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Burgers  cartoon  of  turbulence 

Solve   the  differential equation

ut + uux = 0, x ∈ R, t > 0,

with  white noise  as initial  data.

J. M. Burgers  (1929--1974).
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Motivation

3)  Allows us  to formulate precisely  a statistical
theory  of  turbulence, i.e. random processes  that  
also solve  equations of mechanics,  even if in  a  

vastly simplified  setting  (“Burgulence”). 

1)  The  pde  is  a  caricature of  the fundamental 
equations of fluid mechanics. 

2) White noise  as initial data  seems reasonable.... 
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Some  basic  facts  about  Burgers equation

1)  Global classical solutions do not exist.

2)  Weak  solutions are not unique.

3)  There  is  a unique entropy solution, which 
is  a  vanishing  viscosity limit (E.Hopf, 1950). 
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The  unique entropy  solution, or the Cole-Hopf  
solution, is given by a  variational principle. 

u(x, t) =
x− a(x, t)

t

a(x, t) = argmin+
y

�
U0(y) +

(x− y)2

2t

�

U0(y) =
� y

0
u0(s) ds
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u (x,t) is the velocity field.  U is called the potential and  
a (x,t) the inverse Lagrangian  function.   The variational 
principle is a geometric recipe that uses  the potential.    

y x a (x,t)a (0,t) 0

Glide parabola  under  U 

U

and find first contact.

o

o

o
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2)  a (x,t)  is increasing  in   x.  Can only jump up.

1)  a (x,t)  gives the `correct’‘characteristic  through 
the point (x,t)  in space-time. 

(x, t )

a (x, t ) Space

Time
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3) As  a consequence,  u (x,t)  is of bounded variation.  
Jumps in a  give rise to shocks  in u. These correspond 

to `double-touches’ in the geometric principle. 

x

u (x, t)
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Numerical experiments with  white  noise  data.  

She, Aurell, Frisch,  Commun. Math. Phys. 148,(1992) 
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This  problem has  a remarkable  exact solution.

 
P. Groeneboom, Brownian motion with a parabolic drift and Airy 

Functions, Prob.Th. Rel. Fields, 81, (1989).   

L. Frachebourg, P. Martin, Exact statistical properties  of the Burgers 
equation, J. Fluid Mech, 417, (2000). 
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Estimating   the  mode  (Chernoff, 1964)

m x

Given n samples from a unimodal  distribution,
 how do we estimate the mode  m?   

f
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Naive  ``binning” strategy  given  n samples:  
m

x

Guess (estimator) : m =   argmax N (x). 

N (x)  =  number of points in bins centered at x.

n   n   

n   

The estimator  converges to  the  true mode
 as  n  increases. This  is  as expected.  
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The  surprise  is  that the difference m - m  
has  large fluctuations. Precisely: 

n   

where       is  a  two-sided Brownian motion.

 Initially thought to be a curiosity, this  example 
is  representative  of a large number of limit 

theorems for estimators  near  extrema.   

U0

n1/3 (mn −m) L→ argmaxs

�
U0(s)−

s2

2

�
,

Kim and Pollard, “Cube-root fluctuations” ,  Ann. Stat. ,(199o). 
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A first glimpse at Groeneboom’s solution

The one-point distribution  of u at time 1  has density 

p(u) = J(u)J(−u), u ∈ R.

The function J  has an explicit Laplace transform

where Ai(q)  is the (first) Airy function.

� ∞

−∞
e−quJ(u) du =

1
Ai(q)

,
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Classical Tauberian theorems yield asymptotics  of J.

J(u)

0 u
ea1ue−

2
3 |u|3

a  is the first zero of the Airy function. 1

p(u) = J(u)J(−u) ∼ e−
2
3 |u|3 , u→∞.
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Let  f  be convex. What can we say about the 
statistics of  the  entropy  solution to  

when the initial data is random?

∂tu + ∂xf(u) = 0, x ∈ R, t > 0,

The  general  question

More precisely, how  do we  describe the  n point 
statistics  for u (x,t) and how does this relate 

to the coalescence of shocks?
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Markov   processes   and  their  generators

A   Markov  process  is characterized by  its 
transition semigroup Q and generator A.  For 

suitable test functions,  we have 

Aϕ = lim
h↓0

Qhϕ− ϕ

h
.

