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Some simple algorithms

Hadamard transformation:

H ≡
1√
2

(
1 1
1 −1

)
:

(
1
0

)
→

1√
2

(
1
1

)
(

0
1

)
→

1√
2

(
1
−1

)

Superposition:

H⊗n|x1 · · ·xn〉n =

1

2n/2

1···1∑
z=0···0

(−1)z1x1⊕···⊕znxn|z1 · · · zn〉n

≡
1

2n/2

2n−1∑
j=0

(−1)x·z|z〉n (1)

In particular, a useful initial state:

H⊗n|0〉n =
1

2n/2

∑
j

|j〉n



Reversibility and unitarity:

U(|x〉|y〉) = |x〉|y ⊕ f(x)〉

Linearity, parallelism and entanglement:

U

 1

2n/2

∑
j

|j〉n ⊗ |0〉

 =
1

2n/2

∑
j

|j〉n|f(j)〉.



Deutsch-Josza problem

Given a function f : {0,1}n 7→ {0,1}, promised

to be either balanced or constant, and an or-

acle that computes f(x) in one time-step, to

determine whether it is balanced or constant.

Classically, in the worst case, one needs 2n/2−
1 queries. Quantumly, a single query suffices.

|Ψ〉 =
1

2n/2

∑
j

|j〉 ⊗
1√
2

(|0〉 − |1〉)

U→
1

2n/2

∑
j

(−1)(f(j))|j〉 ⊗
(|0〉 − |1〉)√

2
≡ |Ψ′〉

(H⊗n⊗ Î)|Ψ′〉 =
1

2n
(−1)j·k+f(j)|k〉⊗

(|0〉 − |1〉)√
2



Consider the coefficient of |0〉 in first register:

f(j) balanced: equal # 0’s and 1’s exponent

of (-1) ⇒ 0

f(j) constant: exponent of (-1) constant ⇒ 1



Bernstein-Vazirani problem

Given an oracle Oa that evaluates a · x in one

query for any x, to determine the n binary dig-

its of a.

Classically, n queries of a · 2m (0 ≤ m ≤ n− 1)

are needed. (Nota: 2m is an n-bit string with

all 0’s except at digit m).

Quantumly, a single query suffices, using the

B-V algorithm. Omitting the D-J-like oracle:

UOa

 1

2n/2

∑
j

|j〉

 =
1

2n/2

∑
j

(−1)a·j|j〉

H⊗n→
1

2n
∑
j

∑
k

(−1)(a+k)·j|k〉.

Here a + k is the bitwise sum, which vanishes

iff k = a.



If k 6= a, then x ≡ a + k is a non-zero string.

Thus, x · j will evaluate to equal 0’s and 1’s in

the exponent (x ·j is the parity of the substring

of j defined by x). Summing over j, we see

that total amplitude = 0.

If k = a, then x = 0, and the amplitude of |a〉
sums to 1.



Simon’s algorithm

To determine vector ξ ∈ Fn2 (group of binary
n-vectors), given that f(x) = f(y) iff y = x⊕ξ.

Mathematically, to find the subgroup K ≡ {0, ξ} ⊂
Fn2 such that f(·) is constant on cosets of K
and takes different values on different cosets.

Classically: one evaluates f(x1), f(x2), f(x3)
sequentially, ruling out ≤ mC2 possible values
of a. Unlikely to hit on actual a unless mC2 is
of the order of 2n/2.

Quantumly O(n) queries suffices.

Algorithm:

1

2n/2

2n−1∑
j=0

|j〉|f(j)〉 Measure→
1√
2

(|x0〉+ |x0 ⊕ ξ〉).



H⊗n
1√
2

(|x0〉+ |x0 ⊕ ξ〉)

=
1

2(n+1)/2

∑
y

(
(−1)x0·y + (−1)(x0⊕ξ)·y

)
|y〉

=
1

2(n+1)/2

∑
y

(−1)x0·y
(
1 + (−1)ξ·y

)
|y〉

=
1

2(n−1)/2

∑
ξ·y=0

(−1)x0·y|y〉 (2)

With each measurement, we obtain a random y

that satisfies
∑
j yjξj = 0. With high probabil-

ity, each measurement, possible a’s is halved.

We require only O(n) queries to reconstruct a.



Shor’s algorithm

The clue from Simon’s algorithm:

(magic 1) use measurement to collapse state

into a periodic superposition;

(magic 2) ‘Fourier transform’ this superposi-

tion into a state that yields periodicity with

high probability.

A bit of number theory:



1

2n/2

2n−1∑
j=0

|j〉|f(j)〉 measure 2nd register−→

|ψn〉 =
1
√
m

m−1∑
k=0

|x0 + kr〉

where x0 is smallest value x s.t f(x0) = f0 and

m = d(2n − x0)/re.



Quantum Fourier Transform: transforms am-

plitudes to their DFT value in O(n2) steps.

UFT|k〉 =
1

2n/2

2n−1∑
j=0

e2πijk/2n|j〉

where multiplication in exponent is ordinary.

Applied to an arbitrary state:

UFT

∑
k

γk|k〉

 =
2n−1∑
k=0

γ̂k|k〉,

where

γ̂k =
1

2n/2

2n−1∑
j=0

e2πijk/2nγj.

Classically DFT requires O(n2n) steps and is

thus computationally expensive.



UFT

 1
√
m

m−1∑
k=0

|x0 + kr〉


=

2n−1∑
j=0

e2πix0j/2n 1√
m2n

m−1∑
k=0

e2πikrj/2n|j〉


Thus measurement on second register yields

some j with probability

p(j) =
1

m2n

∣∣∣∣∣∣
m−1∑
k=0

e2πikrj/2n
∣∣∣∣∣∣
2

Guided by the idea that QFT implements DFT

on amplitudes, we expect that the r-periodic

superposition above will lead to concentration

of amplitude near multiples of 2n/r consequent

to QFT. This is confirmed as follows.

Consider an integer j within distance of 1 from

a multiple of 2n/r:

j = h
2n

r
+ δ,



for some integer h and where |δ| ≤ 1
2. Evaluat-

ing the geometric series in the expression for

p(j), we simply find:

p(j) =
1

m2n
sin2(πδmr/2n)

sin2(πδr/2n)
.

Since m lies within a distance of 1 from 2n/r

and 2n/r � 1, we can set mr/2n := 1 in the

numerator and set the sine in the denominator

equal to its argument. Then

p(j) =
1

r

sin2(πδ)

(πδ)2

≥
1

r

4

π2
, (3)

noting that sin(x) ≥ x/(π/2) for 0 ≤ x < π/2.

Since there are at least r − 1 such values of j

(lying within distance 1
2 of a intger multiple of

2n/r), and since r � 1, probability of obtaining

such a y is > 4/π2 ≈ 40%.



We had assumed 2n � r (register large enough
to hold several periods of bj). We require the
stronger condition that 2n > N2 (enough to
hold N full periods) for the following reason.

Suppose our measurement above yielded inte-
ger y that is within distance 1

2 of j2n/r for some
j: ∣∣∣∣ y2n − jr

∣∣∣∣ ≤ 1

2n+1
.

Since we chose 2n > N2, we thus have an esti-
mate of fraction j/r to greater accuracy than
1/2N2.

Since r < N , and any two fractions (j/r and say
j′/r) with denominator less than N will differ
by at least 1/N2 (for

∣∣∣ab − c
d

∣∣∣ ≥ 1
bd), our error

bar of 1/2N2 is small enough to pin down the
unique rational number j/r.

