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Climate Change
• Climate issues will drive much of 21st

Century science

• Our current understanding of the 
Earth System and its climate is akin 
to our knowledge of the human body 
in the 18th Century (Lovelock)

• What role will (applied) mathematics 
take in this critical scientific effort?



Greenhouse Effect

• Incoming short wavelength radiation does not                    
interact with  greenhouse gases,

• Longer wavelength reflected radiation  does!

Joseph Fourier, 1824

Back of the envelope:

• 350-400 ppm CO2 -> 1-2 deg C over 21st C
• 400-450 ppm CO2 -> 2-3 deg C over 21st C
• 450-500 ppm CO2 -> 3-4 deg C over 21st C

IPCC: 17 Modeling centers (2007) running “big” 
models. Results are averaged to make predictions



Improve resolution:
Predict down to e.g. 
25km in 2050

Improve understanding:
What determines regional 
temperature distribution?
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Role of Applied Mathematics

• Only ONE Earth

• Only ONE realization of Earth System

• Need mathematical models to test 
hypotheses

• See what happens if …

BUT: We get ourselves in deep water





Flood of criticism from 1997 floods: Did faulty 
forecasts add to disaster?

For six weeks, the National Weather 
Service had predicted a crest of 49 feet at 
Grand Forks. Then, over the five days 
before the river burst through its 
restraints, forecasters methodically revised 
it higher, eventually to 54 feet - a 
difference that spelled disaster in this 
pancake-flat region. 
From evacuation centers to city offices, the 
same anguished question now arises: How 
could forecasters have been so far off?

Forecasters are still stung by the spray-painted 
words, many of them obscene, on what was 
left of flood-ruined homes after the Red River 
swamped this city a decade ago.

Mayor of East Grand Forks:
“They blew it big!”



For accurate predictions, forecasters 
had to wait to measure actual flood 
depths at particular points and 
project them downstream to Grand 
Forks. 

Importance of Data

Computer models use data collected over 
years, translating stream flows into depth 
predictions for points along the river. But when 
stream flows are off the chart, as they were 
along the Red, the models go out the window. 

Dean Braatz, then head of the weather 
service's river-forecasting effort for North 
Dakota and Minnesota



Sequential Data Assimilation

Model + observations prediction

obs update

0t

obs update

1t 2t Ntmodel model

melding melding



Fishkill in Lake Kinneret

Kinneret

Vernieres et al. (2006)

•Occasional “fishkill”
•Feeding of 5,000??

Conjecture: due to “lifting” of lower 
layer of oxygen-free water



Model:
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Top layer momentum

Bottom layer momentum

• Stably stratified during summer

• Strong westerly sea breeze



Data

• Thermistor chains

Thermistor

F

K



Model running on its own…



With thermistor data assimilated…



A comparison

Neither model nor data on their own show “fishkill,”
But, together, they do!
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Kalman Filter

•Distributions are Gaussian
•Model is linear-TLM (EKF)
•or fit to Gaussian (EnKF)



Extended Kalman Filter
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Ensemble Kalman Filter (EnKF)

Error covariance is predicted via solution of full nonlinear system for a Monte-Carlo 

ensemble of states



Update step in EnKF
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Kalman gain matrix is computed using error covariance matrix derived from the ensemble. 

Ensemble members are updated with noisy observations



Gulf of Mexico/Caribbean





Gulf of Mexico

 3 active layer, reduced gravity

Modeling of the loop current in the GoM

 Limited area model

 12-20 km



Synthetic observations:

• Fixed stations(u,v)

• Surface drifters (x,y)

•Isopycnal floats (x,y,z)

Identical twin experiment

TRUTH

ESTIMATE



Recapturing the eddy



Eddies in GoM

Work with Guillaume Vernieres (NASA) and Kayo Ide (MD)



Results: rms(truth-analysis) of interface’s depths

Interface between layer 1 and 2

Interface between layer 2 and 3

EuDA (u,v)

LaDA (x,y)
LaDA (x,y,z)



Techniques of Data Assimilation

Deterministic techniques Statistical techniques

• Kalman filter
• Ensemble Kalman filter
•Variational methods (3DVAR, 4DVAR)

Requirements:
1. Gaussian
2. Close to linear

• Particle filtering
• Hybrid Monte-Carlo
• Metropolis-Hastings
•Langevin sampling

Requirement:
Low dimension

NONLINEARITY vs. DIMENSION 
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State Estimation

Model runs + observations state estimate
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Perturbed Cellular Flow Field
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Assimilating from trajectory staying in 
one cell

Compare:
•EnKF
•Metropolis-Hastings



Problem with EnKF

After first observation and assimilation

Before second observation

After SECOND observation and assimilation



Conclusions

Data and models

• Need balance in use of data 
and models

• Bayesian perspective 
provides framework

• Increasing amounts of data 
and model output should be 
exploited, but smartly!

Math and DA

• Can hope to filter effectively 
in low dimensions

• Do NOT avoid nonlinearity, 
use it as it is high in 
information content

• Seek data that has LOW 
dimension but HIGH 
information content


