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Richard Feynman [1] in his talk during the First Conference on the Physics of Computation, held at
MIT in 1981, observed that it appears to be impossible to simulate a general quantum evolution on
a classical probabilistic computer in an efficient way. He pointed out that any classical simulation of
quantum evolution appears to involve an exponential slowdown in time as compared to the natural
evolution since the amount of information required to describe the evolving quantum state in classical
terms generally grows exponentially in time. However, instead of viewing this as an obstacle, Feynman
regarded it as an opportunity. If it requires so much computation to work out what will happen in a
complicated multiparticle interference experiment then, he argued, the very act of setting up such an
experiment and measuring the outcome is tantamount to performing a complex computation. Indeed,
all quantum multiparticle interferometers are quantum computers and some interesting computational
problems can be based on estimating internal phases in these interferometers [2].

1 Interferometers

Let us start with the textbook example of quantum interference, namely a Mach-Zehnder interferom-
eter.
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A particle, say a photon, impinges on a beam-splitter (BS1), and, with some probability amplitudes,
propagates via two different paths to another beam-splitter (BS2) which directs the particle to one
of the two detectors. Along each path between the two beam-splitters, is a phase shifter (PS). If the
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lower path is labelled as state | 0〉 and the upper one as state | 1〉 then the particle, initially in path
| 0〉, undergoes the following sequence of transformations

| 0〉 BS1−→ 1√
2

(| 0〉+ | 1〉)

PS−→ 1√
2

(eiφ0 | 0〉+ eiφ1 | 1〉) = ei
φ0+φ1

2
1√
2

(ei
φ0−φ1

2 | 0〉+ e−i
φ0−φ1

2 | 1〉)

BS2−→ ei
φ1+φ2

2 (cos 1
2 (φ0 − φ1) | 0〉+ i sin 1

2 (φ0 − φ1) | 1〉), (1)

where φ0 and φ1 are the settings of the two phase shifters and the action of the beam-splitters is
defined as

| 0〉 −→ 1√
2
(| 0〉+ | 1〉)

| 1〉 −→ 1√
2
(| 0〉 − | 1〉) (2)

(and extends by linearity to states of the form α | 0〉+β | 1〉). Here, we have ignored the ei
φ0+φ0

2 phase
shift in the reflected beam, which is irrelevant because the interference pattern depends only on the
difference between the phase shifts in different arms of the interferometer. The phase shifters in the
two paths can be tuned to effect any prescribed relative phase shift φ = φ0 − φ1 and to direct the
particle with probabilities cos2

(
φ
2

)
and sin2

(
φ
2

)
respectively to detectors “0” and “1”.

The roles of the three key ingredients in this experiment are clear. The first beam splitter prepares a
superposition of possible paths, the phase shifters modify quantum phases in different paths and the
second beam-splitter combines all the paths together. As we shall see, most quantum algorithms follow
this interferometry paradigm: a superposition of computational paths is prepared by the Hadamard (or
the Fourier) transform, followed by a quantum function evaluation which effectively introduces phase
shifts into different computational paths, followed by the Hadamard or the Fourier transform which
acts somewhat in reverse to the first Hadamard/Fourier transform and combines the computational
paths together. To see this, let us start by rephrasing Mach-Zehnder interferometry in terms of
quantum networks.

2 Quantum gates & networks

In order to avoid references to specific technological choices (hardware), let us now describe our Mach-
Zehnder interference experiment in more abstract terms. It is convenient to view this experiment as
a quantum network with three quantum logic gates (elementary unitary transformations) operating
on a qubit (a generic two-state system with a prescribed computational basis {| 0〉 , | 1〉}). The beam-
splitters will be now called the Hadamard gates and the phase shifters the phase shift gates.

