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Claude Elwood Shannon (1916 -2001)

◦ A Mathematical Theory of Communication, Bell System Technical Journal,
1948, called “The Magna Charta of the Communication Age” in an appre-
ciation in the U.S. Congress on his death in 2001.



Entropy

◦
X ∼ (p1, p2, . . . , pM)

H(X) = −p1 log p1 − p2 log p2 − . . . − pM log pM

◦ Similarly:

H(X1, . . . , Xn)



Information sources

◦ For syntactic purposes each information source has an entropy rate

◦

La musique souvent me prend comme une mer!
Vers ma pâle étoile,

Sous un plafond de brume ou dans un vaste éther,
Je mets à la voile;

...

◦
H( Baudelaire ) = ??



Multiple sources

◦ These reveal information about each other.

◦
H(Y | X, Z, W )

or

H(X, Y | A, W ) − H(X | A, W )

etc.

◦ The mutual information is symmetric

I(X ∧ Y ) = H(X) − H(X | Y ) = H(Y ) − H(Y | X)



Typical sequences

◦ (X1, Y1), (X2, Y2), . . ., (Xn, Yn), i. i. d. ∼ pXY (x, y).

◦ txn ∈ P(X ) defined by txn(x) = 1
nN(x | xn).

◦ Tn
X := {xn : | txn(x)− pX(x) |≤ K√

n
,

txn(x) = 0 if pX(x) = 0}.

◦ Then | Tn
X |= 2nH(X)+o(1)

◦ Also, pXn(xn) = 2−nH(X)+o(1) if xn ∈ Tn
X .



Conditionally typical sequences

◦ (X1, Y1), (X2, Y2), . . ., (Xn, Yn), i. i. d. ∼ pXY (x, y).

◦ For xn ∈ Tn
X

Tn
Y |xn := {yn : | txnyn(x, y)− pXY (x, y) |≤ K√

n
,

txnyn(x, y) = 0 if pXY (x, y) = 0}

◦ Then | Tn
Y |xn |= 2nH(Y |X)+o(1)

◦ Also, pY n|Xn(yn | xn) = 2−nH(Y |X)+o(1) if yn ∈ Tn
Y |xn.
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For two random variables (X,Y ): a sense in which
I(X;Y ) represents the common part of X and Y

I(K;F ) ∼= 0

1
nH(K)



Secure communication based on a secret key

- - -

6 6

X X̂T

K K

◦ X is the message, K is the key, X qK.

◦ T is a deterministic function of X and K.

◦ X̂ is a deterministic function of T and K and should equal X.

◦ For secrecy we must have X q T .

◦ Shannon’s “One-time pad” result: We must have H(K) ≥ H(X).

◦ Communication Theory of Secrecy, Bell System Technical Journal, 1949.



The “one-time pad” result

- - -

6 6

X X̂T

K K

◦ H(X | T, K) = 0.

◦ Hence H(X, K | T ) = H(K | T ) ≤ H(K).

◦ Hence H(K | X, T ) + H(X | T ) ≤ H(K).

◦ But H(X | T ) = H(X).

◦ Hence H(X) ≤ H(K).
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For two random variables (X,Y ): a sense in which
I(X;Y ) represents the common part of X and Y

I(K;
−→
F ) ∼= 0

1
nH(K)
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Is information theoretic security dead?



Common Information of a pair of random variables pri-
vate from an eavesdropper

◦ Given random variables (X,Y, Z), how can one quantify the

common part of r.v.s X and Y that is independent of Z?

◦ Application in a private communication system: secret key

generation
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Common Information of a pair of random variables pri-
vate from an eavesdropper

◦ Given random variables (X,Y, Z), how can one quantify the

common part of r.v.s X and Y that is independent of Z?

◦ What about I(X;Y |Z)?

◦ But I(X;Y |Z) can be greater than I(X;Y )!

X ∼ B(
1

2
), Y ∼ B(

1

2
), X ⊥ Y, Z = X ⊕ Y

I(X;Y ) = 0 < I(X;Y |Z) = 1



Common Information of a pair of random variables pri-
vate from an eavesdropper

◦ Given random variables (X,Y, Z), how can one quantify the

common part of r.v.s X and Y that is independent of Z?