This is the reason for choosing 2n > N2 rather
than simply 2n > N , even though the latter



would have sufficed to represent several peri-

ods of bj. The latter would have sufficed if we

somehow knew that r|2n. For then y = j2n/r

is exact, and y/2n fully determines j/r.

When r 6 | 2n (the overwhelmingly common

case), we can use the method of continued

fractions to efficiently determine the ratio j/r

(not j and r individually).

Theorem. If x is an estimate for j/r such that∣∣∣∣x− jr
∣∣∣∣ ≤ 1

2r2
,

then j/r will appear in one of the partial sums

in the continued fraction expansion of x (Hardy

and Wright 1965).



Grover algorithm

Unstructured search: in a telephone book, find

a name, given number. Classically, given database

of size N , we require O(N) queries/steps. Quan-

tumly, O(
√
N/M) queries/steps will suffice.

There is an oracle that works as in the D-J

algorithm:

OG|x〉
(
|0〉 − |1〉√

2

)
= (−1)f(x)|x〉

(
|0〉 − |1〉√

2

)
,

where OG denotes the Grover oracle. Since the

two registers do not entangle, we can ignore

to mention the second one henceforth.



Step 0. Create a uniform superposition over

N ≡ 2n states:

|η〉 =
1√
N

N∑
j=1

|j〉.

Step 1. Apply the oracle OG.

Step 2. Apply H⊗n.

Step 3. Apply the conditional phase shift on all

|x〉 except x = 0: |x〉 → −(−1)δα0|x〉:

2|0〉〈0| − I.

Step 4. Repeat step 2.

Step 5. After O(
√
N/M) steps, measure in the

computational basis to find one of M solutions

with high probability.



Steps 1, 2, 3 and 4 can be combined into a sin-

gle operation which we may call the ”Grover

operator”. Now, steps 2, 3 and 4 may be com-

bined to yield(
H⊗n(2|0〉〈0| − I)H⊗n

)
OG = (2|η〉〈η| − I) .

which ‘reflects amplitudes about the mean’:∑
k

αk|k〉 −→
∑

[−αk + 2〈α〉] |k〉.

How does the algorithm work? A simple geo-

metric picture:

Uniform superposition over solution set S:

|β〉 ≡ 1√
M

∑
x∈S |x〉

Uniform superposition of non-solutions:

|α〉 ≡ 1√
N−M

∑
x/∈S |x〉.



Then:

|η〉 =

√
N −M
N

|α〉+

√
M

N
|β〉

≡ cos(θ/2)|α〉+ sin(θ/2)|β〉. (4)

In the {|α〉, |β〉} basis, the oracle is a reflection

about vector |α〉:

OG ≡ |α〉〈α| − |β〉〈β| ≡
(

1 0
0 −1

)
.

The operator for reflection about |η〉 is given

by:

Rη ≡ |η〉〈η| − |η⊥〉〈η⊥| =
[

cos θ − sin θ
sin θ cos θ

]
.

The Grover operator is then defined as G ≡
RηOG. We have:

G|η〉 = cos
(

3θ

2

)
|α〉+ sin

(
3θ

2

)
|β〉.



Similarly:

Gk|η〉 = cos
(

2k + 1

2
θ

)
|α〉+ sin

(
2k + 1

2
θ

)
|β〉.

Thus, G rotates |ψ〉 towards |β〉 in 2D. Since

sin θ = 2 sin(θ/2) cos(θ/2) = 2

√
M(N −M)

N
,

we see that θ decreases as M > N/2 – a bit

unintuitive. So we assume now that M ≤ N/2

and thus θ ≤ π/2. How to handle M > N/2 is

discussed later.

Assuming M � N and θ ≈ 2 sin(θ/2) = 2
√
M/N ,

the required # of iterations of G:

R ≈
π/2

θ
=
π

4

√
N

M
∈ O

√N
M

 .

We had assumed M ≤ N/2. If this were not

so:



(1) A classical computer would suffice to find

a solution!

(2) Double the search data base, by adding a

single qubit, such that none of N added items

are solutions. In the augmented oracle, item

y is marked a solution iff y = 0x where x is

marked by the original oracle.



II. Quantum error correction
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Error correction is the technique of adding re-
dundancy to our information to protect it against
corruption due to unexpected and unavoidable
environmental disturbances.

Classical example: a binary symmetric chan-
nel with error probability p per bit. Consider
the code:

0 −→ 0 ≡ 000; 1 −→ 1 ≡ 111.

Error checking and correction effected through
majority rule.

Prob(failure) = Prob(two or more flips) = p3+
3C2p

2(1− p). Therefore, our encoding is an
improvement provided p3 +3 C2p

2(1 − p) < p,
or p < 1/2.

Hamming bound: 2n ≥ 2r︸︷︷︸
message dim.

× (n+ 1)︸ ︷︷ ︸
# possible errors

Putting code rate r = 1, we find nmin = 3, as
in the above repetition code.



Quantum error correction is different from the
classical case because:

• Quantum states are more delicate.

• Measuring a quantum state (to detect er-
ror) can itself damage the state. (Seems in-
surmountable!)

• Not only bit flip, but also phase errors can
occur.

• Even a quantum state in a finite dimensional
space can suffer a continuum of errors, and
thus defines digitization/discretization. (Seems
insurmountable!)

Historically, on account of (2) and (4), it was
thought that QEC would not be possible. Hap-
pily, this turned out to be wrong, as first shown
by Shor (1995) and Steane (1995).

Let us take a closer look at quantum errors.



Decoherence

Environment-qubit interaction:

|e〉|0〉 → |e0〉|0〉+ |e1〉|1〉
|e〉|1〉 → |e2〉|0〉+ |e3〉|1〉 (5)

The |ej〉’s are not assumed to be normalized or
orthogonal. This corruption of quantum states
by the environment is QC’s formidable adver-
sary!

Letting x = 0,1, the above two can be com-
bined:

|e〉|x〉 → ([|e0〉Î + |e1〉X̂]P̂0)|x〉
+ ([|e2〉X̂ + |e3〉Î]P̂1)|x〉 (6)

where P̂x ≡ (1 + (−1)xẐ)/2. Noting that Ŷ =
ẐX̂, RHS above is rwritten as:(
|e0〉+ |e3〉

2
Î +

|e0〉 − |e3〉
2

Ẑ +

|e2〉+ |e1〉
2

X̂ +
|e2〉 − |e1〉

2
Ŷ

)
|x〉

≡ (|d〉Î + |a〉X̂ + |b〉Ŷ + |c〉Ẑ)|x〉



Thus the general error due to environment can
be viewed as a superposition of no-error, bit
flip, phase flip and both flips.

More generally, one can have all three errors
on all n qubits of a state:

|e〉|Ψ〉 →
3∑

µ1=0

· · ·
3∑

µn=0

|eµ1 · · · eµn〉X̂
(µ1) · · · X̂(µn)|Ψ〉

where X̂(0,1,2,3) ≡ Î, X̂, Ŷ , Ẑ.

A more restricted form of error results if we
assume that the environment affects the sys-
tem for a short time before error checking: at
most one error on the n qubits:

|e〉|Ψ〉 →

|d〉Î +
n∑

j=0

[
|aj〉X̂j + |bj〉Ŷj + |cj〉Ẑj

] |Ψ〉.
A quantum codeword |Ψ〉 is designed to ensure
that each of the 1 + 3n error actions will take
|Ψ〉 to an orthogonal subspace.