H Hφ = φ0 − φ1

The Hadamard gate is the single qubit gate H performing the unitary transformation known as the
Hadamard transform given by (Eq. 2)
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H =
1√
2

(
1 1
1 −1

)
|x〉 H | 0〉+ (−1)x | 1〉. (3)

The matrix is written in the basis {| 0〉 , | 1〉} and the diagram on the right provides a schematic
representation of the gate H acting on a qubit in state |x〉, with x = 0, 1. Using the same notation
we define the phase shift gate φ as a single qubit gate such that | 0〉 7→ | 0〉 and | 1〉 7→ eiφ | 1〉,

φ =
(

1 0
0 eiφ

)
|x〉 φ eixφ |x〉 . (4)

Let us explain now how the phase shift φ can be “computed” with the help of an auxiliary qubit (or a
set of qubits) in a prescribed state |ψ〉 and some controlled-U transformation where U |ψ〉 = eiφ |ψ〉.

|ψ〉

| 0〉 H Hx

U |ψ〉

Measurement

Here the controlled-U is a transformation involving two qubits, where the form of U applied to the
auxiliary or target qubit depends on the logical value of the control qubit. For example, we can apply
the identity transformation to the auxiliary qubits (i.e. do nothing) when the control qubit is in state
| 0〉 and apply a prescribed U when the control qubit is in state | 1〉. In our example shown above, we
obtain the following sequence of transformations on the two qubits

| 0〉 |ψ〉 H−→ 1√
2
(| 0〉+ | 1〉) |ψ〉 c−U−→ 1√

2
(| 0〉+ eiφ | 1〉) |ψ〉

H−→ e(i
φ
2 )(cos φ2 | 0〉+ i sin φ

2 | 1〉) |ψ〉 . (5)

We note that the state of the auxiliary register |ψ〉, being an eigenstate of U , is not altered along
this network, but its eigenvalue eiφ is “kicked back” in front of the | 1〉 component in the first qubit.
The sequence (5) is equivalent to the steps of the Mach-Zehnder interferometer (1) and, as was shown
in [2], the kernel of most known quantum algorithms.
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3 Phases via function evaluations

Since quantum phases in interferometers can be introduced by some controlled-U operations, it is
natural to ask whether effecting these operations can be described as an interesting computational
problem.

Suppose an experimentalist, Alice, who runs the Mach-Zehnder interferometer delegates the control
of the phase shifters to her colleague, Bob. Bob is allowed to set up any value φ = φ0−φ1 and Alice’s
task is to estimate φ. Clearly for general φ this involves running the device several times until Alice
accumulates enough data to estimate probabilities P0 and P1, however, if Bob promises to set up φ
either at 0 or at π then a single-shot experiment can deliver the conclusive outcome (click in detector
“0” corresponds to φ = 0 and in detector “1” corresponds to φ = π). The first quantum algorithm
proposed by David Deutsch in 1985 [3] is related to this effect.

We have seen in the previous section that a controlled-U transformation can be used to produce a
particular phase shift on the control qubit corresponding to its eigenvalue on the auxiliary qubit. If two
eigenvalues of the controlled-U transformation lead to different orthogonal states in the control qubit,
a single measurement on this qubit will suffice to distinguish the two cases. For example, consider the
Boolean functions f that map {0, 1} to {0, 1}. There are exactly four such functions: two constant
functions (f(0) = f(1) = 0 and f(0) = f(1) = 1) and two “balanced” functions (f(0) = 0, f(1) = 1
and f(0) = 1, f(1) = 0). It turns out that it is possible to construct a controlled function evaluation
such that two possible eigenvalues are produced which may be used to determine whether the function
is constant or balanced. This is done in the following way.

Let us formally define the operation of “evaluating” f in terms of the f -controlled-NOT operation on
two bits: the first contains the input value and the second contains the output value. If the second bit
is initialised to 0, the f -controlled-NOT maps (x, 0) to (x, f(x)). This is clearly just a formalization
of the operation of computing f . In order to make the operation reversible, the mapping is defined
for all initial settings of the two bits, taking (x, y) to (x, y⊕ f(x)), where ⊕ denotes addition modulo
two.

A single evaluation of the f -controlled-NOT on quantum superpositions suffices to classify f as con-
stant or balanced. This is the real advantage of the quantum method over the classical. Classically
if the f -controlled-NOT operation may be performed only once then it is impossible to distinguish
between balanced and constant functions. Whatever the outcome, both possibilities (balanced and
constant) remain for f . This corresponds to our classical intuition about the problem since it involves
determining not particular values of f(0) and f(1), but a global property of f . Classically to determine
this global property of f , we have to evaluate both f(0) and f(1), which involves evaluating f twice.

