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Climate Change

e Climate issues will drive much of 21t
Century science

* Qur current understanding of the
Earth System and its climate is akin
to our knowledge of the human body

in the 18t Century (Lovelock)
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Greenhouse Effect

* Incoming short wavelength radiation does not
interact with greenhouse gases,
* Longer wavelength reflected radiation does!

Back of the envelope:

IPCC: 17 Modeling centers (2007) running “big”
models. Results are averaged to make predictions

Global surface warming (“C)
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Improve understanding:
What determines regional
temperature distribution?
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Role of Applied Mathematics

 Only ONE Earth
* Only ONE realization of Earth System

e Need mathematical models to test
hypotheses

e See what happens if ...

BUT: We get ourselves in deep water
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Flood of criticism from 1997 floods: Did faulty

forecasts add to disaster?

For six weeks, the National Weather
Service had predicted a crest of 49 feet at
Grand Forks. Then, over the five days
before the river burst through its
restraints, forecasters methodically revised
it higher, eventually to 54 feet - a
difference that spelled disaster in this
pancake-flat region.

From evacuation centers to city offices, the
same anguished question now arises: How
could forecasters have been so far off?

Mayor of East Grand Forks:
“They blew it big!”

Forecasters are still stung by the spray-painted
words, many of them obscene, on what was
left of flood-ruined homes after the Red River
swamped this city a decade ago.



Importance of Data

Computer models use data collected over
years, translating stream flows into depth
predictions for points along the river. But when
stream flows are off the chart, as they were
along the Red, the models go out the window.

Dean Braatz, then head of the weather
service's river-forecasting effort for North
Dakota and Minnesota

For accurate predictions, forecasters
had to wait to measure actual flood
depths at particular points and
project them downstream to Grand
Forks.
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Sequential Data Assimilation

Model + observations o »  prediction
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Fishkill in Lake Kinneret

Vernieres et al. (2006)

Kinneret ,K;' [y - ‘ g L Conjecture: due to “lifting” of lower
' | . 3 layer of oxygen-free water
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Model|: * Stably stratified during summer
* Strong westerly sea breeze
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Data

 Thermistor chains |
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Model running on its own...
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With thermistor data assimilated...
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A comparison
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Neither model nor data on their own show “fishkill,”
But, together, they do!
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Kalman Filter

eDistributions are Gaussian
eModel is linear-TLM (EKF)
eor fit to Gaussian (EnKF)



Extended Kalman Filter

Forecast model error covariance using tangent linear model:
P' =E[AxAX']; Ax=x -X

f
ddi: MP" +P'M" +Q(t)

{
M. =M (x',t)/ox: linearized model operator

Combine model and observations into a new state X* minimizing trP*
x'=x +K d d =y°—H (x")

K =P'H'(HPH +R ) P*=(I-KH )P’

H =0H /0x: linearized observation function



Ensemble Kalman Filter (EnKF)

Error covariance is predicted via solution of full nonlinear system for a Monte-Carlo
ensemble of states

Model forecast: Xl(tl)X (’[ )
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Update step in EnKF

Kalman gain matrix is computed using error covariance matrix derived from the ensemble.
Ensemble members are updated with noisy observations

i = 1 Ne f 1 -
- x P=—>)(X.—X JIX =X
EJZ N _1121( )( J )
Ensemble of observations: d, =y°+&,—-H(x;)  E[£&/]=R

Update ensemble members:

Xt =X +Kd. K:PfHT(HPfHT+R)_1



Gulf of Mexico/Caribbean
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The loop current drives the Loop current eddies are rings
Thriving on Heat circuiation of water in the Gulf of : of warm water that occasionally

f,' Mexico. The warm water of the loop break off from the loop current,
mﬁgngﬁfmﬁgmmgﬁrﬁ?gsgg m?nug“k?fmmtfélm Sl ,\\' /- current enters the guif through the The eddies can be more than
gulf from the Caribbean Sea. Yucatéan Channel and meanders 100 miles across and can

These maps show tropical eyclone heat potential, the amount of toward the tip of Florida, eventually - persist for months, rotating
heat stored in the upper levels of the ocean before each hurricane helping to form the Guif Stream. N clockwise as they move slowly
made landfall on the Gulf Coast. The deeper the warm water, the N westward.

more heat was available to fuel each hurricane.

Hurricane Katrina
strengthened to a Category 5

hurricane on the Saffir-Simpson L) 4

scale as it passed over a large . . 3 category of
eddy cast off from the loop Lo ~ 2 hurricane
current. 1

The gray ribbon foliows the
hurricane’s path; the size of
the ribbon indicates the

intensity of the storm,

TEXAS TEXAS
Hurricane Rita Oseat
fell to a Category 3 The elevation and color of B 100
hurricane in the cooler the map indicate the depth 200
waters of the western of water that was 79 degrees 5o,
Gulf of Mexico before Fahrenheit or warmer, 400 foat
making landfall near the

Sources: NOAAASante Louisiana-Texas border.



" Modeling of the loop current in the GoM

* Limited area model

= 12-20 km

Gulf of Mexico
= 3 active layer, reduced gravity
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ldentical twin experiment

TRUTH —

ESTIMATE

Synthetic observations:

« Fixed stations(u,v)

e Surface drifters (x,y)

960 gptw B8 gePw  80TW

e|sopycnal floats (x,y,z)



Recapturing the eddy

Time=24 hrs




Eddies in GoM
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Results: rms(truth-analysis) of interface’s depths

Interface between layer 1 and 2

EuDA (u,v)

LaDA (x,y)

LaDA (x,y,z)

Interface between layer 2 and 3




Techniques of Data Assimilation

Deterministic techniques

* Kalman filter
* Ensemble Kalman filter
*Variational methods (3DVAR, 4DVAR)

Requirements:
1. Gaussian
2. Close to linear

NONLINEARITY vs.

Statistical techniques

* Particle filtering

* Hybrid Monte-Carlo
* Metropolis-Hastings
eLangevin sampling

Requirement:
Low dimension

DIMENSION
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Forecast step:
p(X,t) = p(x.t,) =
op_o(M;p) _13°(Q;P)
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State Estimation

Model runs + observations » state estimate
t model t? model t?: _________________________________ t N
' ' X(ty)
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Bayes: Pposterior (X‘ y) _ Pobs (y‘x) Pprior (X)

sample : S LIl . Model

posterior




Perturbed Cellular Flow Field

'5?_” o ﬂ u(xr,y,t) = -2l sin(2wkx) cos{ 2wy ug + cos(2mmy)u,(t),
it dr’

A Ah vix, u,t) = 2rkcos(2mkr) sin( 2wy )ug + cos(2mmy vy (t),
_d": _ EJEI'_ hix,u,t) = sin(2mkx) sin(2wly)ug + sin{2mmuy)hq(t),

dh ou O
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tig = 0,

Uy =1y,

th = —iuy — 2rmhy,
.i'?:i = dmmiiy,

X=Uu(x,V,t)
y =Vv(X,Y,1) Apte, Stuart and J., Tellus A 2008



Assimilating from trajectory staying in
one cell
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Problem with EnKF
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Conclusions

Data and models

Need balance in use of data
and models

Bayesian perspective
provides framework
Increasing amounts of data

and model output should be
exploited, but smartly!

Math and DA

Can hope to filter effectively
in low dimensions

Do NOT avoid nonlinearity,
use it as it is high in
information content

Seek data that has LOW

dimension but HIGH
information content



