 

"(z). 
In

constraint within the

p,(z)dz p,(z)dz --o

The PB equation (7 .r2) must now be solved in

bound ary conditions :

(7 .Lg)

the interval - Llz 1 1< 0, subject to the

(7.20a)

(7 .20b)

(7 .21)

contribution. The right

- O,where E - 0. The

(7.22)

which the bulk ion

with the boundary

,I-,,, = rl:'

The disioining pressure ts the force per unit area to be applied to the rnutually repelling
charged surfaces to maintain them at a distance L from each other. Let p(z) be the total
local pressure exerted on a test surface placed at z (p is in fact the normal component

P*(r)of the local pressure tensor). Clearly, for equilibrium to be achieved, p(z) must be

constant throughout the slab between the planes, i.e. dPldz = Q p is the sum of the

osmotic pressure n(z)exerted by the ions, and of an electrostatic contribution related to
Maxwell's electrostatic stress tensor. The hydrostatic equilibrium condition (7.10) is
satisfied provided

dry(.)l o
l=

dz lz=- rl2 E ot

dvk)l 
= odz l.=o

P - n(z) - TW]' = k ur p r(.) - T ln(r)1,

where the second term is to be identified with the electrostatic

hand side in eq. (7 .2I) is most conveniently evaluated at z

disjoining pressure then reads :

AP - P( L)- P(-)

and is hence determined by the total ion density in mid-plane from
density is subtracted. If applied at z- ILlz, eq (i.ZL), together
condition (7 .20a), yields the contact theorem.

P - krTZ po(r-tLlz)-*

= knrfon(o) - pl
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(7 .23)

The disjoining ressure, i.e. the force per unit area to keep the two repelling plane at distance L apart, is 
obtained from the mechanical equilibrium condition

P (L) = π(z)− ε0ε

2

[
dΨ(z)

dz

]2

= kBTρN (z)− ε0ε

2
[E(z)]2 = kBTρN (0)

=⇒ P (L)− P (∞) = kBT [ρL
N (0)− ρ] Disjoining Pressure

symmetry plane for the potential

particular E(z- 0) = - dry (z) I dzl.=o

slab now reads:

Vk) and for the ion density

- 0 while the electroneutrality

profiles p 

"(z). 
In

constraint within the

p,(z)dz p,(z)dz --o

The PB equation (7 .r2) must now be solved in

bound ary conditions :

(7 .Lg)

the interval - Llz 1 1< 0, subject to the

(7.20a)

(7 .20b)

(7 .21)

contribution. The right

- O,where E - 0. The

(7.22)

which the bulk ion

with the boundary

,I-,,, = rl:'

The disioining pressure ts the force per unit area to be applied to the rnutually repelling
charged surfaces to maintain them at a distance L from each other. Let p(z) be the total
local pressure exerted on a test surface placed at z (p is in fact the normal component

P*(r)of the local pressure tensor). Clearly, for equilibrium to be achieved, p(z) must be

constant throughout the slab between the planes, i.e. dPldz = Q p is the sum of the

osmotic pressure n(z)exerted by the ions, and of an electrostatic contribution related to
Maxwell's electrostatic stress tensor. The hydrostatic equilibrium condition (7.10) is
satisfied provided

dry(.)l o
l=

dz lz=- rl2 E ot

dvk)l 
= odz l.=o

P - n(z) - TW]' = k ur p r(.) - T ln(r)1,

where the second term is to be identified with the electrostatic

hand side in eq. (7 .2I) is most conveniently evaluated at z

disjoining pressure then reads :

AP - P( L)- P(-)

and is hence determined by the total ion density in mid-plane from
density is subtracted. If applied at z- ILlz, eq (i.ZL), together
condition (7 .20a), yields the contact theorem.

P - krTZ po(r-tLlz)-*

= knrfon(o) - pl

83

(7 .23)

boundary
conditions
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Electric double layers

In this case PB is not analytically solvable. We can solve the linearized version obtaining

When L + *, P coincides with the bulk pressure of the electrolyte, and eq. (7 .23)

provides in fact an exact relationship between the latter, the charge density on a planar

surface and the densities of the ionic species at the plane of closest approach, provided

the exact density profiles are used, rather than their PB approximation.

The PB eq. (7 .6), with the apprapnate bound ary conditions (7 .2A), cannot be sol ved

analytically in closed form, except in the somewhat academic case of zero salt

concentation (i.e. when only counterions are present between the plates).

For sufficiently low surface charge the r.h.s. of the PB equation (l .6) or (7 .I2) may again

be linearised; the solution of the resulting linear differential equation

azÚ(z)lar' - rcLa(z) , satisfying the bound ary condirions (7.20), is:

vk)= Vo cosh (n or) (7 .24)
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lunedì 7 dicembre 2009



Charged stabilized colloidal suspensions

Highly charged mesoscopic spherical polyions plus microscopic coions and counterions dissolved in 
solvent (water). 
Np polyions of charge -Ze; 
Nc=ZNp counterions of charge +e; 
Ns fully dissociated pairs of monovalent salt ions of charge +/-e
Primitive model of water.
Short range hard-core repulsion between polyions and between microions and polyions.

