Sparse Recovery Using
Sparse (Random) Matrices

Piotr Indyk
MIT

Joint work with: Radu Berinde, Anna Gilbert, Howard Karloff, Martin Strauss and Milan Ruzic

Linear Compression

(learning Fourier coeffs, linear sketching, finite rate of innovation,
compressed sensing...)

« Setup:
— Data/signal in n-dimensional space : x eeigTime anda k=0.1n
E.g., x is an 256x256 image = n=65536 are needed to see this pioture.
— Goal: compress x into a “sketch” Ax

where A is a m x n “sketch matrix”, m << n

 Requirements:
— Plan A: want to recover x from Ax
* Impossible: undetermined system of equations A
— Plan B: want to recover an “approximation” x* of x X
» Sparsity parameter k
* Informally: want to recover largest k<<n coordinates of x
* Formally: want x* such that
|Ix*-x]|p< C(k) miny [[x-x|]q
over all x’ that are k-sparse (at most k non-zero entries)

= | AX

Want:
— Good compression (small m)
— Efficient algorithms for encoding and recovery

* Why linear compression ?

Application |: Monitoring
Network Traffic Data Streams

* Router routs packets
— Where do they come from ?
— Where do they go to ?
* lIdeally, would like to maintain a traffic
matrix x[.,.]

— [Easy to update: given a (src,dst) packet, increment))
“ destination

src,dst

— Requires way too much space!
(232 x 232 entries)
— Need to compress x, increment easily
« Using linear compression we can:
— Maintain sketch Ax under increments to x, since
A(X+A) = Ax + AA
— Recover x* from Ax

SOUTCG
]

Application, ctd.

Low-cost, fast, sensitive
optical detection
PD

Xmitr

Compressed, encoded
image data sent via RF
for reconstruction

« Single pixel camera

Image encoded by DMD
and random basis

[Wakin, Laska, Duarte, Baron, Sarvotham, Takhar,
Kelly, Baraniuk’06]

* Pooling Experiments

[Kainkaryam, Woolf'08], [Hassibi et al’'07], [Dai-
Sheikh, Milenkovic, Baraniuk], [Shental-Amir-

Zuk'09]

Constructing matrix A

« “Most’” matrices A work

— Sparse matrices:

« Data stream algorithms
« Coding theory (LDPCs)

— Dense matrices:
« Compressed sensing
« Complexity/learning theory

 “Traditional” tradeoffs:
— Sparse: computationally more efficient, explicit
— Dense: shorter sketches

 Goal: the “best of both worlds”

Prior and New Results

Paper

Rand.
/ Det.

Sketch
length

Encode
time

Column
sparsity

Recovery time

Approx

Scale: JEXcellentVery Good Good [IESIN
Prior and New Results

Paper Sketch length | Encode Column Recovery time
time sparsity

[CCF’02], klogn nlogn log n
[CM’06]

[CM04]

[CRT04]
[RV'05]

[GSTV'06]
[GSTV'07]

mmp | [BGIKS'08]
[GLR08]

[NV’07], [DM’08], [NT'08],
[BD’08], [GK'09], ...

“state

| [1rosy, BIR08] [B1'09]

Recovery “in principle”
(when is a matrix “good”)

dense vs. sparse
]

Restricted Isometry Property (RIP) * - sufficient property of a dense matrix A:
Ais k-sparse = |[[|A||.< ||AA]lL < C ||A]l,
Holds w.h.p. for:
— Random Gaussian/Bernoulli: m=0(k log (n/k))
— Random Fourier: m=0(k log®")n)
Consider m x n 0-1 matrices with d ones per column
Do they satisfy RIP ?
— No, unless m=Q(k?) [Chandar07]

However, they can satisfy the following RIP-1 property [Berinde-Gilbert-Indyk-
Karloff-Strauss’08]:

A'is k-sparse = d (1-¢) ||A||4= ||AA]], < d]|A]]4
Sufficient (and necessary) condition: the underlying graph is a
(k, d(1-¢/2))-expander

Expanders T

A bipartite graph is a (k,d(1-¢))-

expander if for any left set S, [S|<k, we
have [N(S)|=(1-¢)d |S|

Objects well-studied in theoretical
computer science and coding theory
Constructions: S
— Probabilistic: m=0(k log (n/k))

— Explicit: m=k quasipolylog n

High expansion implies RIP-1:

A'is k-sparse = d (1-¢) ||A||4= ||AA]], < d]|A]]4 N
[Berinde-Gilbert-Indyk-Karloff-Strauss’08]

Recovery: algorithms

Matchlng Purswt(s)

X*-x Ax-Ax*

| J|=|- (B

] -I] \ J]] *
 |terative algorithm: given current approximation x* :

— Find (possibly several) i s. t. A “correlates” with Ax-Ax* . This
yieldsiand z s. t.