◦ What about I(X;Y |Z)?

◦ S(X;Y ‖Z) defined later in the talk works.



The general case requiring secrecy

I(K;
−→
F Zn) ∼= 0,

1
nH(K)



Definition of S(X;Y ‖Z)



Historical development

◦ Known as the Source model, the model was developed in the context of
“Information theoretic security”

◦ Evolutionary ancestors of the model
Model Type of advantage

Shannon’s one time pad Common secret key
↓ ↓

Wyner’s Wire-Tap Channel Eve’s channel degraded
↓ ↓

Csiszár & J. Körner’s Directions at which
Broadcast channel Eve’s channel is worst

↓ ↓
Maurer’s model Public discussion

↓ ↓
Maurer, Alhswede, Csiszár’s models: Public discussion and/or

Source Model and Channel model Quality of observations



Known lower bounds on S(X;Y ‖Z)

Authors Lower bounds on S(X;Y ‖Z)
Maurer (1993) max{I(X;Y )− I(X;Z), I(Y ;X)− I(Y ;Z)}

Ahlswede and Csisz’ar (1993) max
(
supV−U−X−Y Z I(U ;Y |V )− I(U ;Z|V ),

supV−U−Y−XZ I(U ;X|V )− I(U ;Z|V )
)

Proof idea for I(X;Y )− I(X;Z):
The Xn space is first

partitioned into 2n·H(Y |X) bins of size 2n·I(X;Y ),
i.e. the Slepian-Wolf binning strategy;
each bin is then further partitioned into

2n[I(X;Y )−I(X;Z)] bins of size 2n·I(X;Z).



Known upper bounds on S(X;Y ‖Z)

Authors Upper bounds on S(X;Y ‖Z)
Maurer (1993) min(I(X;Y ), I(X;Y |Z))

Idea: classical arguments, e.g.
H(KA) = nI(X;Y |Z) +H(KA|KB) + I(KA;FZn)
H(KA) = nI(X;Y ) +H(KA|KB) + I(KA;F )

Maurer and Wolf (1999) I(X;Y ↓ Z) := infXY−Z−T (I(X;Y |T ))
Idea: decreasing the information of Eve

cannot decrease the common private information
Renner and Wolf (2003) infU(H(U) + I(X;Y ↓ ZU))

Idea: providing Eve with a random variable U
cannot decrease the common private information

by more than H(U) bits.
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The Goal

◦ Given ψ(X;Y ‖Z), we would like to show that

ψ(X;Y ‖Z) ≥ S(X;Y ‖Z)

◦ Find properties that S(X;Y ‖Z) has

◦ Consider the set of all functions that have those properties

◦ Prove that each of them is an upper bound



Some properties of S(X;Y ‖Z)

1) n · S(X;Y ‖Z) ≥ S(Xn;Y n‖Zn), ∀n, p(x, y, z)



Some properties of S(X;Y ‖Z)

1) n · S(X;Y ‖Z) ≥ S(Xn;Y n‖Zn), ∀n, p(x, y, z)



Some properties of S(X;Y ‖Z)

1) n · S(X;Y ‖Z) ≥ S(Xn;Y n‖Zn), ∀n, p(x, y, z)

2)∀F : H(F |X) = 0 or H(F |Y ) = 0,

→ S(X;Y ‖Z) ≥ S(XF ;Y F‖ZF )



Some properties of S(X;Y ‖Z)

1) n · S(X;Y ‖Z) ≥ S(Xn;Y n‖Zn), ∀n, p(x, y, z)
2)∀F : H(F |X) = 0 or H(F |Y ) = 0,

→ S(X;Y ‖Z) ≥ S(XF ;Y F‖ZF )



Some properties of S(X;Y ‖Z)

1) n · S(X;Y ‖Z) ≥ S(Xn;Y n‖Zn), ∀n, p(x, y, z)

2)∀F : H(F |X) = 0 or H(F |Y ) = 0,

→ S(X;Y ‖Z) ≥ S(XF ;Y F‖ZF )

3)∀X ′, Y ′ : H(X ′|X) = 0, H(Y ′|Y ) = 0,

→ S(X;Y ‖Z) ≥ S(X ′;Y ′‖Z)