Remarks:
a) dispersion interaction between polyions are absent: justified in the law salt-weak screening regime. 
At high salt concentration the coulomb repulsion competes with the dispersion attractive force (1/R6).
b) hard sphere repulsion between microions is not necessary for the stability within the mean field 
treatment
c) the model hamiltonian admits a well defined thermodynamic limit because of the global charge 
neutrality

Phase diagram of charge-stabilized colloidal suspensions:

van der Waals instability without attractive forces
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A careful analysis of the classic Derjaguin-Landau-Verwey-Overbeek theory of the interaction energy in a

suspension of charge-stabilized, spherical colloidal particles !polyions" in the presence of salt shows that in
addition to the usual screened-Coulomb effective pair interaction between polyions, there exists a structure-

independent but state-dependent contribution !the ‘‘volume’’ term", which has almost invariably been over-
looked. A variational procedure based on the Gibbs-Bogoliubov inequality is used to calculate the contribution

of the polyion pair interactions to the free energy of the suspension. The latter is then combined with the

‘‘volume’’ term to derive the phase diagram of the colloidal suspension. Although the effective pair interaction

between polyions is purely repulsive, it is shown that the volume term may drive a van der Waals–like

instability in highly deionized suspensions !salt concentrations less than 20 #M ) for experimentally relevant
choices of the polyion radius and charge. If the latter are sufficiently large, the fluid-fluid phase separation is

preempted by the fluid-solid freezing transition which broadens considerably. Reentrant behavior is predicted

on the solid side of the phase diagram. The predicted phase diagrams may provide an explanation of some

surprising recent experimental results. They also show that the observation of a fluid-fluid phase separation in

a charge-stabilized colloidal dispersion does not necessarily imply the existence of an attractive component in

the effective pair interaction between highly charged polyions. $S1063-651X!99"04002-7%

PACS number!s": 82.70.Dd, 64.10.!h, 83.20.Di, 64.60.Cn

I. INTRODUCTION

Phase separation of an initially homogeneous fluid into
dense !or concentrated" and dilute fluid phases is a very com-
mon phenomenon in molecular systems. In one-component
systems, involving a single molecular species, the separation
into liquid and gas phases observed below the critical tem-
perature Tc is attributed, since van der Waals, to intermo-
lecular attractions which balance the loss of configurational
entropy upon condensation. In mixtures of two or more com-
ponents, the mechanism for demixing into phases of different
concentrations of the various species is less clear-cut. In the
case of molecules of comparable size, the role of attractive
interactions is again believed to be preeminent $1%, since
purely repulsive interactions do not appear to lead to phase
separation, as long as they are additive. The situation is more
complicated for colloidal suspensions, which are essentially
multicomponent in nature and involve large size-
asymmetries between the individual species. Such suspen-
sions consist of mesoscopic colloidal particles, a molecular
solvent, and most frequently at least one third component,
such as polymer coils or microscopic ions, which introduce
an intermediate length scale !the radius of gyration Rg for
polymers or the Debye screening length &D for ions". This
third component plays a crucial role, since it induces effec-
tive interactions between the colloidal particles, which are of
largely entropic origin. Effective interactions result quite
naturally from a formal contraction of the initial multicom-
ponent system into an effective one-component description
involving only the colloidal particles. An important differ-
ence with simple molecular systems is that the control pa-

rameter is not the temperature but the concentration of the
third component. It is worth noting that the solvent is not
directly involved in the phase separation mechanism, and
plays the role of a passive ‘‘spectator’’ phase.
In the case of sterically stabilized colloidal particles, free

polymer coils induce a depletion interaction between colloids
which is predominantly attractive and of a range of the order
of Rg beyond the colloid particle diameter $2,3%. There is
ample experimental and theoretical evidence $4–6% that the
depletion attraction can induce a liquid-gas separation of the
suspension into a high colloid concentration !‘‘liquid’’"
phase and a dilute !‘‘gas’’" phase, at least if the polymer
coils are assumed to be ideal !nonadditive". This gas-liquid
transition is thus reminiscent of the van der Waals phase
transition in ordinary molecular fluids. Recent results indi-
cate, however, that additivity of the pair interactions !such as
in an asymmetric binary hard-sphere mixture" tends to drive
the gas-liquid transition metastable with respect to freezing
$7%.
In the present paper, we focus on charge-stabilized colloi-

dal suspensions, made up of highly charged, spherical poly-
ions and microscopic coions and counterions dissolved in
water. The microions form electric double layers around the
charged surface of the polyions, and it is generally accepted
that, at least in the bulk, the effective interactions between
electric double layers surrounding different polyions are
purely repulsive. Direct measurements $8%, as well as first-
principles computer simulations $9%, point to the quantitative
validity of the Derjaguin-Landau-Verwey-Overbeek !DLVO"
$10% potential between charge-stabilized colloidal particles,
provided an adequate choice is made for the effective charge
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Charged stabilized colloidal suspensions
DFT:   F [ρ+, ρ−] = Fid[ρ+] + Fid[ρ−] + Fcoul[ρc] + Fext[ρ+, ρ−] + Fcorr[ρ+, ρ−]

Fid =
∑

α=±
kBT

∫ ∞

0
dzρα(z)

{
log

[
Λ3

αρα(z)
]
− 1

}

Fcoul =
e2

2ε

∫
d3r d3r′

[ρ+(r)− ρ−(r)][ρ+(r′)− ρ−(r′)]
|r − r′|

Fext =
∑

α=±

∫
d3rρα(r)Uα(r)

Fcorr = 0 Mean Field approx.

At fixed inverse temperature !!1/kBT , the Helmholtz
free energy F of the colloidal suspension may be formally

expressed as

exp""!F#!TrpTrmexp""!H#$Trpexp""!Hp
eff# , %4&

where the traces Trp and Trm denote canonical phase-space

integrals over the polyion and microion degrees of freedom.

The effective polyion Hamiltonian Hp
eff is defined as

Hp
eff!Hp#F!$Kp#Vp

eff%'Ri(&, %5&

where F! is given by

exp""!F!#!Trmexp""!%Hm#Hmp&# . %6&

Clearly, F! may be interpreted as the Helmholtz free energy
of an inhomogeneous fluid of microions in the external field

of polyions at fixed positions Ri . Consequently, it depends

parametrically on the polyion positions, and the potential en-

ergy of the effective one-component system of polyions, al-

ready introduced in Eq. %5&, is given by

Vp
eff%'Ri(&!Vp%'Ri(&#F!%'Ri(&. %7&

The above reduction of the initial polyion-microion system

to an effective one-component polyion system shows that the

latter interact via an effective potential energy that consists

of a contribution Vp , given by Eq. %2& as a sum of pair

interactions, and the microion-induced contribution F!,
which is state-dependent and not, a priori, pairwise additive.