A suitable measurement (‘syndrome measure-
ment’) can then collapse |Ψ〉 into one of these
subspaces, where they can be identified and
corrected. Therefore it is enough to be able
to correct for these discrete set of errors!

Syndrome measurement will only reveal the er-
ror X̂(µ)

j that has modified the state, but noth-
ing about the state itself. Otherwise, syn-
drome measurment would alter the encoded
state.

The outcome of syndrome measurement (say
that a bit flip has occured in qubit 5) is cor-
rected by applying X̂5. This process can be au-
tomated via suitable control-gates acting from
the ancillary/work qubits used to record the
syndromes.

Exercise. In general, a unitary action based
on some measurement outcome can be auto-
mated in this way to eliminate measurement.
Design an automated teleportation circuit.



Another way to view our result on discretizing
errors: From the general theory of quantum
noise, it is known that action of noise is an
arbitrary trace-preserving map

E(|ψ〉〈ψ|) =
∑
j

Ej|ψ〉〈ψ|E
†
j ,

where Ej’s are the Kraus operators, which are
positive operators that satisfy completeness:
E
†
jEj = I. This state can be thought of as

a statistical mixture of (unnormalized) states
Ej|ψ〉.

Because the Pauli operators form an operator
basis for 2 × 2 matrices, any Kraus operator
can be expressed as a superposition of Pauli
operators:

Ej = ej0Î + ej1X̂ + ej2Ŷ + ej3Ẑ

A general error, continuum error can thus be
decomposed into a discrete set, provided the
allowed discrete set of errors (one or more
Pauli operations) drive (superposition of) code-
words into orthogonal subspaces.



Code protecting against 1-qubit bit
flip error

Suppose we have a (classical-like) bit flip chan-

nel:

|0〉 → |0〉 ≡ |000〉; |1〉 → |1〉 ≡ |111〉

Thus

α|0〉+ β|1〉 → |Ψ〉 ≡ α|0〉+ β|1〉
≡ α|000〉+ β|111〉.

|0>

|0>

|INPUT>

Circuit for encoding a 3-qubit code that protects

against a single qubit bitflip error.



Assuming single qubit errors, the post-error
state could be one of:

|Ψ0〉 = X̂0|Ψ〉 = α|001〉+ β|110〉
|Ψ1〉 = X̂1|Ψ〉 = α|010〉+ β|101〉
|Ψ2〉 = X̂2|Ψ〉 = α|100〉+ β|011〉. (7)

Exercise. Describe the noise process that char-
acterizes the bit flip channel (in terms of Kraus
operators).

Main observation: |Ψ〉, |Ψj〉 (j = 0,1,2) all lie
in mutually orthogonal subspaces. Thus, in
principle, they can be distinguished by mea-
surement.

Eg., the following scheme of incomplete and
commuting measurement does the job:

P̂0 ≡ |000〉〈000|+ |111〉〈111|
P̂1 ≡ |100〉〈100|+ |011〉〈011|
P̂2 ≡ |010〉〈010|+ |101〉〈101|
P̂3 ≡ |001〉〈001|+ |110〉〈110|



The state α|010〉+ β|101〉 makes 〈P̂2〉 = 1 but

0 for the other P̂j’s. This reveals a bitflip error

in the second qubit, without revealing anything

about α, β.

Error recovery is then implemented by applying

X̂2.

Exercise. Adding redundant qubits makes more

systems available that can be affected by er-

ror. What is the largest error rate for which

the above code improves performance?

But the above measurements require 3-qubit

operations. The following, alternative, 2-qubit

syndrome measurements equally well do the

job.



An incomplete measurement of relative parity

of qubits 1, 2:

(|00〉〈00|+ |11〉〈11|)⊗ Î − (|01〉〈01|+ |10〉〈10|)⊗ Î
= Z1Z2.

and an incomplete measurement of relative par-

ity of qubits 2, 3:

Î ⊗ (|00〉〈00|+ |11〉〈11|)− Î ⊗ (|01〉〈01|+ |10〉〈10|)
= Z2Z3 .

Note that Z1Z2 is an incomplete measurement

with 2 (not 4!) possible outcomes. Measuring

Z1 and Z2 individually will destroy the state, of

course.

The following kind of (equivalent) circuits im-

plement such incomplete measurements. Sup-

pose one wants to measure M ≡ Z1X2Z3. Note

that M2 = ±1.



|0>

|input>

|input>

|input>

H H

Z

Z

X

M |0>

|input>

|input>

|input>

H H

Z

Z

X

M

Circuit for incomplete measurement of Z1X2Z3.

This is also a state for preparation of an eigen-

state of Z1X2Z3, by inputting (say) |000〉.

Exercise. Verify that the left side circuit im-

plements the above measurement, and that

the two circuits are equivlent.



Code protecting against 1-qubit phase
flip error

The above code is powerless against a phase
error,

G(φ) ≡
(

1 0
0 eiφ

)
acting on a single qubit. There’s a happy es-
cape from this situation. Since phase flips act
like bit flips in the X basis, we work in this
basis. Thus:

|0〉 → |0〉 ≡ |+ + +〉; |1〉 → |1〉 ≡ |− − −〉,

where |±〉 ≡ 1√
2

(|0〉±|1〉) are the eigenstates of

X̂.

Thus

α|0〉+ β|1〉 → |Φ〉 ≡ α|0〉+ β|1〉
≡ α|+ + +〉+ β|− − −〉.



|0>

|0>

|INPUT>

H

H

H

Circuit for encoding a 3-qubit code that protects

against a single qubit phase error.

Assuming single qubit G(π) = Ẑ phase errors,

the post-error state will be one of:

|Φ0〉 = Ẑ0|Ψ〉 = α|+ +−〉+ β|− −+〉
|Φ1〉 = Ẑ1|Ψ〉 = α|+−+〉+ β|−+−〉
|Φ2〉 = Ẑ2|Ψ〉 = α|−+ +〉+ β|+−−〉, (8)

having orthogonal support.

As before, the following scheme of incomplete

and commuting measurement can identify all



the above 1-qubit errors:

P̂+ ≡ |+ + +〉〈+ + +|+ |− − −〉〈− − −|
P̂− ≡ |−+ +〉〈−+ +|+ |+−−〉〈+−−|
P̂2 ≡ |+−+〉〈+−+|+ |−+−〉〈−+−|
P̂3 ≡ |+ +−〉〈+ +−|+ |− −+〉〈− −+|

As with the bit flip channel, here too, an alter-

native, 2-qubit syndrome measurements equally

well do the job.

An incomplete measurement of relative parity
of qubits 1, 2:

(|++〉〈++|+ |−−〉〈−−|)⊗ Î − (|+−〉〈+−|+ |−+〉〈−+|)⊗ Î
= X1X2.

and an incomplete measurement of relative
parity of qubits 2, 3:

Î ⊗ (|++〉〈++|+ |−−〉〈−−|)− Î ⊗ (|+−〉〈+−|+ |−+〉〈−+|)
= X2X3 .



Exercise. Construct a circuit that measures

this syndrome. Construct another that uses

only c-phase and H gates.

Consider the action of a general phase error

G(φ) on say qubit #2. In the X̂ basis repre-

sentation, G(φ) takes the form:

G′(φ) ≡
1√
2

(
1 + eiφ 1− eiφ
1− eiφ 1 + eiφ

)
One directly checks that

G′(φ)|Φ〉 =
1 + eiφ

2
|Φ〉+

1 + e−iφ

2
|Φ1〉.