Some properties of S(X;Y ‖Z)

1) n · S(X;Y ‖Z) ≥ S(Xn;Y n‖Zn), ∀n, p(x, y, z)

2)∀F : H(F |X) = 0 or H(F |Y ) = 0,

→ S(X;Y ‖Z) ≥ S(XF ;Y F‖ZF )

3)∀X ′, Y ′ : H(X ′|X) = 0, H(Y ′|Y ) = 0,

→ S(X;Y ‖Z) ≥ S(X ′;Y ′‖Z)

4)S(X;Y ‖Z) ≥ H(X|Z)−H(X|Y ) = I(X;Y )− I(X;Z)
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S(Alice’s information; Bob’s information‖ Eve’s information)
is a non-increasing potential function

Take an arbitrary p(x, y, z) and an arbitrary strategy of length n

n · S(X;Y ‖Z) ≥ S(Xn;Y n‖Zn)

≥ S(XnF1;Y
nF1‖ZnF1)

≥ S(XnF1F2;Y
nF1F2‖ZnF1F2) ≥ ...

≥ S(Xn−→F ;Y n
−→
F ‖Zn

−→
F )

≥ S(KA;KB‖Zn
−→
F )

≥ H(KA|Zn
−→
F )−H(KA|KBZn

−→
F ) ∼= H(KA)



Properties required of the functions of interest

1) n · ψ(X;Y ‖Z) ≥ ψ(Xn;Y n‖Zn), ∀n, p(x, y, z)

2)∀F : H(F |X) = 0 or H(F |Y ) = 0,

→ ψ(X;Y ‖Z) ≥ ψ(XF ;Y F‖ZF )

3)∀X ′, Y ′ : H(X ′|X) = 0, H(Y ′|Y ) = 0,

→ ψ(X;Y ‖Z) ≥ ψ(X ′;Y ′‖Z)

4)ψ(X;Y ‖Z) ≥ H(X|Z)−H(X|Y )



Proving that any function that satisfies the properties is
an upper bound

Take an arbitrary p(x, y, z) and an arbitrary strategy of length n

Can write the same chain of inequalities:

n · ψ(X;Y ‖Z) ≥ ψ(Xn;Y n‖Zn)

≥ ψ(XnF1;Y
nF1‖ZnF1)

≥ ψ(XnF1F2;Y
nF1F2‖ZnF1F2) ≥ ...

≥ ψ(Xn−→F ;Y n
−→
F ‖Zn

−→
F )

≥ ψ(KA;KB‖Zn
−→
F )

≥ H(KA|Zn
−→
F )−H(KA|KBZn

−→
F ) ∼= H(KA)

Conclusion: ∀p(x, y, z), n: n · ψ(X;Y ‖Z) ≥ H(KA)



Example: I(X;Y |Z) is an upper bound

1) n · I(X;Y |Z) ≥ I(Xn;Y n|Zn), ∀n, p(x, y, z)
√

2)∀F : H(F |X) = 0 or H(F |Y ) = 0,

→ I(X;Y |Z) ≥ I(XF ;Y F |ZF )
√

since if H(F |X) = 0:

I(X;Y |Z) = I(XF ;Y |Z) = I(F ;Y |Z) + I(XF ;Y F |ZF )

3)∀X ′, Y ′ : H(X ′|X) = 0, H(Y ′|Y ) = 0,

→ I(X;Y |Z) ≥ I(X ′;Y ′|Z)
√

4)I(X;Y |Z) ≥ H(X|Z)−H(X|Y )
√



Strategy for finding a new upper bound

◦ Take an existing outer bound that verifies the properties

◦ Perturb the expression of the outer bound

◦ Check whether the properties are still satisfied:



Strategy for finding a new upper bound

◦ Take an existing outer bound that verifies the properties

◦ Perturb the expression of the outer bound

◦ Check whether the properties are still satisfied:

◦ Yes!

◦ Hopefully it is strictly better than the existing bound

◦ No.

◦ See which property is violated and why?