III. DENSITY-FUNCTIONAL THEORY

A. Formulation

The inhomogeneous distribution of microscopic cations

and anions in the external field of the polyions is character-

ized by equilibrium density profiles )#(r) and )"(r), which

are the fundamental quantities in density-functional theory

%DFT& "22#. This theoretical framework is based on the ex-
istence of a free-energy functional F ")#

(1) ,)"
(1)# of varia-

tional density profiles )$
(1)(r). The equilibrium profiles

)$(r) must satisfy the Euler-Lagrange or stationarity condi-

tion

! *F ")#
%1 & ,)"

%1 &#

*)$
%1 &%r&

" #
)

$
%1 &%r&!)$%r&

!+$ , %8&

where, within the canonical formulation, the Lagrange mul-

tipliers +$ must be chosen such as to satisfy the normaliza-

tion conditions

$
V

dr)$%r&!N$ . %9&

The corresponding equilibrium value of the Helmholtz free

energy F! is then given by

F!!F ")# ,)"# . %10&

It is customary to split the functional F into ideal gas, exter-
nal field, Coulomb interaction, and correlation terms "22#,

F!Fid#Fext#FCoul#Fcorr . %11&

The ideal gas contributions can be written down explicitly as

Fid!kBT ,
-!$

$ dr)-
%1 &%r&" ln„)-

%1 &%r&.-
3 …"1# , %12&

where .- is the thermal wavelength of microion species -
!$ . The external field contribution may be cast into the
form

Fext! ,
-!$

$ dr)-
%1 &%r&U-%r&, %13&

where the external potentials U-(r), due to the polyions, are

multicentered sums

U$%r&!,
j!1

Np

u$%r"Rj& %14&

over the polyion-microion pair interactions u$(r), given by

u$%r&!% %
Ze2

/

1

r
, r&R

%
Ze2

/

1%0$

R
, r'R .

%15&

These polyion-microion pair interactions are thus purely

Coulombic beyond the polyion core radius R, and chosen to

be constant inside the core region. Within an exact density

functional F, the most relevant choice for the constants 0$

would be the hard-core limit 0$→1 , ensuring that the mi-
croions are excluded from the polyion cores. However,

within the framework of the approximate functional adopted

below, which allows an analytic solution of the stationarity

conditions %8&, the excluded volume condition will be satis-
fied for finite values of 0# and 0" to be determined later on.

The choice of u$(r) for r'R is reminiscent of ion-electron

‘‘pseudopotentials’’ widely used in the theory of metals "21#.
A polyion-microion pseudopotential has also been used in a

first-principles simulation of charge-stabilized colloids "9#,
but for different technical reasons.

The mean-field contribution to the microion-microion

Coulomb interaction term in the free-energy functional is of

the familiar Hartree form

FCoul!
e2

2/$ dr$ dr!")#
%1 &%r&")"

%1 &%r&#

(
1

&r"r!&
")#

%1 &%r!&")"
%1 &%r!&# . %16&

To conclude the specification of the functional F, the follow-
ing two approximations are made: %a& The correlation contri-
bution to the interaction term is neglected, i.e.,

Fcorr!0. %17&

This mean-field approximation corresponds to a multicen-

tered Poisson-Boltzmann theory for the density profiles
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“pseudopotential” constant inside the polyion
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Expanding the functional to quadratic order in the fluctuations the final result for the effective two 
body interaction between polyions is 

Charged stabilized colloidal suspensions

Boltzmann theory !corresponding to the quadratic free-

energy functional". Other choices of the pseudopotential
parameter # are possible. In particular, #!0 leads back to
the effective polyion valence Z"!Zsinh($R)/$R advocated
by Sogami and Ise %23&. Clearly, however, this choice leads
to microion orbitals that penetrate ‘‘their own’’ polyion

cores, and is for that reason less favorable than the DLVO

choice of Eq. !56".

IV. EFFECTIVE POLYION INTERACTION ENERGY

The microion-induced contribution F! to the effective
polyion interaction energy is obtained by substituting the so-

lutions '(r) and ((r) of the Euler-Lagrange equations into
the free-energy functional. This has already been achieved

for the hard-core part, resulting in Eq. !38". As already
stressed earlier, the explicit calculation of the minimum Fel!
of Fel is somewhat trickier, due to nontrivial cancellations
between Coulomb divergences. This requires a detour via the

auxiliary screened Coulomb potential !3", followed by the
limit )→0 once Fel! has been evaluated for any finite value
of ) . The different steps of this procedure are detailed in
Appendix A.

Gathering results from Eqs. !7", !21", !38", and !A11", we
arrive at the final result for the potential energy in the effec-

tive one-component Hamiltonian,

Vp
eff!*Ri+"!,0#-

i$ j

Np

veff!Ri j", !59"

where veff(R) is the usual DLVO effective pair potential

between polyions,

veff!r "!! . , r$2R

Z"
2 e2

/

exp!%$r "
r

, r"2R ,
!60"

and where ,0 is a state-dependent term. This so-called vol-

ume term is structure-independent, i.e., it does not depend on

the coordinates *Ri+ of the polyions, and is given explicitly
by
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where '̄ ,0 , and $ are defined in Eqs. !25", !34", and !49".
The last two terms on the right-hand side of Eq. !61" were
erroneously omitted in our earlier analysis %19&. The impor-
tance of these terms, and more particularly of the latter, is

well illustrated by the significant quantitative differences be-

tween the phase diagrams to be discussed later and those

obtained in Ref. %19&.
The existence of a volume term in the total polyion inter-

action energy is a consequence of the reduction !mapping" of

the initial multicomponent system !polyions and microions"
into an effective one-component system of ‘‘dressed’’ poly-

ions. The third term on the right-hand side of Eq. !61" may
be interpreted as the ‘‘self-energy’’ of the Np electric double

layers associated with the individual polyions, or as the en-

ergy due to the potential well in which the colloidal particles

reside because of the surrounding oppositely charged distri-

bution of microions. The fourth term accounts for additional

excluded volume for the microions due to the hard core of

the polyions; it vanishes for polyion radius R!0 since then
0!0. It also vanishes in the salt-free case, i.e., when only
polyions and counterions are left. The physical interpretation

of the last terms of Eq. !61" is less transparent, however. It
resembles, but is in general not identical to, the negative of

the polyion-polyion mean-field contribution, Fp
mf , to the to-

tal Helmholtz free energy, which with Eq. !60" can be evalu-
ated as

Fp
mf!

