Sparse Recovery Using Sparse (Random) Matrices

Piotr Indyk MIT

Joint work with: Radu Berinde, Anna Gilbert, Howard Karloff, Martin Strauss and Milan Ruzic

Linear Compression

(learning Fourier coeffs, linear sketching, finite rate of innovation, compressed sensing...)

- Setup:
 - Data/signal in n-dimensional space : x
 E.g., x is an 256x256 image ⇒ n=65536
 - Goal: compress x into a "sketch" Ax , where A is a m x n "sketch matrix", m << n
- Requirements:
 - Plan A: want to recover x from Ax
 - Impossible: undetermined system of equations
 - Plan B: want to recover an "approximation" x* of x
 - Sparsity parameter k
 - Informally: want to recover largest k<<n coordinates of x
 - Formally: want x* such that

$||x^{*}-x||_{p} \leq C(k) min_{x'} ||x'-x||_{q}$

over all x' that are k-sparse (at most k non-zero entries)

- Want:
 - Good compression (small m)
 - Efficient algorithms for encoding and recovery
- Why linear compression ?

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

 $A \qquad \int |x| = |Ax|$

k=0.1n

Application I: Monitoring Network Traffic Data Streams

- Router routs packets
 - Where do they come from ?
 - Where do they go to ?
- Ideally, would like to maintain a traffic

matrix x[.,.]

- Easy to update: given a (src,dst) packet, increment
 x_{src,dst}
- Requires way too much space!
 (2³² x 2³² entries)
- Need to compress x, increment easily
- Using linear compression we can:
 - Maintain sketch Ax under increments to x, since

 $A(x+\Delta) = Ax + A\Delta$

Recover x* from Ax

• Pooling Experiments [Kainkaryam, Woolf'08], [Hassibi et al'07], [Dai-Sheikh, Milenkovic, Baraniuk], [Shental-Amir-

Zuk'09]

Constructing matrix A

- "Most" matrices A work
 - Sparse matrices:
 - Data stream algorithms
 - Coding theory (LDPCs)
 - Dense matrices:
 - Compressed sensing
 - Complexity/learning theory
- "Traditional" tradeoffs:
 - Sparse: computationally more efficient, explicit
 - Dense: shorter sketches
- Goal: the "best of both worlds"

QuickTime™ and a TIFF (Uncompressed) decompreare needed to see this picture

Prior and New Results

	Paper	Rand. / Det.	Sketch length	Encode time	Column sparsity	Recovery time	Approx
--	-------	-----------------	------------------	----------------	--------------------	---------------	--------

Scale: Excellent Very Good Good Fair

"state of art"

Prior and New Results

Paper	R/ D	Sketch length	Encode time	Column sparsity	Recovery time	Approx
[CCF'02], [CM'06]	R	k log n	n log n	log n	n log n	12 / 12
	R	k log ^c n	n log ^c n	log ^c n	k log ^c n	12 / 12
[CM'04]	R	k log n	n log n	log n	n log n	1 / 1
	R	k log ^c n	n log ^c n	log ^c n	k log⁰ n	1 / 1
[CRT'04] [RV'05]	D	k log(n/k)	nk log(n/k)	k log(n/k)	n ^c	12 / 11
	D	k log ^c n	n log n	k log ^c n	n ^c	12 / 11
[GSTV'06] [GSTV'07]	D	k log ^c n	n log ^c n	log ^c n	k log ^c n	1 / 1
	D	k log ^c n	n log ^c n	k log ^c n	k² log ^c n	12 / 11
[BGIKS'08]	D	k log(n/k)	n log(n/k)	log(n/k)	n ^c	1 / 1
[GLR'08]	D	k logn ^{logloglogn}	kn ^{1-a}	n ^{1-a}	n ^c	12 / 11
[NV'07], [DM'08], [NT'08], [BD'08], [GK'09],	D	k log(n/k)	nk log(n/k)	k log(n/k)	nk log(n/k) * log	12 / 11
	D	k log ^c n	n log n	k log⁰ n	n log n * log	12 / 11
[IR'08], [BIR'08],[BI'09]	D	k log(n/k)	n log(n/k)	log(n/k)	n log(n/k)* log	1 / 1

Recovery "in principle" (when is a matrix "good")

dense vs. sparse

• Restricted Isometry Property (RIP) * - sufficient property of a dense matrix A:

 $\Delta \text{ is k-sparse } \Rightarrow ||\Delta||_2 \le ||A\Delta||_2 \le C ||\Delta||_2$

- Holds w.h.p. for:
 - Random Gaussian/Bernoulli: m=O(k log (n/k))
 - Random Fourier: $m=O(k \log^{O(1)} n)$
- Consider m x n 0-1 matrices with d ones per column
- Do they satisfy RIP ?
 - No, unless $m=\Omega(k^2)$ [Chandar'07]
- However, they can satisfy the following RIP-1 property [Berinde-Gilbert-Indyk-Karloff-Strauss'08]:

 Δ is k-sparse \Rightarrow d (1- ϵ) $||\Delta||_1 \le ||A\Delta||_1 \le d||\Delta||_1$

Sufficient (and necessary) condition: the underlying graph is a
 (k, d(1-ε/2))-expander

Expanders

- A bipartite graph is a (k,d(1-ε))expander if for any left set S, |S|≤k, we have |N(S)|≥(1-ε)d |S|
- Objects well-studied in theoretical computer science and coding theory
- Constructions:
 - Probabilistic: m=O(k log (n/k))
 - Explicit: m=k quasipolylog n
- High expansion implies RIP-1:

 $\Delta \text{ is } \textbf{k-sparse } \Rightarrow \textbf{d} (1-\epsilon) ||\Delta||_1 \le ||A\Delta||_1 \le \textbf{d} ||\Delta||_1$ [Berinde-Gilbert-Indyk-Karloff-Strauss'08]

n

m

Recovery: algorithms

- Iterative algorithm: given current approximation x* :
 - Find (possibly several) i s. t. A_i "correlates" with Ax-Ax*. This yields i and z s. t.

 $||x^{+}ze_{i}-x||_{p} << ||x^{+}-x||_{p}$

- Update x*
- Sparsify x* (keep only k largest entries)
- Repeat
- Norms:
 - p=2 : CoSaMP, SP, IHT etc (RIP)
 - p=1 : SMP, SSMP (RIP-1)
 - p=0 : LDPC bit flipping (sparse matrices)

Sequential Sparse Matching Pursuit

- Algorithm:
 - x*=0
 - Repeat T times
 - Repeat S=O(k) times
 - Find i and z that minimize* $||A(x^*+ze_i)-Ax||_1$
 - $x^* = x^* + ze_i$
 - Sparsify x*
 - (set all but k largest entries of x^* to 0)
- Similar to SMP, but updates done sequentially

SSMP: Approximation guarantee

- Want to find k-sparse x* that minimizes ||x-x*||₁
- By RIP1, this is approximately the same as minimizing ||Ax-Ax*||₁
- Need to show we can do it greedily

 $\bigcirc \mathbf{X}$

Supports of a_1 and a_2 have small overlap (typically)

Experiments

256x256

SSMP is ran with S=10000,T=20. SMP is ran for 100 iterations. Matrix sparsity is d=8.

Conclusions

- Algorithms for sparse approximation using sparse matrices
 - Fast
 - Short sketches
- State of the art: can do 2 out f.
 - Near-linear encoding/decoung
 - O(k log (n/k)) sketch length
 - Approximation guarantee with respect to L2/L1 norm

This talk

- Questions.
 - 1 ou of 3?
 - Explicit constructions

QuickTime[™] and a TIFF (LZW) decompressor are needed to see this picture. QuickTime[™] and TIFF (LZW) decompr are needed to see this p

8 7

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

k=2

Goal of this talk

"Stay awake until the end"

Linear compression: applications

Data stream algorithms
 (e.g. for network monitoring)
 – Efficient increments:

 $A(x+\Delta) = Ax + A\Delta$

• Pooling, Microarray Experiments [Kainkaryam, Woolf], [Hassibi et al], [Dai-Sheikh, Milenkovic, Baraniuk]

SSMP: Running time

- Algorithm:
 - x*=0
 - Repeat T times
 - For each i=1...n compute* z_i that achieves

 $D_i = min_z ||A(x^* + ze_i) - b||_1$

and store D_i in a heap

- Repeat S=O(k) times
 - Pick i,z that yield the best gain
 - Update $x^* = x^* + ze_i$
 - Recompute and store D_i for all i' such that N(i) and N(i') intersect
- Sparsify x*

(set all but k largest entries of x* to 0)

• Running time:

T [n(d+log n) + k nd/m*d (d+log n)]

= T [n(d+log n) + nd (d+log n)] = T [nd (d+log n)]

Proof: $d(1-\epsilon/2)$ -expansion \Rightarrow RIP-1

- Want to show that for any k-sparse Δ we have d $(1-\epsilon) ||\Delta||_1 \le ||A \Delta||_1 \le d||\Delta||_1$
- RHS inequality holds for $any \Delta$
- LHS inequality:
 - W.I.o.g. assume

 $|\Delta_1| \ge \dots \ge |\Delta_k| \ge |\Delta_{k+1}| = \dots = |\Delta_n| = 0$

- Consider the edges e=(i,j) in a lexicographic order
- For each edge e=(i,j) define r(e) s.t.
 - r(e)=-1 if there exists an edge (i',j)<(i,j)
 - r(e)=1 if there is no such edge
- Claim 1: $||A\Delta||_1 \ge \sum_{e=(i,j)} |\Delta_i| r_e$
- Claim 2: $\sum_{e=(i,j)} |\Delta_i| r_e \ge (1-\epsilon) d||\Delta||_1$