Deutsch’s quantum algorithm has the same mathematical structure as the Mach-Zehnder interferom-
eter, with the two phase settings φ = 0, π. It is best represented as the quantum network shown in
Fig. 1, where the middle operation is the f -controlled-NOT, which can be defined as:

|x〉 | y〉 f−c−N−→ |x〉 | y ⊕ f(x)〉 . (6)

The initial state of the qubits in the quantum network is | 0〉 (| 0〉 − | 1〉) (apart from a normalization
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| 0〉 − | 1〉

| 0〉 H Hx

Uf | 0〉 − | 1〉

Measurement

Figure 1: Quantum network which implements Deutsch’s algorithm. The middle gate is the f -
controlled-NOT which evaluates one of the four functions f : {0, 1} 7→ {0, 1}. If the first qubit is
measured to be | 0〉, then the function is constant, and if | 1〉, the function is balanced.

factor, which will be omitted in the following). After the first Hadamard transform, the state of the
two qubits has the form (| 0〉 + | 1〉)(| 0〉 − | 1〉). To determine the effect of the f -controlled-NOT on
this state, first note that, for each x ∈ {0, 1},

|x〉 (| 0〉 − | 1〉) f−c−N−→ |x〉 (| 0⊕ f(x)〉 − | 1⊕ f(x)〉) = (−1)f(x) |x〉 (| 0〉 − | 1〉) . (7)

Therefore, the state after the f -controlled-NOT is

((−1)f(0) | 0〉+ (−1)f(1) | 1〉)(| 0〉 − | 1〉) . (8)

That is, for each x, the |x〉 term acquires a phase factor of (−1)f(x), which corresponds to the
eigenvalue of the state of the auxiliary qubit under the action of the operator that sends | y〉 to
| y ⊕ f(x)〉.

This state can also be written as

(−1)f(0)(| 0〉+ (−1)f(0)⊕f(1) | 1〉)(| 0〉 − | 1〉) , (9)

which, after applying the second Hadamard transform to the first qubit, becomes

(−1)f(0) | f(0)⊕ f(1)〉 (| 0〉 − | 1〉) . (10)

Therefore, the first qubit is finally in state | 0〉 if the function f is constant and in state | 1〉 if the
function is balanced, and a measurement of this qubit distinguishes these cases with certainty.

The Mach-Zehnder interferometer with phases φ0 and φ1 each set to either 0 or π can be regarded
as an implementation of the above algorithm. In this case, φ0 and φ1 respectively encode f(0) and
f(1) (with π representing 1), and a single photon can query both phase shifters (i.e. f(0) and f(1))
in superposition.

More general algorithms may operate not just on single qubits, as in Deutsch’s case, but on sets of
qubits or ‘registers’. The second qubit becomes an auxiliary register |ψ〉 prepared in a superposition
of basis states, each weighted by a different phase factor,

|ψ〉 =
2m−1∑
y=0

e−2πiy/2m | y〉 . (11)

In general, the middle gate which produces the phase shift is some controlled function evaluation. A
controlled function evaluation operates on its second input, the ‘target’, according to the state of the
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first input, the ‘control’. A controlled function f applied to a control state |x〉, and a target state |ψ〉
gives

|x〉 |ψ〉 −→ |x〉 |ψ + f(x)〉 . (12)

where the addition is mod 2m or bit by bit. Hence for the register in state (11)

|x〉
2m−1∑
y=0

e−2πiy/2m | y〉 −→ e2πif(x)/2m |x〉
2m−1∑
y=0

e−2πi(y+f(x))/2m | y + f(x)〉 = e2πif(x)/2m |x〉 |ψ〉 .

(13)
Effectively a phase shift proportional to the value of f(x) is produced on the first input.

We will now see how phase estimation on registers may be carried out by networks consisting of
only two types of quantum gates: the Hadamard gate H and the conditional phase shift R(φ). The
conditional phase shift is the two-qubit gate R(φ) defined as

R(φ) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiφ


| y〉

|x〉 v
v

 eixyφ |x〉 | y〉 . (14)

The matrix is written in the basis {| 0〉 | 0〉 , | 0〉 | 1〉 , | 1〉 | 0〉 , | 1〉 | 1〉}, (the diagram on the right shows
the structure of the gate). For some of the known quantum algorithms, when working with registers,
the Hadamard transformation, corresponding to the beamsplitters in the interferometer, is generalised
to a quantum Fourier transform.