V

2
np
2"

r"2R
dr veff!r "

!
1

2

41e2

/$2
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2V# 1#2$R
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The difference between Fp
mf and the last term of Eq. !61" is,

apart from the minus sign, the bracketed factor in Eq. !62".
This factor is unity only for point polyions, R!0. We there-
fore suggest that the final term of Eq. !61" is a reminder of
the fact that the free energy of a purely Coulombic system is

only due to correlations and fluctuations, and does not con-

tain mean-field contributions because of the charge-

neutrality condition. Since such a constraint does not hold

for hard-core contributions, the cancellation of Fp
mf and the

final term of Eq. !61" is not perfect for finite radius R of the
polyion, due to the coupling of the Coulomb and hard-core

contributions. Remarks along these lines have also been

made by Warren in the appendix of Ref. %24&.
In any given thermodynamic state, the volume term will

have no influence on the equilibrium structure of the poly-

ions which is entirely determined by the effective pair poten-

tial !60". ,0 does, however, contribute to all equilibrium

thermodynamic properties of the system, including the poly-

ion free energy, and is hence expected to have an influence

on the phase diagram of the colloidal suspension. This will

be examined in the next two sections.

V. FREE ENERGY OF THE COLLOIDAL SUSPENSION

Given the effective polyion interaction energy !59", the
next task is to calculate the total free energy of the suspen-

sion, for fixed temperature T and volume V, as a function of

the polyion and salt concentrations, or equivalently as a

function of the colloid packing fraction 0 and the salt con-

centration ns .

Substituting Eq. !59" into expression !4" for the total free
energy we find that the latter naturally splits into three terms:

F!,0#Fp
!id"#Fp

!exc" , !63"

where ,0 is given explicitly by Eq. !61", Fp
!id" is the trivial

ideal free energy of a system of noninteracting polyions, and
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Boltzmann theory !corresponding to the quadratic free-

energy functional". Other choices of the pseudopotential
parameter # are possible. In particular, #!0 leads back to
the effective polyion valence Z"!Zsinh($R)/$R advocated
by Sogami and Ise %23&. Clearly, however, this choice leads
to microion orbitals that penetrate ‘‘their own’’ polyion

cores, and is for that reason less favorable than the DLVO

choice of Eq. !56".

IV. EFFECTIVE POLYION INTERACTION ENERGY

The microion-induced contribution F! to the effective
polyion interaction energy is obtained by substituting the so-

lutions '(r) and ((r) of the Euler-Lagrange equations into
the free-energy functional. This has already been achieved

for the hard-core part, resulting in Eq. !38". As already
stressed earlier, the explicit calculation of the minimum Fel!
of Fel is somewhat trickier, due to nontrivial cancellations
between Coulomb divergences. This requires a detour via the

auxiliary screened Coulomb potential !3", followed by the
limit )→0 once Fel! has been evaluated for any finite value
of ) . The different steps of this procedure are detailed in
Appendix A.

Gathering results from Eqs. !7", !21", !38", and !A11", we
arrive at the final result for the potential energy in the effec-

tive one-component Hamiltonian,

Vp
eff!*Ri+"!,0#-
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where veff(R) is the usual DLVO effective pair potential

between polyions,

veff!r "!! . , r$2R

Z"
2 e2

/

exp!%$r "
r

, r"2R ,
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and where ,0 is a state-dependent term. This so-called vol-

ume term is structure-independent, i.e., it does not depend on

the coordinates *Ri+ of the polyions, and is given explicitly
by
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where '̄ ,0 , and $ are defined in Eqs. !25", !34", and !49".
The last two terms on the right-hand side of Eq. !61" were
erroneously omitted in our earlier analysis %19&. The impor-
tance of these terms, and more particularly of the latter, is

well illustrated by the significant quantitative differences be-

tween the phase diagrams to be discussed later and those

obtained in Ref. %19&.
The existence of a volume term in the total polyion inter-

action energy is a consequence of the reduction !mapping" of

the initial multicomponent system !polyions and microions"
into an effective one-component system of ‘‘dressed’’ poly-

ions. The third term on the right-hand side of Eq. !61" may
be interpreted as the ‘‘self-energy’’ of the Np electric double

layers associated with the individual polyions, or as the en-

ergy due to the potential well in which the colloidal particles

reside because of the surrounding oppositely charged distri-

bution of microions. The fourth term accounts for additional

excluded volume for the microions due to the hard core of

the polyions; it vanishes for polyion radius R!0 since then
0!0. It also vanishes in the salt-free case, i.e., when only
polyions and counterions are left. The physical interpretation

of the last terms of Eq. !61" is less transparent, however. It
resembles, but is in general not identical to, the negative of

the polyion-polyion mean-field contribution, Fp
mf , to the to-

tal Helmholtz free energy, which with Eq. !60" can be evalu-
ated as
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The difference between Fp
mf and the last term of Eq. !61" is,

apart from the minus sign, the bracketed factor in Eq. !62".
This factor is unity only for point polyions, R!0. We there-
fore suggest that the final term of Eq. !61" is a reminder of
the fact that the free energy of a purely Coulombic system is

only due to correlations and fluctuations, and does not con-

tain mean-field contributions because of the charge-

neutrality condition. Since such a constraint does not hold

for hard-core contributions, the cancellation of Fp
mf and the

final term of Eq. !61" is not perfect for finite radius R of the
polyion, due to the coupling of the Coulomb and hard-core

contributions. Remarks along these lines have also been

made by Warren in the appendix of Ref. %24&.
In any given thermodynamic state, the volume term will

have no influence on the equilibrium structure of the poly-

ions which is entirely determined by the effective pair poten-

tial !60". ,0 does, however, contribute to all equilibrium

thermodynamic properties of the system, including the poly-

ion free energy, and is hence expected to have an influence

on the phase diagram of the colloidal suspension. This will

be examined in the next two sections.