Measuring the error syndrome collapses this to

|Φ〉 with probabilty (1 + cosφ)/2, requiring no

error recovery, or to |Φ1〉 with probabilty (1 −
cosφ)/2, requiring Z2 by way of recovery.



Quantum Hamming bound:

2n ≥ 2(3n+ 1)

That is, the full space of dimension 2n must

be able to accomodate 3n+ 1 orthogonal 2-D

spaces. Therefore the smallest code that

can protect against an arbitrary 1-qubit er-

ror is a 5-qubit code.

More generally:

2n ≥ 2k
t∑

j=0

(
n
j

)
3j.



The 5-qubit error correcting
code

Two codewords: logical 0, logical 1– |0〉, |1〉.

To be distinguished: 1 + (5×3) = 16 mutually

⊥ 2-D subspaces. We require 4 commuting

syndrome measurement operators that square

to 1, since they would then have 2 eigenvalues

±1 and 24 = 16.

M0 = ZXXZI

M1 = ZIZXX

M2 = XZIZX

M1 = XXZIZ (9)

All of them commute with each other (since

they ‘nontrivially’ differ in even # of places,

and XZ = −ZX.)



|0〉 =
1

4
(1 +M0)(1 +M1)(1 +M2)(1 +M3)|0〉⊗5

|1〉 =
1

4
(1 +M0)(1 +M1)(1 +M2)(1 +M3)|1〉⊗5

Each codeword has 16 terms in the computa-

tional basis. Because Mj’s, MjMk’s and MjMkMl’s

all have even # of X’s, the terms in the |0〉
(|1〉) superposition will have odd number of

0’s (1’s) in the computational basis. Thus the

codewords are orthogonal, as they should be.

Since # odd number of 0’s (1’s) patterns from

five bits is 5C1 +5C3 +5C5 = 16, |0〉 (|1〉) is a

superposition of all odd 0 (1) patterns.

Exercise. Write out the two codewords |0〉
and 1〉 in full.



Since M2
j = I, and the Mj’s commute with

each other:

M1|0〉 =
1

4
(1 +M0)M1(1 +M1)(1 +M2)(1 +M3)|000000〉

=
1

4
(1 +M0)(M1 + 1)(1 +M2)(1 +M3)|000000〉

= 1 · |0〉.

Similarly one can show that |0〉, |1〉 and their

superpositions

|ζ〉 ≡ α|0〉+ β|1〉,

are eigenstates of each Mj with eigenvalue =

+1. Thus codewords form a basis for the +1

degenerate subspace of the syndrome opera-

tors.

The 15 = 24 − 1 possible 1-qubit corruptions

are also eigenstates, with other sets of eigen-

values ±1. To see this note that each Xj, Yk, Zl
either commutes or anticommutes with each

Mj. Therefore Xj|ζ〉, Yj|ζ〉 and Zj|ζ〉 are all

eigenstates of each Mj with eigenvalue ±.



Thus, given a state |ψ〉 ≡ α|0〉 + β|1〉, it is

encoded as ζ above. When any of the al-

lowed errors Pj (a Pauli operator at site j) oc-

cur, the resultant state Pj|ζ〉 remains an eigen-

state of the Mj’s, but the spectral signature of

the syndrome measurement will change from

{+1,+1,+1,+1} to some other characteristic

pattern, such that a measurement of all Mj’s

will tell us which error occured.

operator X1X2X3X4X5 Y1Y2Y3Y4Y5 Z1Z2Z3Z4Z5 1
M0 +−+ +− +−−−− + +−−+ +
M1 −+−+ + −+−−− + + +−− +
M2 +−+−+ −−+−− −+ + +− +
M3 + +−+− −−−+− −−+ + + +

Syndrome signature for different errors on 5-qubit
code. Here “+” (“−”) indicates “+1” (“−1”).

Encoded operations.

The operations:

Z ≡ ZZZZZ; X ≡ XXXXX



commute with all Mj’s because each of these
differs ‘nontrivially’ from each Mj at exactly
two places. Thus:

Z|0〉 =
1

4
(1 +M0)(1 +M1)(1 +M2)(1 +M3)(Z|0〉)⊗5

= +|0〉.

Z|1〉 =
1

4
(1 +M0)(1 +M1)(1 +M2)(1 +M3)(Z|1〉)⊗5

= −|1〉.

Further

X|0〉 =
1

4
(1 +M0)(1 +M1)(1 +M2)(1 +M3)(X|0〉)⊗5

= |1〉.

X|1〉 =
1

4
(1 +M0)(1 +M1)(1 +M2)(1 +M3)(X|1〉)⊗5

= |0〉.

Thus, the encoded Z and X operations act on

the ‘logic basis’ states 0,1 just as Z and X act

on the computational basis states |0〉, |1〉. This



is important from a practical point of view, be-

cause it implies that these encoded operations

on encoded states can be performed via single

qubit operations.

Unfortunately, the same can’t be said for other

important single qubit operations. In particu-

lar, defining H = HHHHH, it can be shown

that:

H|x〉 6=
1√
2

(|0〉+ (−1)x|x〉).

The 7-qubit code, devised by Steane, though

less ideal in terms of encoding, allows simple

encoded operations, and in this sense is more

fault tolerant.



The 7-qubit error correcting
code

Altho less ideal than the 5-qubit code, encoded

operations are straightforward to perform in

the 7-qubit Steane code.

Syndrome measurement are mutually commut-

ing operators:

M0 = XIIIXXX; N0 = ZIIIZZZ;

M1 = IXIXIXX; N1 = IZIZIZZ;

M2 = IIXXXIX; N2 = IIZZZIZ;

The 7-qubit codewords are:

|0〉 = 2−3/2(1 +M0)(1 +M1)(1 +M2)|0〉⊗7

|1〉 = 2−3/2(1 +M0)(1 +M1)(1 +M2)X|0〉⊗7

where X ≡ X⊗7.

The syndromes are measured according to the

pattern indicated earlier.



Since each Mj flips 4 qubits, and X flips all 7,

|0〉 (|1〉) is a superposition of terms with odd

(even) # of 0’s.

Because all Mj’s commute and Mj(1 +Mj) =

1 +Mj, |0〉 and |1〉 lie in the +1 eigenspace of

the Mj’s.

Further, since Nj’s commute with Mj’s and

with X and |0000000〉 lies in their +1 eigenspace,

|0〉 and |1〉 lie also in the +1 eigenspace of the

Nj’s.

A general state lying in the +1 eigenspace of

the syndrome operators

|Ψ〉 ≡ α|0〉+ β|1〉

under corruption assumes the form

|e〉|Ψ〉 →

|d〉1 +
7∑
i=1

[|ai〉Xi + |bi〉Yi + |ci〉Zi]

 |Ψ〉.



The 21 = 3 × 7 possible corruptions are also

eigenstates of each Mj and Nj because each

Xj, Yj, Zj commutes or anticommutes with the

each Mj and Nj.

Thus, these allowed errors remain within the

eigenspace of the Mj’s and the Nj’s. However,

the pattern of outcomes of the 6 syndrome

measurements will be different.

Eg., suppose the error is: Z5. Since this er-

ror operator commutes with the Nj’s and with

M1 = IXIXIXX, each of these measurements

will yield +1. But M0 = XIIIXXX and M2 =

IIXXXIX anticommute, and hence yield out-

come -1, since:

M1Z5|Ψ〉 = M1Z5(α|0〉+ β|1〉)
= −Z5M1(α|0〉+ β|1〉)
= −Z5|Ψ〉



Exercise. Using the above recipe, derive the

21 possible error syndromes. Show that each

allowed error produces a unique syndrome. Not-

ing that # possible measurement outcome pat-

terns 26 = 64 > 21, indicate what patterns are

not legitimate syndrome patterns.

