
Sparse Recovery Using
Sparse (Random) Matrices

Piotr IndykPiotr Indyk
MIT

Joint work with: Radu Berinde, Anna Gilbert, Howard Karloff, Martin Strauss and Milan Ruzic

Linear CompressionLinear Compression
(learning Fourier coeffs, linear sketching, finite rate of innovation,

compressed sensing...)

• Setup:
– Data/signal in n-dimensional space : x

E.g., x is an 256x256 image ⇒ n=65536
Goal: compress x into a “sketch” Ax

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

k=0.1n

– Goal: compress x into a sketch Ax ,
where A is a m x n “sketch matrix”, m << n

• Requirements:
– Plan A: want to recover x from Ax

A Ax• Impossible: undetermined system of equations
– Plan B: want to recover an “approximation” x* of x

• Sparsity parameter k
• Informally: want to recover largest k<<n coordinates of x

=A
x

Ax

• Formally: want x* such that
||x*-x||p≤ C(k) minx’ ||x’-x||q

over all x’ that are k-sparse (at most k non-zero entries)
• Want:

– Good compression (small m)
– Efficient algorithms for encoding and recovery

• Why linear compression ?

Application I: MonitoringApplication I: Monitoring
Network Traffic Data Streams

• Router routs packets
– Where do they come from ?
– Where do they go to ?

Id ll ld lik t i t i t ffi• Ideally, would like to maintain a traffic
matrix x[.,.]

– Easy to update: given a (src,dst) packet, increment
x d t destinationxsrc,dst

– Requires way too much space!
(232 x 232 entries)

– Need to compress x, increment easily ce

destination

• Using linear compression we can:
– Maintain sketch Ax under increments to x, since

A(x+Δ) = Ax + AΔ

so
ur

c

– Recover x* from Ax

x

Applications, ctd.

• Single pixel camera

[Wakin, Laska, Duarte, Baron, Sarvotham, Takhar,
Kelly, Baraniuk’06]

P li E i t• Pooling Experiments
[Kainkaryam, Woolf’08], [Hassibi et al’07], [Dai-
Sheikh, Milenkovic, Baraniuk], [Shental-Amir-
Zuk’09]]

Constructing matrix A
• “Most” matrices A workMost matrices A work

– Sparse matrices:
• Data stream algorithms
• Coding theory (LDPCs)

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

Coding theory (LDPCs)
– Dense matrices:

• Compressed sensing
• Complexity/learning theory QuickTime™ and a

TIFF (Uncompressed) decompressor
are needed to see this picture.p y g y

• “Traditional” tradeoffs:
– Sparse: computationally more efficient, explicitSparse: computationally more efficient, explicit
– Dense: shorter sketches

• Goal: the “best of both worlds”

Prior and New ResultsPrior and New Results
Paper Rand.

/ Det.
Sketch
length

Encode
time

Column
sparsity

Recovery time Approx

Prior and New Results
ExcellentScale: Very Good Good Fair

Prior and New Results
Paper R/

D
Sketch length Encode

time
Column
sparsity

Recovery time Approx

[CCF’02] R k log n n log n log n n log n l2 / l2[CCF 02],
[CM’06]

R k log n n log n log n n log n l2 / l2

R k logc n n logc n logc n k logc n l2 / l2

[CM’04] R k log n n log n log n n log n l1 / l1

R k logc n n logc n logc n k logc n l1 / l1og og og og /

[CRT’04]
[RV’05]

D k log(n/k) nk log(n/k) k log(n/k) nc l2 / l1

D k logc n n log n k logc n nc l2 / l1

[GSTV’06] D k logc n n logc n logc n k logc n l1 / l1
[GSTV’07] D k logc n n logc n k logc n k2 logc n l2 / l1