V. FREE ENERGY OF THE COLLOIDAL SUSPENSION

Given the effective polyion interaction energy !59", the
next task is to calculate the total free energy of the suspen-

sion, for fixed temperature T and volume V, as a function of

the polyion and salt concentrations, or equivalently as a

function of the colloid packing fraction 0 and the salt con-

centration ns .

Substituting Eq. !59" into expression !4" for the total free
energy we find that the latter naturally splits into three terms:

F!,0#Fp
!id"#Fp

!exc" , !63"

where ,0 is given explicitly by Eq. !61", Fp
!id" is the trivial

ideal free energy of a system of noninteracting polyions, and
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Boltzmann theory !corresponding to the quadratic free-

energy functional". Other choices of the pseudopotential
parameter # are possible. In particular, #!0 leads back to
the effective polyion valence Z"!Zsinh($R)/$R advocated
by Sogami and Ise %23&. Clearly, however, this choice leads
to microion orbitals that penetrate ‘‘their own’’ polyion

cores, and is for that reason less favorable than the DLVO

choice of Eq. !56".

IV. EFFECTIVE POLYION INTERACTION ENERGY

The microion-induced contribution F! to the effective
polyion interaction energy is obtained by substituting the so-

lutions '(r) and ((r) of the Euler-Lagrange equations into
the free-energy functional. This has already been achieved

for the hard-core part, resulting in Eq. !38". As already
stressed earlier, the explicit calculation of the minimum Fel!
of Fel is somewhat trickier, due to nontrivial cancellations
between Coulomb divergences. This requires a detour via the

auxiliary screened Coulomb potential !3", followed by the
limit )→0 once Fel! has been evaluated for any finite value
of ) . The different steps of this procedure are detailed in
Appendix A.

Gathering results from Eqs. !7", !21", !38", and !A11", we
arrive at the final result for the potential energy in the effec-

tive one-component Hamiltonian,

Vp
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where veff(R) is the usual DLVO effective pair potential

between polyions,
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and where ,0 is a state-dependent term. This so-called vol-

ume term is structure-independent, i.e., it does not depend on

the coordinates *Ri+ of the polyions, and is given explicitly
by
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where '̄ ,0 , and $ are defined in Eqs. !25", !34", and !49".
The last two terms on the right-hand side of Eq. !61" were
erroneously omitted in our earlier analysis %19&. The impor-
tance of these terms, and more particularly of the latter, is

well illustrated by the significant quantitative differences be-

tween the phase diagrams to be discussed later and those

obtained in Ref. %19&.
The existence of a volume term in the total polyion inter-

action energy is a consequence of the reduction !mapping" of

the initial multicomponent system !polyions and microions"
into an effective one-component system of ‘‘dressed’’ poly-

ions. The third term on the right-hand side of Eq. !61" may
be interpreted as the ‘‘self-energy’’ of the Np electric double

layers associated with the individual polyions, or as the en-

ergy due to the potential well in which the colloidal particles

reside because of the surrounding oppositely charged distri-

bution of microions. The fourth term accounts for additional

excluded volume for the microions due to the hard core of

the polyions; it vanishes for polyion radius R!0 since then
0!0. It also vanishes in the salt-free case, i.e., when only
polyions and counterions are left. The physical interpretation

of the last terms of Eq. !61" is less transparent, however. It
resembles, but is in general not identical to, the negative of

the polyion-polyion mean-field contribution, Fp
mf , to the to-

tal Helmholtz free energy, which with Eq. !60" can be evalu-
ated as
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The difference between Fp
mf and the last term of Eq. !61" is,

apart from the minus sign, the bracketed factor in Eq. !62".
This factor is unity only for point polyions, R!0. We there-
fore suggest that the final term of Eq. !61" is a reminder of
the fact that the free energy of a purely Coulombic system is

only due to correlations and fluctuations, and does not con-

tain mean-field contributions because of the charge-

neutrality condition. Since such a constraint does not hold

for hard-core contributions, the cancellation of Fp
mf and the

final term of Eq. !61" is not perfect for finite radius R of the
polyion, due to the coupling of the Coulomb and hard-core

contributions. Remarks along these lines have also been

made by Warren in the appendix of Ref. %24&.
In any given thermodynamic state, the volume term will

have no influence on the equilibrium structure of the poly-

ions which is entirely determined by the effective pair poten-

tial !60". ,0 does, however, contribute to all equilibrium

thermodynamic properties of the system, including the poly-

ion free energy, and is hence expected to have an influence

on the phase diagram of the colloidal suspension. This will

be examined in the next two sections.

V. FREE ENERGY OF THE COLLOIDAL SUSPENSION

Given the effective polyion interaction energy !59", the
next task is to calculate the total free energy of the suspen-

sion, for fixed temperature T and volume V, as a function of

the polyion and salt concentrations, or equivalently as a

function of the colloid packing fraction 0 and the salt con-

centration ns .

Substituting Eq. !59" into expression !4" for the total free
energy we find that the latter naturally splits into three terms:

F!,0#Fp
!id"#Fp

!exc" , !63"

where ,0 is given explicitly by Eq. !61", Fp
!id" is the trivial

ideal free energy of a system of noninteracting polyions, and
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!!(r) which can only be handled numerically. "b# In order
to obtain an analytically tractable theory, the ideal gas con-

tributions "12# are expanded to quadratic order in the local
inhomogeneities,

$!!
"1 #"r#"!!