4 Quantum Fourier transform and computing phase shifts

The discrete Fourier transform is a unitary transformation of a s–dimensional vector

(f(0), f(1), f(2), . . . , f(s− 1))→ (f̃(0), f̃(1), f̃(2), . . . , f̃(s− 1)) (15)

defined by:

f̃(y) =
1√
s

s−1∑
x=0

e2πixy/sf(x), (16)

where f(x) and f̃(y) are in general complex numbers. In the following, we assume that s is a power
of 2, i.e., s = 2n for some n; this is a natural choice when binary coding is used.

The quantum version of the discrete Fourier transform (QFT) is a unitary transformation which can
be written in a chosen computational basis {|0〉, |1〉, . . . , |2n − 1〉} as,

|x〉 7−→ 1√
s

s−1∑
y=0

exp(2πixy/s) |y〉. (17)

More generally, the QFT effects the discrete Fourier transform of the input amplitudes. If

QFT :
∑
x

f(x)|x〉 7−→
∑
y

f̃(y)|y〉, (18)
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Figure 2: The quantum Fourier transform (QFT) network operating on four qubits. If the input state
represents number x =

∑
k 2kxk the output state of each qubit is of the form | 0〉 + ei2

n−1−kφx | 1〉,
where φx = 2πx/2n and k = 0, 1, 2 . . . n− 1. N.B. there are three different types of the R(φ) gate in
the network above: R(π), R(π/2) and R(π/4). The size of the rotation is indicated by the distance
between the ‘wires’.

then the coefficients f̃(y) are the discrete Fourier transforms of the f(x)’s.

A given phase φx = 2πx/2n can be encoded by a QFT. In this process the information about φx is
distributed between states of a register. Let x be represented in binary as x0 . . . xn−1 ∈ {0, 1}n,
where x =

∑n−1
i=0 xi2

i (and similarly for y). An important observation is that the QFT of x,∑s−1
y=0 exp(2πixy/s) |y〉, is unentangled, and can in fact be factorised as

(| 0〉+ eiφx | 1〉)(| 0〉+ ei2φx | 1〉) · · · (| 0〉+ ei2
n−1φx | 1〉) . (19)

The network for performing the QFT is shown in Fig. 2. The input qubits are initially in some state
|x〉 = |x0〉 |x1〉 |x2〉 |x3〉 where x0x1x2x3 is the binary representation of x, that is, x =

∑3
i=0 xi2

i. As
the number of qubits becomes large, the rotations R(π/2n) will require exponential precision, which
is impractical. Fortunately, the algorithm will work even if we omit the small rotations, [4, 5]. The
general case of n qubits requires a simple extension of the network following the same pattern of H
and R gates.

States of the form (19) are produced by function evaluation in a quantum computer. Suppose that U
is any unitary transformation on m qubits and |ψ〉 is an eigenvector of U with eigenvalue eiφ. The
scenario is that we do not explicitly know U or |ψ〉 or eiφ, but instead are given devices that perform
controlled-U , controlled-U21

, controlled-U22
and so on until we reach controlled-U2n−1

. Also, assume
that we are given a single preparation of the state |ψ〉. From this, our goal is to obtain an n-bit
estimator of φ.

In a quantum algorithm a quantum state of the form

(| 0〉+ ei2
n−1φ | 1〉)(| 0〉+ ei2

n−2φ | 1〉) · · · (| 0〉+ eiφ | 1〉) (20)

is created by applying the network of Fig. 3. Then, in the special case where φ = 2πx/2n, the state
|x0 · · ·xn−1〉 (and hence φ) can be obtained by just applying the inverse of the QFT (which is the
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U20
U21

U22|Φ〉 |Φ〉

| 0〉+ | 1〉

| 0〉+ | 1〉

| 0〉+ | 1〉

| 0〉+ ei2
0φ | 1〉

| 0〉+ ei2
1φ | 1〉
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2φ | 1〉

t
t

t

Figure 3: The network which computes phase shifts in Shor’s algorithms; it also implements the
modular exponentiation function via repeated squarings.

network of Fig. 2 in the backwards direction and with the qubits in reverse order). If x is an n-bit
number this will produce the state |x0 · · ·xn−1〉 exactly (and hence the exact value φ).