For  Markov processes, the n point distribution  
factors into 2 point distributions.
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Generators   of   spectrally negative Markov  processes

A  Markov  process with BV sample paths and only 
downward jumps has an infinitesimal generator  

���� ����
Drift  at level u. Jumps  from u to v. 

Aϕ(u) = b(u) ϕ�(u) +
� u

−∞
n(u, v) (ϕ(v)− ϕ(u)) dv.

(rarefactions) (shocks) 
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Typical profile  of  solutions to a scalar 
conservation law (not just Burgers)

x

u

Drift  (rarefactions).

 Downward jumps
(shocks).
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Closure  theorem (Srinivasan, Ph.D thesis 2009)*

Thm. 1. Assume the initial velocity u(x,0) is a Markov  
process  with  only  downward  jumps. 

Then  so  is the solution  u(x,t)  for every  t>0.   

∂tu + ∂xf(u) = 0. f  strictly convex.

*  Here   by  the term closure we mean that this class of  
random processes  is  preserved  by the entropy solution. 

Saturday, January 9, 2010



Since the process is Markov, it has an 
infinitesimal generator that depends on (x,t).  
Conceptually, we have the following  picture.  

∂tu + ∂xf(u) = 0.

u(x, 0)

u(x, t)

A(x,0)

A(x,t)

Markov  property

??

Closure  theorem
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The   “generator”    in  time

First recall the definition of the generator: 

Now define an associated operator (here f is the 
flux function in the scalar conservation law):

Aϕ(u) = b(u)ϕ�(u) +
� u

−∞
n(u, v) (ϕ(v)− ϕ(u)) dv.

Bϕ(u) = −f �(u)b(u)ϕ�(u)

−
� u

−∞

f(v)− f(u)
v − u

n(u, v) (ϕ(v)− ϕ(u)) dv.
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The   backward  Kolmogorov equations 

and ∂tϕ + Bϕ = 0.

  There is a backward equation  associated to  every 
Markov  process.  Since  we have a two-parameter 
process,  we obtain   two  backward equations.

∂xϕ +Aϕ = 0,
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The  Lax equation 

Since  we  have  semigroups in  x  and t,  we  ask  
for  compatibility  between  these semigroups, i.e. 

If this holds for a large enough class of 
functions   we obtain  the  Lax equation

∂t∂xϕ = ∂x∂tϕ

∂tA− ∂xB = [A,B].
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The  Lax equation may also be derived by:  

2.  Elementary arguments of kinetic theory  and  the 
evolution of  a single shock and rarefaction wave.

3. Vol’pert’s BV chain rule , the Markov property and 
an unjustified interchange of limits.

4. Hopf’s method: a formal evolution equation for 
the Fourier transform of the law of u(x,t).
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Main  results  for stationary  processes.  

∂tu + ∂xf(u) = 0.

u(x, 0)

u(x, t)
Closure  theorem

A(t)

A(0) (b0, n0)

(bt, nt)

Ȧ = [A,B]

Characterization  
of  generator

Kinetic 
equations.
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The   kinetic equation  for  clustering  (Burgers)  

Drift Collisions
���� ����

Birth

Death

D(b, n) =
�

u− v

2

�
(b(u)∂un− ∂v(b(v)n))

ḃ = −b2, ∂tn(u, v, t) = D(b, n) + Q(n, n).

Q(n, n) =
u− v

2

� u

v
n(u, w)n(w, v) dv

−n(u, v)
� v

−∞
n(v, w)

�
u− w

2

�
dw

−n(u, v)
� u

−∞
n(u, w)

�
w − v

2

�
dw
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Groeneboom ‘s  solution (Burgers with white noise)   

where J and K have Laplace transforms:

The  jump  density  factorizes into:

n∗(u, v) =
J(v)
J(u)

K(u− v),

b(u, t) =
1
t
, n(u, v, t) =

1
t1/3

n∗

� u

t2/3
,

v

t2/3

�
.

j(q) =
1

Ai(q)
, k(q) = −2

d2

dq2
log(Ai(q)).
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More  on  Groeneboom’s  solution   

In order to verify that this is a solution we need 
to use some interesting identities. These are best 
written in terms of the variable  e = j’/ j. Then

e� = −q + e2,

k� = −2(1− ek),
k��� = 6kk� + 4qk� + 2k.