"1 #"r##n! . "18#

In view of the constraints "9#, this leads to the following
approximate expression for the ideal gas contribution to the

functional:

Fid! %
&"!

" F id"V ,T ,n&#$
kBT

2n&
# dr„$!&

"1 #"r#…2$ ,
"19#

where F id(V ,T ,n&)"VkBTn&' ln(n&(&
3)#1) is the homoge-

neous ideal gas contribution from ionic species &"! .

B. Diagonalization

The free-energy functional to be used in this paper is now

defined by Eqs. "11#, "13#, "16#, "17#, and "19#; it is qua-
dratic in the density profiles !!

(1)(r). This suggests diagonal-

izing the functional F by changing from the variational fields
!!
(1)(r) to their linear combinations

!"1 #"r#"!$
"1 #"r##!#

"1 #"r#,

"20#

*"1 #"r#"
n#!$

"1 #"r#$n$!#
"1 #"r#

n$$n#
.

Clearly, ! (1)(r) is the local microion charge density in units
of e. In the limit of high salt concentration "such that n$

!n#),*
(1)(r) reduces to one-half of the local total microion

number density. At lower salt concentrations, however, the

physical meaning of * (1)(r) is less obvious; it vanishes if
ns"0. The quadratic functional F is diagonal in the new

fields defined in Eq. "20#, and can be written as

F '!"1 #,*"1 #)"F id"V ,T ,n$#$F id"V ,T ,n##

$Fel'!"1 #)$Fhc'*"1 #) , "21#

where the ‘‘electrostatic’’ functional is of the form

Fel'!"1 #)"
kBT

2"n$$n### dr'!"1 #"r## !̄ )2

$# dr!"1 #"r#U"r#

$
e2

2+# dr# dr!
!"1 #"r#!"1 #"r!#

%r#r!%
, "22#

while the ‘‘hard-core’’ functional reads

Fhc'*"1 #)"
kBT

2
" 1
n$

$
1

n#
$ # dr'*"1 #"r##*̄)2

$# dr*"1 #"r#W"r#. "23#

In Eqs. "22# and "23#, !̄ and *̄ are the macroscopic spatial

averages of the variational fields

!̄"n$#n#"Znp , "24#

*̄"
2n$n#

n$$n#
"
2n$n#

n
, "25#

while U(r) and W(r) are the following linear combinations

of the external fields "14#:

U"r#"
n$U$"r##n#U#"r#

n
,%

j"1

Np

u"r#Rj#,

"26#

W"r#"U$"r#$U#"r#,%
j"1

Np

w"r#Rj#.

This multicentered character of U(r) and W(r) follows di-

rectly from Eq. "14#, and the functional form of u(r) and

w(r) from the appropriate linear combinations of Eq. "15#,
which yields with Eq. "26#

u"r#"& #
Ze2

+

1

r
, r%R

#
Ze2

+

1#-

R
, r&R ,

"27#

w"r#"' 0, r%R

w0 , r&R ,
"28#

where the yet undetermined parameters - and w0 are given

by -"(n$-$#n#-#)/n and w0"Ze2(-$$-#)/+R . Note
that both external fields U(r) and W(r) are constant within

the cores of the colloidal particles. U(r) is Coulombic out-

side the cores, while W(r) vanishes there. Thanks to the

diagonalization of the quadratic free-energy functional F,
the Euler-Lagrange equations "8# reduce to a set of two un-
coupled equations for !(r) and *(r), or equivalently for the
local deviations

$!"r#"!"r## !̄ , "29#

$*"r#"*"r##*̄ . "30#

We study these two uncoupled equations separately below.

C. Minimization of Fhc
The ‘‘hard-core’’ part of the functional "21# satisfies the

stationarity condition

" .Fhc'*"1 #)

.*"1 #"r#
$ (

*"1 #"r#"*"r#

"/* , "31#

which is easily solved with the result

$*"r#"" n$n#

nkBT
$ '/*#W"r#) . "32#
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The Lagrange multiplier !" follows from the normalization

condition and reads

!"!#w0 , $33%

where we defined the colloid packing fraction

#!
4&R3

3
np . $34%

The constant w0 will now be adjusted to satisfy the hard-core

condition of zero density within the core and constant out-

side. It follows from Eqs. $25% and $32% that

"$r%!"̄!1"
1

2kBT
" #w0#'

j!1

Np

w$r#Rj%# $ , $35%

which reduces to a multicentered sum of Heaviside step

functions ((x),

"$r%!
"̄

1## '
j!1

Np

($ %r#Rj%#R %, $36%

provided we set

)w0!
2

1##
. $37%

The resulting hard-core contribution Fhc! to the colloid free

energy follows from evaluation of Fhc*"+ and reads

Fhc! !kBT
Vn"n#

n
" 2#

1

2
)w0$1##% ##w0

!kBT
V#"̄

1##
. $38%

Note that the equilibrium profile given in Eq. $36% does
not, strictly speaking, satisfy the hard-core condition, in the

sense that the spherically symmetric profile centered about

polyion i gives rise to a nonvanishing density within the core

of another polyion j,i . This problem is inherently con-

nected to the expansion of the functional to quadratic order

in the profiles: the resulting stationarity equations give a lin-

ear relation between the profile and the multicentered exter-

nal field, which is unphysical for hard-core interactions. The

specific choice for w0 given in Eq. $37% is, in that sense, the
best one within a quadratic functional or a linearized

Poisson-Boltzmann theory. A similar problem will be en-

countered in the minimization of Fel .