◦ Trial and error: Try to change the perturbation in a way

that it works



Our new upper bound

For any increasing convex function f : R+ → R+, S(X;Y ‖Z) is

bounded from above by

inf
J
f−1{f(S(X;Y ‖J)) + Sf−one−way(XY ; J(s)‖Z)

where

Sf−one−way(A;B(s)‖C) =

supU−V−A−BC[f(H(U |ZV ))− f(H(U |Y V ))]

leads to an upper bound when S(X;Y ‖J) is bounded from above

by I(X;Y |J)



Comparison with Renner and Wolf upper bound (I)

infJ
(
I(XY ; J |Z) + I(X;Y |J)

)
is a computable expression that is greater

than or equal to our new upper bound.

•infJ
(
I(XY ; J |Z) + I(X;Y |J)

)
≤ infU(H(U) + I(X;Y ↓ ZU)):

infU(H(U) + I(X;Y ↓ ZU)) = infU
(
H(U) + minJ−ZU−XY I(X;Y |J)

)
Assume minimum occurs at JU :

infU(H(U) + I(X;Y ↓ ZU)) = infU
(
H(U) + I(X;Y |JU)

)
≥

infU
(
I(XY ;ZU |Z) + I(X;Y |JU)

)
≥ infU

(
I(XY ; JU |Z) + I(X;Y |JU)

)
≥

infJ
(
I(XY ; J |Z) + I(X;Y |J)

)



Comparison with Renner and Wolf upper bound (II)

• There is an example for which the inequality is strict

inf
J

(
I(XY ; J |Z) + I(X;Y |J)

)
< inf

U
(H(U) + I(X;Y ↓ ZU))

Idea: perturbing the Renner-Wolf example:

X

Y 0 1 2 3

0 1
8

1
8 0 0

1 1
8

1
8 0 0

2 0 0 1
4 0

3 0 0 0 1
4

Z =

 X + Y (mod 2) if X,Y ∈ {0,1}
X (mod 2) if X ∈ {2,3}

U = b
X

2
c



Comparison with Renner and Wolf upper bound (III)

We perturb the mentioned example. Since the RW bound does not behave
as smoothly as the new bound behaves, the new bound outperforms the RW
bound.

We find a binary random variable V of small entropy satisfying V −U −XY Z
such that the new bound is strictly better than the double intrinsic information
bound for the triple X̃ = X, Ỹ = Y, Z̃ = (Z, V ). Proof idea:

◦ Assuming that the RW bound and ours are the same at (X̃, Ỹ , Z̃), we
prove that: For any sequence of Ui’s such thatH(Ui)+I(X;Y ↓ ZUi) →
infU [H(U) + I(X;Y ↓ ZU)] as i→∞, we must have H(Ui) → 0.

◦ Since the intrinsic information is a continuous function, H(Ui)+ I(X;Y ↓
ZUi) must converge to I(X;Y ↓ Z) which is equal to 3

2. Hence the RW
bound would be around 3

2 at (X̃, Ỹ , Z̃).

◦ Since our bound is continuous, and is around 1 at (X,Y, Z), it has to be
close to 1 at (X̃, Ỹ , Z̃). Contradiction!



New Lower Bound

Given

U1 −X − Y Z; t1 := I(U1;Y )− I(U1;Z)

U2 − Y U1 −XZU1; t2 := I(U2;Y |U1)− I(U2;Z|U1)

U3 −XU1U2 − Y ZU1U2; t3 := I(U3;Y |U1U2)− I(U3;Z|U1U2)

...

S(X;Y ‖Z) ≥ ∑q
i=p ti



Comparison with Ahlswede and Csiszárs lower bound

• A generalization of Ahlswede and Csiszárs lower bound (new

feature: interactive communication ): U1 = V, U2 = 0, U3 =

U, p = q = 3



Comparison with Ahlswede and Csiszárs lower bound

• A generalization of Ahlswede and Csiszárs lower bound (new

feature: interactive communication ): U1 = V, U2 = 0, U3 =

U, p = q = 3

• There is an example for which the new bound is strictly better:

it is tight for the example provided in Ahlswede and Csisz’ar to

show that their bound is not tight: Choice of X = (X1, X2), Y =

(Y1, Y2), Z = (Z1, Z2)

X1 − Y1 − Z1, Y2 −X2 − Z2, I(X1Y1Z1;X2Y2Z2) = 0



Proof idea

For simplicity assume p = 1, q = 2:

Un1 −Xn − Y nZn

Un2 − Y nUn1 −XnZn

• Un1 is created by Xn and transmitted to Y n using Slepian-Wolf bin index F1

• Un2 is created by Y nUn1 transmitted to Xn using Slepian-Wolf bin index F2

• Generated key:
H(Un1U

n
2 |F1F2Z

n) = H(Un1 |F1F2Z
n) +H(Un2 |U

n
1F1F2Z

n) =

H(Un1 |F1F2Z
n) +H(Un2 |U

n
1F2Z

n)

If t2 > 0, F2 ⊥ (ZnUn1 ) ⇒ H(Un1 |F1F2Z
n) = H(Un1 |F1Z

n) = [t1]+
H(Un2 |U

n
1F2Z

n) = t2 =⇒ 1
nH(Un1U

n
2 |F1F2Z

n) ≥ t1 + t2

If t2 ≤ 0,H(Un1 |F1F2Z
n) ≥ H(Un1 |F1Z

n)−n|t2| =⇒ 1
nH(Un1U

n
2 |F1F2Z

n) ≥
t1 + t2



Channel Model: Definition of CCH(p(yz|x))

Alice puts X1, Bob and Eve receive Y1, Z1; a round of public discussion; Alice
puts X2, Bob and Eve receive Y2, Z2; a round of public discussion... Alice
creates KA(Xn,

−→
F ), Bob creates KB(Y n,

−→
F ).

P (KA = KB = K) > 1− ε,
1

n
I(K;Zn

−→
F ) < ε



Known results on CCH(p(yz|x))

Authors Lower bounds on CCH(p(yz|x))
Maurer (1993) supp(x)(max{I(X;Y )− I(X;Z), I(Y ;X)− I(Y ;Z)})

Idea: CCH(p(yz|x)) ≥ supp(x) S(X;Y ‖Z)
Remark: Can use the lower bound of

Ahlswede and Csisz’ar to get a better lower bound
Authors Upper bounds on CCH(p(yz|x))

Maurer (1993) min(supp(x) I(X;Y |Z), supp(x) I(X;Y ))
Idea: Idea: classical converse arguments.



Known results on CCH(p(yz|x))

Authors Lower bounds on CCH(p(yz|x))
Maurer (1993) supp(x)(max{I(X;Y )− I(X;Z), I(Y ;X)− I(Y ;Z)})

Idea: CCH(p(yz|x)) ≥ supp(x) S(X;Y ‖Z)
Remark: Can use the lower bound of

Ahlswede and Csisz’ar to get a better lower bound
Authors Upper bounds on CCH(p(yz|x))

Maurer (1993) min(supp(x) I(X;Y |Z), supp(x) I(X;Y ))
Idea: Idea: classical converse arguments.

We prove new lower and upper bounds



Application of the potential function method to Channel
Model

New upper bound (can be shown to be strictly better than the best

known upper bound):

sup
p(x)

inf
J

[I(X;Y |J) + I(XY ; J |Z)]

Idea:Find properties that imply an expression is an upper bound

Verify that the given expression satisfies these properties.

Would like to prove that

Ψ(q(xy|z)) = sup
q(x)

ψ(q(x)q(y, z|x))

is an outer bound.



Sufficient conditions for a function to be an upper
bound for the Channel Model

1) Whenever H(X ′|X) = 0 and XY Z − X − X ′ −

X ′Y ′Z′ and p(y′, z′|x′) = q(y′, z′|x′) are true, we have:

ψ(XX ′;Y Y ′‖ZZ′) ≥ ψ(X;Y ‖Z) + Ψ(q(xy|z))

2) ∀F : H(F |X) = 0 or H(F |Y ) = 0,

→ ψ(X;Y ‖Z) ≥ ψ(XF ;Y F‖ZF )

3) ∀X ′, Y ′ : H(X ′|X) = 0, H(Y ′|Y ) = 0,

→ ψ(X;Y ‖Z) ≥ ψ(X ′;Y ′‖Z)

4) ψ(X;Y ‖Z) ≥ H(X|Z)−H(X|Y ) = I(X;Y )− I(X;Z)