The operations:

Z ≡ ZZZZZZZ; X ≡ XXXXXXX

commute with all Mj’s, the former because

each of these differs ‘nontrivially’ from each

Mj at even # of places, the latter trivially.

Thus:

Z|0〉 = 2−3/2(1 +M0)(1 +M1)(1 +M2)(Z|0〉)⊗7

= +|0〉.
Z|1〉 = 2−3/2(1 +M0)(1 +M1)(1 +M2)(Z|1〉)⊗7

= −|1〉.



Further

X|0〉 = 2−3/2(1 +M0)(1 +M1)(1 +M2)(X|0〉)⊗7

= |1〉.
X|1〉 = 2−3/2(1 +M0)(1 +M1)(1 +M2)(X|1〉)⊗7

= |0〉.

Thus, the encoded Z and X operations act on
the ‘logic basis’ states 0,1 just as Z and X act
on the computational basis states |0〉, |1〉.

Unlike the 5-qubit code, the encoded Hadamard
H ≡ HHHHHHH also acts in the same way.
One way to show this is by demonstrating that
〈x|H|x〉 = 1√

2
.

Since HX = ZH, HMj = NjH. Thus:

〈x|H|x〉 = 2−3/2〈x|(1 +N0)(1 +N1)(1 +N2)H|x〉⊗7

= 2−3/2〈x|(1 +N0)(1 +N1)(1 +N2)|±〉⊗7

= 2−(3/2)+3〈x|±〉⊗7

= 2−3/2(23 · 2−3/2 · 2−7/2)

= 2−1/2.



where the kets on the right take |+〉 or |−〉
values depending on whether x = 0 or 1, and

where we make use of the fact that |±〉⊗7 rep-

resented in computational basis will contain

kets of given parity will have the same sign,

and the codewords |x〉 are superposition of kets

with fixed parity.

Exercise. Prove that H⊗5 does not work like

an encoded Hadamard in the case of the 5-

qubit code.



III. Measurement-based
quantum computers

IPQI, IOP, Bhubaneswar



In conventional cirtuit or gate array model of
QC, computational steps are unitary opera-
tions, that lead to a large entangled state,
which is finally measured.

In measurement-based QC, one begins with
a fixed entangled state, possibly of many
qubits. Computational steps are a sequence
of measurements on designated qubits in des-
ignated bases. The choice of basis for later
measurements may depend on ealier measure-
ment outcomes. The final result is determined
from the classical data of all measurement out-
comes.

There are two principal schemes of measurement-
based QC: teleportation-based QC (TQC) and
the cluster-model or one-way QC (1WQC).

TQC was developed by Nielsen (2001) and Le-
ung (2001) based on the idea teleporting quan-
tum gates (Gottesman and Chuang 1999). 1WQC



was developed by Raussendorf and Briegel (2001;

2002; 2003).

All the models are equivalent to each other,

and can perform universal quantum computa-

tion.

In some case, eg., parallelizability of algorithms,

measurement-based models offer an advantage

over the ciruit model.

R. Josza, quant-ph/0508124;



Teleportation-based QC

We represent Bell-states by the notation:

|Bcd〉 = ZcXd ⊗ I|B00〉,

where |B00〉 ≡ 1√
2
|00〉+ |11〉). Measurement in

the standard Bell basis teleports state |ψ〉1 =∑
j αj|j〉1 on particle 1 to particle 3, where par-

ticles 2 and 3 share entanglement.

Standard teleportation: The projection of

|α〉1|φ〉23 onto |φ〉12 results in 1
d |α〉3. To see

this: let |α〉 ≡
∑
j aj|j〉. Then the projection is:

1

d

∑
i

〈i|〈i|

∑
jk

aj|j〉|k〉|k〉


=

1

d

∑
ijk

ajδijδik|k〉 =
1

d

∑
k

ak|k〉.



Define ‘rotated Bell basis’:

|φ(U)〉 ≡ U† ⊗ I|Bcd〉

produces state U |ψ〉 at particle 3. Similarly,

it can be shown that teleportation in the ro-

tated basis, involving projection of |α〉1|φ〉23

onto |φ(U)〉12 results in 1
dU |α〉3.

Exercise. Verify this claim!

In general, in d dimensions, we will seeks a set

of d2 unitaries such that Uj ⊗ I|φ〉 will yield an

orthonormal basis for the space of particles 1

and 2. In standard teleportation, the opera-

tors are {I,X, Y, Z}. In ‘rotated’ teleportation,

they are {U,XU, Y U,ZU}. As a result, note

that particle 3 is left in the state XdZcU |ψ〉
(c, d ∈ {0,1}), requiring 2 bits of classical com-

munication to complete teleportation.



2-qubit operations

By this same method, we can also apply 2-

qubit gates such as cZ (controlled-Z) via tele-

portation in dimension d = 4. Eg., using |B00〉|B00〉
and the unitaries Uij = (Pi ⊗ Pj)(CZ), where

Pk ranges over all Pauli operators, it may be

checked that {(U†ij ⊗ I)cZ|φ〉} is an orthonor-

mal set and that output is (Pi ⊗ Pj)cZ|ψ〉 for

arbitrary |ψ〉.

Exercise. Verify this claim!

That is: qubits 1a and 1b are the input, that

are measurement jointly with a 4-qubit (ro-

tated) Bell state measurement along with qubits

2a and 2b, with the output appearing in 3a and

3b.



d2 operators {Ui} will make |φ(Ui)〉 ≡ (Ui⊗I)|φ〉
orthonormal iff Tr(UiU

†
j ) = δij, i.e., {Ui} forms

an operator basis. For any dimension d, many

such sets exist, each corresponding to a tele-

portational scheme.

For the rotated basis, we can choose any n ≥
d2 operators Ui such that

|φ(Uj)〉〈φ(Uj)| = Id ⊗ Id.

Thus the set {ki|φ(Uj)〉〈φ(Uj)|} forms the el-

ements of a rank 1 POVM (positive operator

valued measure).



• Consider the gates:

Rx(θ) = e−iθX; Rz(θ) = e−iθZ;

W (θ) =

(
1 eiθ

1 −eiθ

)
= H

(
1 0
0 −eiθ

)
where the last quantum operation is the phase
gate.

Any 1-qubit gate (upto overall phase) can be
decomposed as:

U = Rx(ζ)Rz(η)Rx(ξ)

for some ζ, η, ξ and also as:

U = W (0)W (θ1)W (θ2)W (θ3)

for some θ1,2,3.

Since cZ and 1-qubit gates are universal for
QC, either of

{cZ,Rx(ζ)Rz(η)Rx(ξ) ∀ζ, η, ξ} {cZ,W (θ) ∀θ}
is universal.

The reason for the choice of this particular set
of universal gates is now clarified.



Adaptive measurements

In trying to implement · · ·U3U2U1|ψ〉, we actu-

ally implement P3U3P2U2P1U1|ψ〉. It turns out,

if we choose the U ’s carefully enough, we can

propagate all the Pauli operators to the left

without changing the U ’s ‘too much’.

The universal set we chose have the following

propagation relations:

Rx(θ)X = XRx(θ); Rx(θ)Z = ZRx(−θ);

Rz(θ)X = XRz(−θ); Rz(θ)Z = ZRz(θ);

W (θ)X = ZW (−θ); W (θ)Z = XW (θ)

Suppose we want to prepare: · · ·RZ(β)Rx(α)|ψ〉.