However, φ is not in general a fraction of a power of two (and may not even be a rational number).
For such a φ = 2πω, it turns out that applying the inverse of the QFT produces the best n-bit
approximation of ω with probability at least 4/π2 ≈ 0.41 [2].

5 Quantum factoring

Let me now illustrate the general framework described in the preceding section with Shor’s quantum
algorithm for efficient factorisation (for a comprehensive discussion of quantum factoring see [2, 6, 7]).

Shor’s quantum factoring of an integer N is based on calculating the period of the function f(x) =
ax mod N for a randomly selected integer a between 1 and N . For any positive integer y, we define
y mod N to be the remainder (between 0 and N−1) when we divide N by y. More generally, y mod N
is the unique positive integer y between 0 and N − 1 such that N evenly divides y − y. For example,
2 mod 35 = 2, 107 mod 35 = 2, and −3 mod 35 = 32. We can test if a is relatively prime to N
using the Euclidean algorithm. If it is not, we can compute the greatest common divisor of a and
N using the extended Euclidean algorithm. This will factor N into two factors N1 and N2 (this is
called splitting N). We can then test if N1 and N2 are powers of primes, and otherwise proceed to
split them if they are composite. We will require at most log2(N) splittings before we factor N into
its prime factors.

It turns out that for increasing powers of a, the remainders form a repeating sequence with a period
r. We can also call r the order of a since ar = 1 mod N . Once r is known, factors of N are
obtained by calculating the greatest common divisor of N and ar/2 ± 1.Suppose we want to factor 35
using this method. Let a = 4. For increasing x the function 4x mod 35 forms a repeating sequence
4, 16, 32, 29, 9, 1, 4, 16, 29, 32, 9, 1, . . .. The period is r = 6, and ar/2 mod 35 = 29. Then we take the
greatest common divisor of 28 and 35, and of 30 and 35, which gives us 7 and 5, respectively, the two
factors of 35. Classically, calculating r is at least as difficult as trying to factor N ; the execution time

8



of the best currently-known algorithms grows exponentially with the number of digits in N . Quantum
computers can find r very efficiently.

Consider the unitary transformation Ua that maps |x〉 to | ax mod N〉. Such a transformation is
realised by simply implementing the reversible classical network for multiplication by a modulo N
using quantum gates. The transformation Ua, like the element a, has order r, that is, Ura = I, the
identity operator. Such an operator has eigenvalues of the form e

2πik
r for k = 0, 1, 2, . . . , r − 1. In

order to formulate Shor’s algorithm in terms of phase estimation let us apply the construction from
the last section taking

|ψ〉 =
r−1∑
j=0

e
−2πij
r

∣∣ aj mod N
〉
. (21)

Note that |ψ〉 is an eigenvector of Ua with eigenvalue e2πi(
1
r ). Also, for any j, it is possible to

implement efficiently a controlled-U2j

a gate by a sequence of squaring (since U2j

a = Ua2j ). Thus, using
the state |ψ〉 and the implementation of controlled-U2j

a gates, we can directly apply the method of
the last section to efficiently obtain an estimator of 1

r .

The problem with the above method is that we are aware of no straightforward efficient method to
prepare state |ψ〉, however, let us notice that almost any state |ψk〉 of the form

|ψk〉 =
r−1∑
j=0

e−
2πikj
r

∣∣ aj mod N
〉
, (22)

where k is from {0, . . . , r − 1} would also do the job. For each k ∈ {0, 1, . . . , r − 1}, the eigenvalue of
state |ψk〉 is e2πi(

k
r ), and we can again use the technique from the last section to efficiently determine

k
r and if k and r are coprime then this yields r (see [2] for more detailed analysis). Now the key
observation is that

| 1〉 =
r∑

k=1

|ψk〉 , (23)

and | 1〉 is an easy state to prepare.