D. Minimization of Fel
The Euler-Lagrange equation associated with the electro-

static part $22% of the functional F reduces to

!-!" .Fel*-$1 %+

.-$1 %$r%
# &

-$1 %$r%!-$r%

!
kBT

n
/-$r%"Ū"/U$r%"

e2

0 ' dr!
-̄"/-$r!%

%r#r!%
,

$39%

where Ū denotes the volume average of U(r)!Ū

"/U(r), and where !- is a Lagrange multiplier. Care must

be exercised in handling Eq. $39% in the thermodynamic
limit, since both Ū and the Coulomb integral involve diver-

gent volume integrals of the Coulomb potential. The two

divergences cancel, but a proper evaluation of the remaining

finite constant is most easily achieved by the use of the

screened Coulomb potential $3% and the subsequent limiting
procedure 1→0. Substitution of the screened for the bare
Coulomb potential transforms Eq. $39% into

!-!
kBT

n
/-$r%"U $1%$r%

"
e2

0 ' dr!
exp$#1%r#r!%%

%r#r!%
* -̄"/-$r!%+ , $40%

where

U $1%$r%!'
j!1

Np

u $1%$r#Rj% $41%

is a multicentered sum over the modified polyion-microion

pseudopotential

u $1%$r %!( #
Ze2

0

exp$#1r %

r
, r$R

#
Ze2

0

exp$#1R %

R
$1#2%, r%R .

$42%

We now introduce the Fourier transform

f k!'
V

drf $r%exp$ ik•r% $43%

of an arbitrary function f (r) defined in a finite volume with

periodic boundary conditions. Fourier transforming Eq. $40%
yields

)!-$2&%3.$k%!
1

n
/-k")Uk

$1%

"
4&l

$k2"12%
*$2&%3-̄.$k%"/-k+ ,

$44%

where l!)e2/0 is the Bjerrum length, and with the Dirac .

.$k%!
1

$2&%3
'
V

dr exp$ ik•r%. $45%
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Now !" is determined by the normalization #9$, which in-
volves the k!0 Fourier component

%"k!0!0. #46$

If we use that (2&)3'(k!0)!V , Eq. #46$ implies

(!"!
1

V
(U

k!0
#)$ "

4&l "̄

)2
. #47$

The explicit solution of the stationarity condition #44$ now
reads

%"k!#n
k2")2

k2"*)
2

(U
k

#)$"
#2&$3'#k$

V
n

)2

*)
2

(U
k!0
#)$ ,

#48$

where we defined the Debye screening parameter *!)D
#1

given by

*2!4&ln #49$

and its modified counterpart *)
2!*2")2. Clearly, *) re-

duces to * when the limit )→0 is taken at the end of the
calculation. It is essential to substitute the solution #48$ into
the Coulombic part of the functional to calculate the contri-

bution to the equilibrium free energy before taking the )
→0 limit #cf. the following section and Appendix A$. How-
ever, the form of the charge-density profile in that limit can

be directly obtained by Fourier transforming the solution

#48$ at )!0. This can be seen if one realizes that the multi-
centered character of U ())(r), given in Eq. #41$, leads to

U
k

#)$!u
k

#)$+
j!1

Np

exp# ik•Rj$, #50$

with u
k

()) the Fourier transform of u ())(r) defined in Eq.

#42$,

(u
k
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exp##)R $

k2")2

$!, cos#kR $"#1#,$
sin#kR $

kR
"#)R $

sin#kR $

kR

"#)R $2#1#,$
sin#kR $#kR cos#kR $

#kR $3
" . #51$

It is thus easily checked that for any wave vector k,

lim
)→0

#k2")2$(u
k

#)$!#4&lZ!, cos#kR $"#1#,$
sin#kR $

kR
" .

#52$

The inverse Fourier transformation of Eq. #48$ leads, upon
inserting Eqs. #50$ and #52$ in the limit )→0, to the equi-
librium profile "(r)! "̄"%"(r) of the form

"#r$!+
j!1

Np

"0#r#Rj$, #53$

with the spherically symmetric ‘‘orbitals’’

"0#r $!
Z
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r
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sinh#*r $
r
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#54$

The effective charges Z% and Z& are defined by

Z%!Z% , cosh#*R $"#1#,$
sinh#*R $

*R & ,
#55$

Z&!Z% exp##*R $

*R & -1#,#*R"1 $. .

For any , ,* , and R, these profiles satisfy the normalization
/dr"0(r)!Z . To complete the specification of "0(r), a
choice must be made for the yet undetermined parameter ,
in the pseudopotential #27$. According to Eqs. #54$ and #55$
the polyion-microion excluded volume condition is satisfied

provided that

,!
1

1"*R
. #56$

Substitution of Eq. #56$ into Eq. #55$ leads then directly to
the DLVO value of the effective polyion valence -10.,

Z%!Z% exp#*R $

1"*R & . #57$

The final expression for the microion-charge distribution, or

double layer, around a polyion is thus

"0#r$!' 0, r&R
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4&

exp#*R $

1"*R

exp##*r $
r

, r%R .
#58$

The coion and counterion density profiles "'(r) are obtained

from Eq. #20$ by taking the appropriate linear combination
of 0(r) and "(r).
We finally note that even the choice for , given in Eq.

#56$ and the resulting profile of Eqs. #53$ and #58$ do not
take a truly proper account of the hard-core conditions. The

reason is the same as encountered above for the equilibrium

profiles of the hard-core functional Fhc : the profile around
polyion i actually penetrates the core of any other polyion

j1i . This shortcoming is, as already discussed, due to the

linear relation between the inhomogeneity of the profile and

the external potential of the polyions in the stationarity con-

dition. Thus, although the key result summarized by Eqs.