ZcXdRz(β)ZaXbRx(α)|ψ〉 = (−1)δadZa+cXb+dRz((−1)bβ)Rx(α)|ψ〉.

So in step 2, we teleport the gate Rz((−1)bβ)

instead of Rz(β).



Continuing this way:

· · ·Xm2
2 Z

n2
2 X

m1
1 Z

n1
1 (the required U)|ψ〉.

With cZ, the situation is even better, in that

it does not need to be adapted under Pauli

propagation:

cZ(Z⊗I) = (Z⊗I)cZ; cZ(X⊗I) = (X⊗Z)cZ,

and similarly for X and Z acting on the other

qubit, since cZ’s action is symmetric.

The accumulated Pauli operators propagated

to the left are easily handled: in measuring in

computational basis, Z’s can be ignored; X’s

merely serve to ‘interchange’ outcome label.



Clifford group

Operations like cZ, which do not require adap-

tivization, are called Clifford operators. More

specifically:

Define Pn Pauli group generated by n-fold ten-

sor products of ±I, ±iI, X, Z. E.g., X ⊗ Z ⊗
Z,−iZ ⊗ Y ⊗ I, I ⊗ I ⊗X ∈ P3.

A Clifford operator C is defined as one for

which

CPnC† = Pn, i.e.,CPn = PnC.

That is, for every Pauli operator P ∈ Pn, there

is (possibly another) P ′ such that

CP = P ′C.

An array of Clifford operations of the form

Ck · · ·C1|ψ〉 can be implemented with only 1



parallel measurement layer (for we get an out-

put of the form PkCk · · ·PkC1|ψ〉. Commuting

out the Pauli opertors we get

XanZbn · · ·Xa1Zb1Ck · · ·C1|ψ〉

If we could not commute them out, then the

measurements would have had to be done, and

their outcomes used to determine the subse-

quent measurements and qubits.)

It turns out that any Clifford operator can be

constructed by Z, Hadamard H , (π/4)-phase-

gate Pπ/4 =

(
1 0
0 i

)
, and cX acting in some

combination on n qubits.

Therefore, it suffices to verify for the propa-

gation of X and Z to check for the Clifford

property.



We saw that cZ is a Clifford operator. The

Clifford property of H is demonstrated by the

fact that:

HX = ZH; HZ = XH.

The group formed by Clifford operator, gener-

ated by the above 4 operations, is called the

Clifford group.

In TQC, the collection of maximally entangled

states in all the teleportations can be manufac-

tured in parallel (eg., by applying cX on many

|+,+〉’s). So the entire process requires only a

constant amount of quantum parallel time, in

contrast to the corresponding gate array in the

circuit model, whose depth generally increases

with n.



1-way quantum computation

Cluster state: A state obtained by mapping
a 2-dimensional grid as follows. At each node,
place a |+〉 state. Apply cZ to each nearest
neighbour pair (in horizontal and vertical di-
rections). These CZs all commute so for any
grid size they can all be applied in parallel, as
a process of constant quantum depth.

Construction of a cluster state.

A one-dimensional cluster state is constructed
in the same way, but beginning from a 1-D
array of |+〉 states.



There is no unitary evolution: the only mea-

surements used are measuring in the compu-

tational basis {|0〉, |1〉} and in the bases {|0〉 ±
eiθ|1〉}.

As in TQC, subsequent measurements will be

adaptive, and operations are implemented upto

Pauli corrections.

The name “one-way” arises from the fact that

an initial resource cluster state is, with each

layer of measurement, irreversibly degraded.



|+> |+>

X

|+>|+>

1 2 3

x a

M((−1)  A)
x

M((−1)  B)
a a+b

M((−1)   C)

54

b c

|input>

Implementing the single-qubit operation U |ψ〉, taking

U = Rx(A)Rz(B)Rx(C). Qubit 5 is left in the state

Xa+cZx+bU |ψ〉.

Alternative representation:

|ψ〉|+〉⊗4 XM((−1)xA)M((−1)aB)M((−1)a+bC)
:−→ Xa+cZx+bU |ψ〉.

One way to see this is to reorder the operation

as follows: (entangle 1-2, measure 1), (entan-

gle 2-3, measure 2) etc. This works because

both measurement on 1 and the 1-2 entangling

operation both commute with all subsequent

measurements and entangling operations.



In particular one can verify that:

|ψ〉|+〉
M(1)(θ)

:−→ XmW (−θ)|ψ〉,

where m is the outcome of M(1)(θ), the mea-

surement of M(θ) on particle 1.

Exercise. Verify the claim!

Therefore the above scheme will give us, apart

from Pauli corrections, the effective gate

HW (A)W (B)W (C) = U,

as desired, for some suitably chosen A,B,C.



Implementing c-Phase

For implementing universal computation, cZ

and arbitrary singly qubit gates suffice. cZ em-

ploys a 2-dimensional grid:

IN1

IN2 OUT2

OUT1

Implementing cZ: the red (blue) colored vertices

denote an X (Z) operation. |ψ〉 is input (extracted) at

vertices labelled IN (OUT).

Exercise. Verify the claim!



Remark 1. 1-dimensional cluster states can be

efficiently (i.e., in polynomial time) simulated

classically (Nielsen 2005), so we don’t expect

it to be universal.

Remark 2. Note that we can start from a stan-

dard cluster state by eliminating the input state

|ψ〉, and transfering it to the cluster by using

an appropriate 1-qubit measurement at the be-

ginning of the computation.



A

1 2 3

Z measurements are used to delete unwanted sites.

Since cZ requires a 2-D grid but 1-qubit gates

require only 1-D clusters, there will in general

be some extraneous sites not used in the mea-

surement patterns. Z-measurements are used

to delete such extraneous sites.

Because [cZ12, ZA] = [cZ23, ZA] = 0, we can

perform cZ2A and then ZA before cZ12 and

cZ23. If kA is the measurement outcome of

ZA, then qubits 1, 2 and 3 are left in the state

|+〉|(−1)kA〉|+〉. Thus deleting sites only addes

a ZkA correction to neighboring sites over the

Pauli corrections arising from the measurement

patterns.



A further paralellizability result:

It turns out that any polynomially sized quan-

tum gate array can be implemented in 1WQC

using at most a polynomial number of mea-

surement layers. (A Clifford array requires only

a single layer.)

One may ask: which classes of quantum gate

arrays can be implemented in 1WQC using at

most 1 or 2 or logarithmic number of measure-

ment layers.

One result known, due to Raussendorf and

Briegel (2001): Any gate array using gates

from the set {cX,Rx(θ)∀θ} or from the set

{cX,Rz(θ)∀θ} can be implemented with just 2

measurement layers.

(Note that neither of these sets is universal,

though {cX,Ry(θ)∀θ} is.



Proof sketch. Rx(θ) can be implemented ac-

cording to the following measurement scheme:

|ψ〉1|+〉2|+〉
X,M(−θ)

:−→ Xs2Zs1Rx((−1)s1)|ψ〉,

where the hyphen indicates cZ12cZ23. Given a

gate array Gn · · ·G1 with Gj ∈ {cX,Rx(θ)∀θ}:
Layer I: Measure all cX’s and X’s of the above

Rx(θ) measuerment scheme.

Layer II: Propagate the resultant Pauli correc-

tions to the left. They may adaptively alter

only the M(θ) measurements (cX being Clif-

ford). Measure the adapted M(θ) measure-

ment.



Similarities/differences between
1WQC and TQC

– Both are measurement-based, and require
Pauli corrections.