If we substituted | 1〉 in place of |ψ〉 in the last section then effectively we would be estimating one of the
r, randomly chosen, eigenvalues e2πi(

k
r ). This demonstrates that Shor’s algorithm, in effect, estimates

the eigenvalue corresponding to an eigenstate of the operation Ua that maps |x〉 to | ax mod N〉. A
classical procedure - the continued fractions algorithm - can be employed to estimate r from these
results. The value of r is then used to factor the integer.

6 Conditional quantum dynamics

Quantum gates and quantum networks provide a very convenient language for building any quantum
computer or (which is basically the same) quantum multiparticle interferometer. But can we build
quantum logic gates?
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Figure 4: The control qubit of resonant frequency ω1 interacts via V̂ with the target qubit of resonant
frequency ω2. Due to the interaction the two resonant frequencies are modified and the combined
system of the two qubits has four different resonant frequencies ω1 ± Ω and ω2 ± Ω. A π-pulse at
frequency ω2 + Ω causes the transition | 0〉 ↔ | 1〉 in the second qubit only if the first qubit is in state
| 1〉. This is one possible realisation of the quantum controlled-NOT gate.

Single qubit quantum gates are regarded as relatively easy to implement. For example, a typical
quantum optical realisation uses atoms as qubits and controls their states with laser light pulses
of carefully selected frequency, intensity and duration; any prescribed superposition of two selected
atomic states can be prepared this way. Two-qubit gates are much more difficult to build.

In order to implement two-qubit quantum logic gates it is sufficient, from the experimental point of
view, to induce a conditional dynamics of physical bits, i.e. to perform a unitary transformation on
one physical subsystem conditioned upon the quantum state of another subsystem,

U = | 0〉 〈0 | ⊗ U0 + | 1〉 〈1 | ⊗ U1 + . . .+ | k〉 〈k | ⊗ Uk, (24)

where the projectors refer to quantum states of the control subsystem and the unitary operations Ui
are performed on the target subsystem [8]. The simplest non-trivial operation of this sort is probably
a conditional phase shift such as B(φ) which we used to implement the quantum Fourier transform
and the quantum controlled-NOT (or XOR) gate.

Let us illustrate the notion of the conditional quantum dynamics with a simple example (see Fig.4).
Consider two qubits, e.g. two spins, atoms, single-electron quantum dots, which are coupled via
σ

(1)
z σ

(2)
z interaction (e.g. a dipole-dipole interaction). The first qubit with the resonant frequency ω1

will act as the control qubit and the second one, with the resonant frequency ω2, as the target qubit.
Due to the coupling V the resonant frequency for transitions between the states | 0〉 and | 1〉 of one
qubit depends on the neighbour’s state. The resonant frequency for the first qubit becomes ω1 ± Ω
depending on whether the second qubit is in state | 0〉 or | 1〉. Similarly the second qubit’s resonant
frequency becomes ω2 ± Ω, depending on the state of the first qubit. Thus a π-pulse at frequency
ω2 + Ω causes the transition | 0〉 ↔ | 1〉 in the second qubit only if the first qubit is in | 1〉 state. This
way we can implement the quantum controlled-NOT gate.

Thus in principle we know how to build a quantum computer; we can start with simple quantum
logic gates and try to integrate them together into quantum networks. However if we keep on putting
quantum gates together into networks we will quickly run into some serious practical problems. The
more interacting qubits are involved the harder it tends to be to engineer the interaction that would
display the quantum interference. Apart from the technical difficulties of working at single-atom
and single-photon scales, one of the most important problems is that of preventing the surrounding
environment from being affected by the interactions with the computer. The more components the
more likely it is that quantum computation will spread outside the computational unit and will
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irreversibly dissipate useful information to the environment. In other words the environment can learn
about which computational path was taken in the multi-particle interferometer and this “welcher Weg”
information can destroy the interference and the power of quantum computing. However, current
developments in the experimental quantum computing together with a set of new trick to protect
quantum interference give some hope that complex multi-particle interferometers will be build in a
not too distant future.

7 Concluding remarks

Quantum computers use the quantum interference of different computational paths to enhance correct
outcomes and suppress erroneous outcomes of computations; they act as (multi-particle) interferome-
ters. This way of thinking about quantum computation provides lots of insights and makes the whole
subject less mysterious.
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