[IX*+ze-x]], << {Ix* -]|,

— Update x*
— Sparsify x* (keep only k largest entries)
— Repeat
« Norms:
— p=2:CoSaMP, SP, IHT etc (RIP)
— p=1:SMP, SSMP (RIP-1)
— p=0 : LDPC bit flipping (sparse matrices)

Sequential Sparse Matching
Pursuit

« Algorithm:
— x*=0
— Repeat T times
« Repeat S=0(k) times
— Find i and z that minimize* ||A(x*+ze,)-Ax||,
— X* = x*+ze,
¢ Sparsify x*
(set all but k largest entries of x* to 0)

« Similar to SMP, but updates done
sequentially

* Set z=median[(AX*-AX)y,

SSMP: Approximation
guarantee

« Want to find k-sparse x*
that minimizes ||x-x*|| O x
By RIP1, thisis
approximately the same as a, a
minimizing ||Ax-Ax*||,

* Need to show we can do it
greedily

Supports of a, and a, have small
overlap (typically)

256x256

28 - . +
== SSMP k=0.05m
- SMP k=0.05m
—+— SSMP k=0.1m
26 @ « == SMP k=0.1m
@ -#-LP
0 103.4 |
o
[+7]
24 %
=
£
i [s4]
=z 22 e
«]
g 33
5 10
20 o
= N
S h
=
—d— SSMP k=0.05m -
18 - SMP k=0.05m
—4— SSMP k=0.1m
“—+ SMP k=0.1m 1072
-#=LP . .
185 1 1.5 2 25 3 0.5 1 15 2 25 3
Mumber of measurements {m) w10’ Number of measurements {m) < 10"

SSMP is ran with S=10000,T=20. SMP is ran for 100 iterations. Matrix sparsity is d=8.

Conclusions

 Algorithms for sparse approximation uging
sparse matrices

— Fast
— Short sketches

« State of the art: can do Z'out™hf 3:
— Near-linear encoding/decuaiag .
— O(k log (n/k)) skéteh length } This talk

— Approximatian guaraiitee with respect to L2/L1
norm

« Quesgfions:
— J ouof 37
— Explicit constructions

QuickTime™ and a QuickTime™ an(

TIFF (LZW) decompressor TIFF (LZW) decompr
are needed to see this picture. are needed to see this p

QuickTime™ and a
TIFF (LZW) decompressor
are needed to see this picture.

o P N W A OO N ©
P

O B N W A O O N ®©
oy

k

2

Goal of this talk

“Stay awake until the end”

Linear compression: applications

« Data stream algorithms destination
(e.g. for network monitoring)

— Efficient increments:
A(X+A) = Ax + AA

oNnLiren

« Single pixel camera

[Wakin, Laska, Duarte, Baron, Sarvotham, Takhar,
Kelly, Baraniuk’06]

* Pooling, Microarray

EXperimentS [Kainkaryam, Woolf], [Hassibi et
al], [Dai-Sheikh, Milenkovic, Baraniuk]

SSMP: Running time

« Algorithm:
— x*=0
— Repeat T times

« For each i=1...n compute* z that
achieves
Di=min, ||A(x"+ze))-b||,
and store D.in a heap
* Repeat S=0(k) times
— Pick i,z that yield the best gain
— Update x* = x*+ze,
— Recompute and store D, for all i such that
N(i) and N(i’) intersect

« Sparsify x*
(set all but k largest entries of x* to 0)
* Running time:
T [n(d+log n) + k nd/m*d (d+log n)]
=T [n(d+log n) + nd (d+log n)] = T [nd (d+log n)]

Proof. d(1-¢/2)-expansion = RIP-1

Want to show that for any k-sparse A we have
d (1-g) [|A[l= [|A All; < d]]A]l4
RHS inequality holds for any A

LHS inequality:
— W.l.o.g. assume
|A4]Z... 2[A] 2 [Agq]=...= |A[=0
— Consider the edges e=(i,j) in a lexicographic
order
— For each edge e=(i,j) define r(e) s.t.
- r(e)=-1 if there exists an edge (i’,j)<(i,))
* r(e)=1 if there is no such edge
Claim 1: ||AA||1 ZZe:(i,j) |Ai|re

Claim 2:) . [Afre = (1-¢) d[|A]]4