– But: TQC uses Bell-state meaurements on
2 or more qubits, whereas 1WQC uses only
1-qubit measurements.

– And: 1WQC starts in a std. cluster states,
whereas TQC starts with Bell pairs.

Different broad ways have been proposed to
relate them. As one example: suitable pairs of
consecutive 1-qubit measurements of 1WQC
are like teleportation in TQC (Aliferis and Le-
ung 2004). Eg.,

|ψ〉|+〉|+〉
X1X2
:−→ Z

s1
3 X

s2
3 |ψ〉3.

However, in general, not all consecutive 1-qubit
measurements can be fused to form a Bell-
state measurement.



Measurement-based models and
computational complexity

The measurement-based models provide a novel

way of looking at QC. However, they are polynomial-

time equivalent to the standard circuit model

i.e. each model can simulate the other with

only a polynomial (i.e. modest) overhead of re-

sources (number of qubits and computational

steps).

Intuitively:

To see how QC ciruit model can efficiently

simulate a 1WQC computer, we note that a

measurement and an adaptive action at some

site can be replaced by an ancillary qubit with

an appropriate control-action that effects the

outcome-based unitary operation in 1WQC.

Conversely, any quantum circuit can be simu-

lated by a 1WQC computer using a two-dimensional



cluster state as the resource state, by laying

out the circuit diagram on the cluster; Z mea-

surements delete unnecessary physical qubits

from the cluster, while M(θ) measurements

(in the X-Y plane) teleport the logical qubits

along the ”wires” and perform the required

quantum gates (Briegel and Raussendorf 2003).

This can be shown to be also polynomially ef-

ficient, as the required size of cluster scales as

the size of the circuit (qubits × time steps),

while the number of measurement time steps

scales as the number of circuit timesteps.



III(b) Quantum Computation
by Adiabatic Evolution

This model of computation is different from
the circuit model and the measurement-based
models discussed above. It is based on the idea
of a so-called ground-state oracle , the power
of a system to somehow locate its ground state.

|ψ〉 evolves according to a Hamiltonian that
varies smoothly from an initial Hamiltonian,
whose ground state is easy to construct to a
final Hamiltonian, whose ground state encodes
the (possibly) satisfying assignment.

To ensure that the evolution satisfies the adi-
abatic condition, the evolution time must be
large enough. This time depends inversely on
the minimum energy difference between the
two lowest states of the time-dependent Hamil-
tonian.

Farhi, Gutmann, Sipser quant-ph/0001106



The n-bit instance of Satisfiability (SAT) is the

formula:

C1 ∧ C2 ∧ · · · ∧ CM
where Cj is a Boolean clause, that is True or

False, depending on the value of a subset of

the n Boolean variables.

It may not be difficult to devise a method or

device that obtains a value assignment that

satisfies a given clause. The difficulty lies find-

ing out if there is an assignment that satisfies

all clauses.

Algorithm, specified on the Hilbert space of n

qubits, evolves the state according to Schrödinger

equation governed by Hamiltonian of the form

H(t) = HC1
(t)+HC2

(t)+· · ·+HCM(t). (0 ≤ t ≤ T )

where HCj depends only on clause Cj and acts

on bits contained in Cj.



H(t) varies slowly in time.

The initial state, which is always easy to con-
struct, is the ground state of H(0).

For each j, the ground state of HCj(T ) encodes
the satisfying assignments of clause Cj. The
ground state of H(T ) encodes the intersection
of the satisfying assignments of all clauses.

According to the adiabatic theorem, if T is
large enough, |ψ(T )〉 will be close to the g.s
of H(T ), as required.

For this algorithm to be successful, we require
T = poly(n).

Nota: quantum adiabatic evolution as used
here is different from simulated annealing, a
classical algorithm to determine the g.s of H(T )
by cooling the system from a Boltzmann dis-
tribution (∝ e−βT ).



The Adiabatic theorem

The theorem tells us how Schrödinger equa-

tion:

i
d

dt
|ψ(t)〉 = H(t)|ψ(t)〉.

guides the evolution of system when H(t) varies

slowly. Reparametrize: H̃(s), 0 ≤ s ≤ 1, and

let

H(t) = H̃(t/T )

so that T controls H’s rate of change. Instan-

taneous eigenstates:

H̃(s)|l; s〉 = El|l; s〉

with

E)(s) ≤ E1(s) ≤ · · · ≤ EN−1(s)

where N is Hilbert space dimension. Designate

initial ground state by:

|ψ(0)〉 ≡ |l = 0; s = 0〉.



The adiabatic theorem says that if E1(s) −
E0(s) > 0 for all s, then:

lim
T→∞

|〈l = 0; s = 1|ψ(T )〉| = 1.

Define minimum gap:

gmin ≡ min
0≤s≤1

(E1(s)− E0(s)).

More particularly, the theorem tells that taking

T �
E

g2
min

,

where

E = max
0≤s≤1

∣∣∣∣∣
〈
l = 1; s

∣∣∣∣∣dH̃ds
∣∣∣∣∣ l = 0; s

〉∣∣∣∣∣
can make

|〈l = 0; s = 1|ψ(T )〉|

arbitrarily close to 1. For our purposes, E is of

the order of a typical eigenvalue of H and is

not too big. Size of T thus governed by g2
min.



The Satisfiability problem

Many computationally interesting problems can

be recast into an equvialent problem of find-

ing an assignment of variables that minimizes

an ‘energy function’. Consider 3-SAT (where

each clause is a disjunction of at most 3 liter-

als/bits). Let the bits that appear in clause C

be iC, jC, kC. For each clause define the energy

function:

h(ziC , zjC , zkC) =

{
0 if (ziC , zjC , zkC) satisfies C
1 else

Total energy:

h =
M∑
C=1

hC.

Clearly h ≥ 0, and h(z1, z2, · · · , zn) = 0 if and

only if (z1, z2, · · · , zn) satisfies all of the clauses.

Thus finding the minimum energy configura-

tion of h tells us if the formula has a satisfying

assignment.



(Conventionally, only the OR function of con-

stituent variables in the clause is computed,

but for our purpose more general functions

may conveniently considered.)



The problem Hamiltonian HP

The Hilbert space is spanned by the N = 2n ba-
sis vectors |z1〉|z2〉 · · · |zn〉. Clause C associated
with operator HP,C satisfying the e.v equation:

HP,C(|z1〉|z2〉 · · · |zn〉) = hC(ziC , zjC , zkC)|z1〉|z2〉 · · · |zn〉

which acts on a fixed number of bits. The full

Hamiltonian is

HP ≡
∑
C

HP,C

By construction, (〈ψ|HP |ψ〉 ≥ 0∀ψ, and HP |ψ〉 =

0 iff |ψ〉 is a superposition of states |z1〉|z2〉 · · · |zn〉
s.t. z1, z2, · · · zn satisfy all the clauses.

Thus, solving a 3-SAT problem ≡ finding the

ground state of a Hamiltonian. Specifying HP
is easy, but finding its g.s is in general difficult.



The initial Hamiltonian HB

Specifying both HB and its g.s are easy, by

design. To bit i assign Hamiltonian:

Hi
B =

1

2
(1−X(i)),

with ‘eigenset’ {(0, |x = 0〉), (1, |x = 1〉)}. De-

fine:

HB,C = H
iC
B +H

jC
B +H

kC
B

and

HB =
M∑
C=1

HB,C =
n−1∑
j=0

djH
(j)
B ,

where dj is # clauses in which bit j appears in

the instance of 3-SAT being considered. The

g.s is immediately seen to be:

|x1 = 0〉|x2 = 0〉 · · · |xn = 0〉 = 2−n/2
2n−1∑
i=0

|j〉.