[BGIKS’08] D k log(n/k) n log(n/k) log(n/k) nc l1 / l1

[GLR’08] D k lognlogloglogn kn1-a n1-a nc l2 / l1

[NV’07] [DM’08] [NT’08] D k log(n/k) nk log(n/k) k log(n/k) nk log(n/k) * log l2 / l1[NV 07], [DM 08], [NT 08],
[BD’08], [GK’09], …

D k log(n/k) nk log(n/k) k log(n/k) nk log(n/k) log l2 / l1

D k logc n n log n k logc n n log n * log l2 / l1

[IR’08], [BIR’08],[BI’09] D k log(n/k) n log(n/k) log(n/k) n log(n/k)* log l1 / l1
“state
of art”

R “i i i l ”Recovery “in principle”
(when is a matrix “good”)(when is a matrix good)

QuickTime™ and a QuickTime™ and adense vs sparse
R t i t d I t P t (RIP) * ffi i t t f d t i A

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (Uncompressed) decompressor

are needed to see this picture.dense vs. sparse
• Restricted Isometry Property (RIP) * - sufficient property of a dense matrix A:

Δ is k-sparse ⇒ ||Δ||2≤ ||AΔ||2 ≤ C ||Δ||2
• Holds w.h.p. for:

R d G i /B lli O(k l (/k))– Random Gaussian/Bernoulli: m=O(k log (n/k))
– Random Fourier: m=O(k logO(1) n)

• Consider m x n 0-1 matrices with d ones per column
• Do they satisfy RIP ?• Do they satisfy RIP ?

– No, unless m=Ω(k2) [Chandar’07]
• However, they can satisfy the following RIP-1 property [Berinde-Gilbert-Indyk-

Karloff-Strauss’08]:]

Δ is k-sparse ⇒ d (1-ε) ||Δ||1≤ ||AΔ||1 ≤ d||Δ||1
• Sufficient (and necessary) condition: the underlying graph is a

(k, d(1-ε/2))-expander(k, d(1 ε/2)) expander

Expanders
QuickTime™ and a

TIFF (Uncompressed) decompressor
are needed to see this picture.

n
m

• A bipartite graph is a (k,d(1-ε))-
expander if for any left set S, |S|≤k, we
have |N(S)|≥(1-ε)d |S|

N(S)
have |N(S)| (1 ε)d |S|

• Objects well-studied in theoretical
computer science and coding theory
C t ti

d
S• Constructions:

– Probabilistic: m=O(k log (n/k))
– Explicit: m=k quasipolylog n m

S

• High expansion implies RIP-1:
Δ is k-sparse ⇒ d (1-ε) ||Δ||1≤ ||AΔ||1 ≤ d||Δ||1
[Berinde-Gilbert-Indyk-Karloff-Strauss’08]

n

Recovery: algorithms

Matching Pursuit(s)
A x*-x Ax-Ax*

=

i
i

• Iterative algorithm: given current approximation x* :
– Find (possibly several) i s. t. Ai “correlates” with Ax-Ax* . This

yields i and z s t

i

yields i and z s. t.
||x*+zei-x||p << ||x* - x||p

– Update x*
Sparsify x* (keep only k largest entries)– Sparsify x (keep only k largest entries)

– Repeat
• Norms:

2 C S MP SP IHT (RIP)– p=2 : CoSaMP, SP, IHT etc (RIP)
– p=1 : SMP, SSMP (RIP-1)
– p=0 : LDPC bit flipping (sparse matrices)

Sequential Sparse MatchingSequential Sparse Matching
Pursuit

• Algorithm:
– x*=0

R t T ti A– Repeat T times
• Repeat S=O(k) times

– Find i and z that minimize* ||A(x*+zei)-Ax||1

A

i– x* = x*+zei

• Sparsify x*
(set all but k largest entries of x* to 0)

i N(i)

Ax Ax*• Similar to SMP, but updates done
sequentially

x-x*

Ax-Ax

* Set z=median[(Ax*-Ax)N(i)

SSMP: ApproximationSSMP: Approximation
guarantee

• Want to find k-sparse x*
that minimizes ||x-x*||1 x

• By RIP1, this is
approximately the same as

i i i i ||A A *||
a1 a2

minimizing ||Ax-Ax*||1
• Need to show we can do it

dil xgreedily
a1

a2

x

2

Supports of a1 and a2 have small
overlap (typically)

Experiments

256x256

SSMP is ran with S=10000,T=20. SMP is ran for 100 iterations. Matrix sparsity is d=8.