Riccati  eqn.

These yield three moment identities, such as  
K ∗ J(x) = x2J − J � and  some amazing cancellations.
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In fact,  e  is  the first Airy solution  to Painleve 2.

w�� = 2w3 + 2wq +
1
2
.

The  Painleve  property  

Self-similar solutions to several  completely 
integrable systems (Kdv, NLS, Sine-Gordon) can be 
expressed in terms of Painleve transcendents.  They 

also appear in  famous  `solvable’  problems in 
mathematical physics such as random matrix theory 

and the 2-D Ising model.  
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Complete integrability.
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Hamiltonian   systems

The  basic  example  is:

ẋ = J∇H, x ∈ R2n
,

where  J  is  the  symplectic matrix

J =
�

0 In

−In 0

�
,

and                  is a smooth Hamiltonian.H : R2n → R
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Liouville’s   theorem

The  Poisson bracket  of  two  Hamiltonians is

{H,F} = �∇H,J∇F � .

The Hamiltonian vector fields associated to H 
and  F  commute  if  the  bracket  vanishes. 

Liouville’s  theorem:  The flow of H is 
integrable if we have n  non-degenerate 
Hamiltonians  that  commute  with  H.   
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Examples

Classical  (1800’s):

1) Geodesic  flow  on  ellipsoids  in  3D (Jacobi)

2)  Particle constrained on a sphere (C. Neumann)

Modern  (1968+):

Toda lattice,  KdV, NLS, sine-Gordon, KP,...  

Unifying themes:  Lax pairs,  algebraic   structure,  
analytic  techniques, and many ``miracles”.
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Some  surprising links  (Moser, 1980)

 Geodesic  flow  on  ellipsoids   

== Constrained motion on spheres 

== KdV  with  spatially periodic data.   

== means  there  are  symplectic transformations  
from one model to the other  and explicit solutions. 
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Random matrices,  Burgers 
turbulence, and complete integrability.
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Suppose  M(t)  is  a  real, symmetric n x n matrix with 
standard, independent Brownian motions  as upper triangular 
entries.  The  eigenvalues of M(t) act like  repelling unit  

charges driven by noise  (Dyson,  1962).

λ

t
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Wigner’s  semicircle  law   and  Burgers  equation 

The  Cauchy  transform of the empirical  measure

gn(t, z) =
1
n

n�

k=1

1
z − λk(t)

,

converges  (after rescaling by        )  to√
n

gt + ggz = 0, g0(z) =
1
z
.

g (z,t) is  the Cauchy  transform of semicircle law.
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Brownian motion  as  initial velocity

x x

u u

t=0 t=1

Initial data is a one sided 
Brownian motion (for simplicity).

We  then study u(x,t) - u (0,t).
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For example,  if  u(x) is a Brownian motion,  

For Levy processes  the transition probabilities are 
independent  of the state,  and we  may use Fourier analysis.  
That is,  we consider exponentials as test functions and find

Generators  of   Levy  processes

Aeqs = ψ(q) eqs, q > 0.

ψ(q) =
q2

2
.
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The  Lax  equation   for  Levy   processes

A(t) eqs = ψ(q, t) eqs, q > 0.

[A,B] eqs = (−ψ∂qψ) eqs.

∂tψ + ψ∂qψ = 0, q, t > 0.

We   compute the commutator to obtain
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Complete  integrability 

The  solution  to  Burgers equation  in  the spectral 
variable  q  never forms shocks.  In fact,  it is more 

natural to write it in characteristics  as:

dq

dt
= ψ,

dψ

dt
= 0.

But  this is a completely integrable Hamiltonian 
system  in action-angle variables.... 
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Burgers   turbulence  and   the  semicircle   law 

gt + ggz = 0.

g0(z) =
1
z

ψt + ψψq = 0.

ψ0(q) = q2.

z = 2 +
1
q

g(z
√

t, t)√
t

=
ψ(q/t, t)

q/t

These  are  linked  by  the change of variables
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Much  remains  to  be  done...   

1)  “Framework  issues” 

a) Symplectic structure of  flow of measures.

b) Well-posedness of  Lax equation. 

2)  “Computational issues”

a) Inverse scattering/ Riemann-Hilbert problems.

b) Connections to Tracy-Widom laws. 
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