#53$ and #58$ is in itself not new #see, e.g., -9,10.$, the
present derivation shows that it is, in fact, the best charge-

density profile within the framework of linearized Poisson-
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polyions packing fraction

Debye inverse screening

Bjerrum length

The Lagrange multiplier !" follows from the normalization
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!"!#w0 , $33%

where we defined the colloid packing fraction

#!
4&R3

3
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The resulting hard-core contribution Fhc! to the colloid free

energy follows from evaluation of Fhc*"+ and reads
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Note that the equilibrium profile given in Eq. $36% does
not, strictly speaking, satisfy the hard-core condition, in the

sense that the spherically symmetric profile centered about

polyion i gives rise to a nonvanishing density within the core

of another polyion j,i . This problem is inherently con-

nected to the expansion of the functional to quadratic order

in the profiles: the resulting stationarity equations give a lin-

ear relation between the profile and the multicentered exter-
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specific choice for w0 given in Eq. $37% is, in that sense, the
best one within a quadratic functional or a linearized
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D. Minimization of Fel
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where Ū denotes the volume average of U(r)!Ū

"/U(r), and where !- is a Lagrange multiplier. Care must

be exercised in handling Eq. $39% in the thermodynamic
limit, since both Ū and the Coulomb integral involve diver-

gent volume integrals of the Coulomb potential. The two

divergences cancel, but a proper evaluation of the remaining

finite constant is most easily achieved by the use of the

screened Coulomb potential $3% and the subsequent limiting
procedure 1→0. Substitution of the screened for the bare
Coulomb potential transforms Eq. $39% into
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We now introduce the Fourier transform

f k!'
V

drf $r%exp$ ik•r% $43%

of an arbitrary function f (r) defined in a finite volume with

periodic boundary conditions. Fourier transforming Eq. $40%
yields
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where l!)e2/0 is the Bjerrum length, and with the Dirac .
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Now !" is determined by the normalization #9$, which in-
volves the k!0 Fourier component
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where we defined the Debye screening parameter *!)D
#1

given by

*2!4&ln #49$

and its modified counterpart *)
2!*2")2. Clearly, *) re-

duces to * when the limit )→0 is taken at the end of the
calculation. It is essential to substitute the solution #48$ into
the Coulombic part of the functional to calculate the contri-

bution to the equilibrium free energy before taking the )
→0 limit #cf. the following section and Appendix A$. How-
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The inverse Fourier transformation of Eq. #48$ leads, upon
inserting Eqs. #50$ and #52$ in the limit )→0, to the equi-
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The coion and counterion density profiles "'(r) are obtained
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We finally note that even the choice for , given in Eq.

#56$ and the resulting profile of Eqs. #53$ and #58$ do not
take a truly proper account of the hard-core conditions. The

reason is the same as encountered above for the equilibrium

profiles of the hard-core functional Fhc : the profile around
polyion i actually penetrates the core of any other polyion

j1i . This shortcoming is, as already discussed, due to the

linear relation between the inhomogeneity of the profile and

the external potential of the polyions in the stationarity con-

dition. Thus, although the key result summarized by Eqs.

#53$ and #58$ is in itself not new #see, e.g., -9,10.$, the
present derivation shows that it is, in fact, the best charge-

density profile within the framework of linearized Poisson-
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effective polyion charge

the volume term dominates the phase diagram now

Hard sphere repulsive Yukawa - DLVO potential
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Charged stabilized colloidal suspensions
Repulsive Yukawa system: 
single fluid phase at high T with a freezing line to a fcc phase for large κ and to a bcc phase for small κ
fluid-fcc-bcc triple point at   κnp-1/3~4.9

Charge stabilized colloids: at T=300K

fixed values of !s . These curves, which correspond to the

fluid phase of a system with particle diameter D!461 nm
and Z!3650, are seen to develop a concave region at suffi-
ciently low reservoir salt concentration n

s

r "corresponding
with !s), signaling a van der Waals–like instability which

results in the separations into low- and high-density fluid

phases of the colloidal particles.

Figures 3–6 show the evolution of the topology of the

phase diagram with particle size and valence, assuming that

Z#R
2 "i.e., the total polyion charge is proportional to the

particle surface$. The case of the largest particles (Z!7300
and D!652 nm$ is plotted in Fig. 3. The fluid-solid phase

transition, which for ns%20 !M is very ‘‘narrow’’ "i.e.,
shows only a small jump in colloid packing fraction$, sud-
denly broadens enormously at lower ns , signaling the coex-

istence of the fcc solid with a very low-density fluid. In fact,

the fluid phase packing fraction is so low (&"10#4) that the

fluid side of the coexistence curve appears to coincide with

the ns axis on the scale of the figure. Note that as ns is

lowered below 20 !M , the packing fraction of the coexist-
ing solid first increases, before decreasing at still lower salt

concentrations "reentrant behavior$. At the very lowest salt
concentrations ns"1 !M , the dissociation of water be-
comes significant. Assuming a pH of 7, the concentrations of

FIG. 3. Room-temperature phase diagram of aqueous colloidal

suspension "charge Z!7300 and diameter D!652 nm$ as a func-
tion of colloid packing fraction & and salt concentration ns (!M).
The narrow fluid "F$ to fcc-solid transition at ns$20 !M broadens

and narrows again at lower salt concentrations. The "thinner$ tie
lines connect coexisting state points on the "thicker$ phase bound-
aries.

FIG. 4. As in Fig. 3, but with Z!3650 and D!461 nm. The
dotted curve denotes a metastable gas-liquid binodal with the criti-

cal point indicated by % .

FIG. 5. As in Fig. 3, but with Z!2086 and D!349 nm. There
is now stable coexistence of a gas "G$ and liquid "L$ phase between
a critical point (%) and triple points ('). Above the critical point
the homogeneous fluid "F$ phase is stable at low & and freezes into

the fcc solid at higher & . Below the triple point, there is G-fcc

coexistence.

FIG. 6. As in Fig. 3, but with Z!1217 and D!266 nm. Here
the van der Waals–like instability only persists at such low & that it
is decoupled from the freezing transition. The G-L coexistence ex-

hibits two critical points (%) while the freezing transition does not
show any broadening at low ns .
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Due to the volume term a fluid-fluid transition and a triple point (gas-fluid-solid) appear even in 
absence of direct attractions between the particles.
A fluid-gas or solid-gas coexistence is in qualitative agreement with experimental observations
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