Conclusions
• Algorithms for sparse approximation using

sparse matrices
– Fast

Short sketches– Short sketches
• State of the art: can do 2 out of 3:

– Near-linear encoding/decodingNear linear encoding/decoding
– O(k log (n/k)) sketch length
– Approximation guarantee with respect to L2/L1

This talk

norm
• Questions:

– 3 out of 3 ?– 3 out of 3 ?
– Explicit constructions

QuickTime™ and a
QuickTime™ and

TIFF (LZW) decompreQuickTime™ and a QuickTime™ andQuickTime and a
TIFF (LZW) decompressor

are needed to see this picture.

TIFF (LZW) decompre
are needed to see this p

QuickTime and a
TIFF (LZW) decompressor

are needed to see this picture.
TIFF (LZW) decompre

are needed to see this p

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

QuickTime™ and a
TIFF (LZW) decompressor

are needed to see this picture.

6

7

8

0

1

2

3

4

5

6

x

2

3

4

5

6

7

8

x*
0

1

2

k=2

Goal of this talk

“Stay awake until the end”

Linear compression: applications
• Data stream algorithms destinationg
(e.g. for network monitoring)

– Efficient increments: so
ur

ce

A(x+Δ) = Ax + AΔ

Si l i l• Single pixel camera
[Wakin, Laska, Duarte, Baron, Sarvotham, Takhar,
Kelly, Baraniuk’06]

• Pooling, Microarray
Experiments [Kainkaryam Woolf] [Hassibi etExperiments [Kainkaryam, Woolf], [Hassibi et
al], [Dai-Sheikh, Milenkovic, Baraniuk]

SSMP: Running time
• Algorithm:g

– x*=0
– Repeat T times

• For each i=1…n compute* zi that Ap i
achieves

Di=minz ||A(x*+zei)-b||1
and store Di in a heap

• Repeat S=O(k) times

A

i• Repeat S=O(k) times
– Pick i,z that yield the best gain
– Update x* = x*+zei
– Recompute and store Di’ for all i’ such that

N(i) and N(i’) intersect

i

Ax Ax*N(i) and N(i) intersect
• Sparsify x*

(set all but k largest entries of x* to 0)

• Running time: x-x*

Ax-Ax

Running time:
T [n(d+log n) + k nd/m*d (d+log n)]

= T [n(d+log n) + nd (d+log n)] = T [nd (d+log n)]

Proof: d(1 ε/2) expansion ⇒ RIP 1Proof: d(1-ε/2)-expansion ⇒ RIP-1
• Want to show that for any k-sparse Δ we have

d (1-ε) ||Δ||1≤ ||A Δ||1 ≤ d||Δ||1d (1 ε) ||Δ||1≤ ||A Δ||1 ≤ d||Δ||1
• RHS inequality holds for any Δ
• LHS inequality:

– W.l.o.g. assume

d

W.l.o.g. assume
|Δ1|≥… ≥|Δk| ≥ |Δk+1|=…= |Δn|=0

– Consider the edges e=(i,j) in a lexicographic
order

– For each edge e=(i,j) define r(e) s.t.
• r(e)=-1 if there exists an edge (i’,j)<(i,j)
• r(e)=1 if there is no such edge

• Claim 1: ||AΔ|| ≥∑ |Δ |r

m

• Claim 1: ||AΔ||1 ≥∑e=(i,j) |Δi|re
• Claim 2: ∑e=(i,j) |Δi|re ≥ (1-ε) d||Δ||1

n