Adiabatic evolution

Adiabatic evolution is used to go from HB to

HP :

H(t) =
(

1−
t

T

)
HB +

t

T
HP .

That is,

H̃(s) = (1− s)HB + sHP

=
∑
C

(1− s)HB,C + sHP,C

=
∑
C

H̃C(s).



gmin, E and T

We have:

dH̃

ds
= HP −HS.

Since HP =
∑
CHP,C, the spectrum of HP

is contained in {0,1,2, · · · ,M}. Since HB =∑n
j=1 djH

(j)
B , the spectrum of HB is contained

in {0,1,2, · · · , d}, where d =
∑
j dj. For 3-SAT,

d ≤ 3M .

Since we are interested only in M ∈ poly(n),

therefore E ∈ poly(n), and gmin alone deter-

mines whether T is polnomial or exponential

in n.



Typically, we don’t expect gmin to vanish. gmin =

0 ⇒ ∃s(E0(s) = E1(s)). For a 2 × 2 Hamilto-

nian

H ≡
(

a(s) c(s) + id(s)
c(s)− id(s) b(s)

)
,

this happens only if c(s) = d(s) = 0 and a(s) =

b(s). This seems unlikely, unless H has some

symmetry properties.

Eg., if H is known to commute with (say) σx,

then a(s) = b(s) and d(s) = 0. As s varies,

it would not surprising to see c(s) cross 0.

However, in a general N × N Hamiltonian of

practical interest, such symmetries are proba-

bly unlikely. Hence we expect that gmin will not

vanish, and hence T will be finite.



The adiabatic quantum algorithm

A review of the algorithm for solving SAT prob-
lems:

(1) An easily constructable initial state, g.s of
HB.

(2) A time-dependent Hamiltonian H(s) that
is easily constructable from the given instance
of the problem.

(3) Schrödinger evolution of the system for
time T � E/g2

min.

(4) The final state |ψ(T )〉, that for big enough
T , will be very nearly the g.s of HP .

(5) Measurement of |ψ(T )〉 in the computa-
tional basis will yield a state that minimizes
energy (# of violated clauses). Iff this energy
is zero, a satisfying assignment exists. The re-
sultant state will encode one such assignment.



An example with 3 bits

Consider an instance of 2-SAT with three Boolean

variables (bits):

(z1 implies z2) AND (z1 and z3 disagree)

AND (z2 and z3 agree)

Knowing that the indiv. clauses satisfy (00?,

01?, 11?), (1?0, 0?1) and (?00, ?11), it is easy

to write down HP

HP = H12
imply +H13

disagree +H23
agree.

without (in general) knowing whether a satis-

fying assignment exists (tho in this 3-bit case

one can quickly solve the problem classically.)

HB =
(
H1
B +H2

B

)
+
(
H1
B +H3

B

)
+
(
H2
B +H3

B

)
,

where H
j
B = 1

2(1− σ(j)
x ).



Starting the system in the g.s of HB, |x1 =

0〉|x2 = 0〉|x3 = 0〉 = 1√
8

∑7
j=0 |j〉, and evolving

via H(s), we will reach |0,1,1〉, the g.s of HP
with e.v = 0.

Measuring it in the compu. basis, we conclude

that z1 = 0, z2 = 1, z3 = 1 is a satisfying as-

signment.

The crucial problem is estimating gmin and thus

T = T (n) for arbitrary n. No case is known

where T is estimated to be sufficiently small

as to give exponential speedup over classical

algorithms.

In fact, one can prove (Lloyd 1998) that the

conventional circuit model can efficiently sim-

ulate quantum computation based on adiabatic

evolution, implying that a latter is no more

powerful.



Thank you



IV. Physical implementation
of computers

In a good physical realization of a quantum

computer, one must have the ability to:

(1) robustly represent quantum information

(2) perform a universal family of unitary oper-

ations

(3) to prepare of a suitable initial state.

(4) Measure the output result.

Typically a qubit is represented by a spin (Nu-

clear Magnetic Resonance [NMR], ion traps),

by charge (quantum dots, SQUID), photon (cav-

ity QED), etc.



Optical photon quantum computer

An illustrative, rather than practical, imple-
mentation.

Qubit representation: Location of a photon
between two optical cavity modes.

|0〉 ≡ |01〉; |1〉 ≡ |10〉,
and polarization.

Initial state preparation. Create single pho-
ton states typically by attenuating a laser, which
is described by a coherent state:

|α〉 = e−|α|
2/2

∞∑
n=0

αn√
n!
|n〉.

Average photons per state 〈α|n̂|α〉 = |α|2.

For better synchronicity while manipulating mul-
tiple photons, use ‘heralded photons’ from para-
metric downconversion via nonlinear optical me-
dia such as KH2PO4.



Unitary operations: phase gate. Passing
through a transparent medium of RI ν > ν0.
Relative phase shift is given by ei(ν−ν0)Lω/c,
where L is medium’s thickness.

Unitary operations: beam splitters. Given
by the Hamiltonian iθ(ab† − a†b). Its action on
the mode operators is to produce the transfor-
mation:

B ≡
(

cos θ − sin θ
sin θ cos θ

)
≡ eiθY .

Beam splitters and phase shifters are sufficient
to implement any single qubit operation.

Two-qubit gates. Via cross phase modula-
tion in a nonlinear Kerr medium. Classically,
the optical Kerr effect:

ν(I) = ν + ν2(I).

When two equal-intensity beams are passes thru
a nonlinear Kerr medium, each will experience
an extra phase shift ein2ILω/c.



Quantum mechanically: Hxpm = −χa†ab†b giv-

ing the unitary operation K = eiχLa
†ab†b, where

χ is related to n2 and nonlinear susceptibility

χ3). One can then construct a c-phase gate

using K:

K|00〉 → |00〉
K|01〉 → |01〉
K|10〉 → |10〉
K|11〉 → −|11〉

c-Phase and single qubit operations are univer-

sal for QC.

Drawbacks. Getting photons to interact is

usually very difficult. Nonlinear media tend to

be highly absorptive.



Optical cavity QED

The nonlinear medium of the optical quan-

tum computer is replaced by individual atoms

trapped in a cavity of high Q (low mode leak-

age). Because only 1 or 2 modes exist in a cav-

ity, and they have high electric field strength,

dipole coupling between atom and light is very

strong.

Qubit representation. Location of single pho-

ton between two modes |01〉 and |10〉, and po-

larization.

Unitary evolution: single qubit operations.

Phase shifters (Rz(θ) and beam-splitters (Rz(θ).

Unitary evolution: 2-qubit operations. Atom-

light interaction via the dipole-field interaction:



d·E. In the ‘rotating wave approximation’, this

leads to the Hamiltonian:

H =
h̄ω0

2
Z + h̄ωa†a+ g(a†σ−+ aσ+).

whose eigenstates are:

|χ±n 〉 ≡
1√
2

(|n,1〉 ± |n− 1,0〉),

with eigenvalues ±g
√
n+ 1, where the notation

is |field, atom〉.

When two light modes (distinguished by small

difference in frequency) are input into the cav-

ity, because of interaction with the atom, it can

be shown that the following interaction arises:

K =


1 0 0 0
0 eiφa 0 0
0 0 eiφb 0
0 0 0 eiφa+iφb=∆


which can be used to realize a c-phase gate.


