# Large Deviations. A survey 

S.R.S. Varadhan

Courant Institute, NYU

ICTS, Bangalore<br>Jan 1, 2010

- The theory of large deviations deals with techniques for estimating exponentially small probabilities.
- The theory of large deviations deals with techniques for estimating exponentially small probabilities.
- It depends heavily on the duality between the functions $e^{x}$ and $x \log x-x$.
- The theory of large deviations deals with techniques for estimating exponentially small probabilities.
- It depends heavily on the duality between the functions $e^{x}$ and $x \log x-x$.

$$
P_{n}(A)=\exp \left[-n \inf _{x \in A} I(x)+o(n)\right]
$$

for "nice" sets $A$.

## $\square$ More precisely

$$
P_{n}(U) \geq \exp \left[-n \inf _{x \in U} I(x)+o(n)\right]
$$

for open sets $U \subset X$
$\square$ More precisely

$$
P_{n}(U) \geq \exp \left[-n \inf _{x \in U} I(x)+o(n)\right]
$$

for open sets $U \subset X$

- For closed sets $C \subset X$,

$$
P_{n}(C) \leq \exp \left[-n \inf _{x \in C} I(x)+o(n)\right]
$$

- Equivalently
$\int \exp [n F(x)] d P_{n}=\exp \left[n \sup _{x}[F(x)-I(x)]+o(n)\right]$
for bounded continuous functions $F(x)$ on $X$.
- Equivalently
$\int \exp [n F(x)] d P_{n}=\exp \left[n \sup _{x}[F(x)-I(x)]+o(n)\right]$
for bounded continuous functions $F(x)$ on $X$.
$\square$ The non-negative rate function $I(\cdot)$ is assumed to be lower semicontinuous and with compact level sets

$$
K_{\ell}=\{x: I(x) \leq \ell\}
$$

$\square$ If $X_{i}$ are i.i.d. random variables with finite exponential moments

$$
M(\theta)=E[\exp [\theta X]]
$$

then the distribution $P_{n}$ of $Z_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ satisfies an LDP with rate function
$\square$ If $X_{i}$ are i.i.d. random variables with finite exponential moments

$$
M(\theta)=E[\exp [\theta X]]
$$

then the distribution $P_{n}$ of $Z_{n}=\frac{1}{n} \sum_{i=1}^{n} X_{i}$ satisfies an LDP with rate function

$$
I(x)=\sup _{\theta}[\theta x-\log M(\theta)]
$$

- This is a theorem of Cramér (1937).
- This is a theorem of Cramér (1937).
- One can replace real $X_{i}$ with independent random variables with values in $R^{d}$.

$$
M(\theta)=E[\exp [\langle\theta, X\rangle]]
$$

and

$$
I(x)=\sup _{\theta \in R^{d}}[\langle\theta, X\rangle-\log M(\theta)]
$$

- This is a theorem of Cramér (1937).
$\square$ One can replace real $X_{i}$ with independent random variables with values in $R^{d}$.

$$
M(\theta)=E[\exp [\langle\theta, X\rangle]]
$$

and

$$
I(x)=\sup _{\theta \in R^{d}}[\langle\theta, X\rangle-\log M(\theta)]
$$

$\square$ More generally $\left\{X_{i}\right\}$ could be i.i.d random variables with values in some $X$ with a common distribution $\alpha$

$$
z_{n}=\frac{1}{n} \sum_{i=1}^{n} \sigma_{x_{x}}
$$

$$
Z_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}
$$

- $P_{n}$ to be the distribution of $Z_{n}$ with values in $\mathcal{M}(X)$ and Cramér's theorem morphs into Sanov's theorem.

$$
Z_{n}=\frac{1}{n} \sum_{i=1}^{n} \delta_{X_{i}}
$$

- $P_{n}$ to be the distribution of $Z_{n}$ with values in $\mathcal{M}(X)$ and Cramér's theorem morphs into Sanov's theorem. The dual of $\mathcal{M}(X)$ is $C(X)$ and

$$
M(f)=E^{\alpha}\left[\exp \left[\left\langle\delta_{X}, f\right\rangle\right]\right]=\int e^{f(x)} d \alpha(x)
$$

and for $\beta \in \mathcal{M}(X)$

$$
I(\beta)=\sup _{f \in C(X)}\left[\int f d \beta-\log \int e^{f} d \alpha\right]
$$

$$
\begin{gathered}
I(\beta)=\sup _{f \in C(X)}\left[\int f d \beta-\log \int e^{f} d \alpha\right] \\
=h(\beta ; \alpha)=h_{\alpha}(\beta)
\end{gathered}
$$

$$
\begin{gathered}
I(\beta)=\sup _{f \in C(X)}\left[\int f d \beta-\log \int e^{f} d \alpha\right] \\
=h(\beta ; \alpha)=h_{\alpha}(\beta)
\end{gathered}
$$

- $h(\beta ; \alpha)=\infty$ unless $\beta \ll \alpha$ and $b(x)=\frac{d \beta}{d \alpha}(x)$ is such that $|\log b(x)| \in L_{1}(\beta)$.

$$
\begin{gathered}
I(\beta)=\sup _{f \in C(X)}\left[\int f d \beta-\log \int e^{f} d \alpha\right] \\
=h(\beta ; \alpha)=h_{\alpha}(\beta)
\end{gathered}
$$

- $h(\beta ; \alpha)=\infty$ unless $\beta \ll \alpha$ and $b(x)=\frac{d \beta}{d \alpha}(x)$ is such that $|\log b(x)| \in L_{1}(\beta)$.

$$
h(\beta ; \alpha)=\int \log b(x) d \beta=\int b(x) \log b(x) d \alpha
$$

## Contraction principle

$\square F: X \rightarrow Y, Q=P F^{-1}$.

$$
d P=d Q d P_{y}
$$

## Contraction principle

$\square F: X \rightarrow Y, Q=P F^{-1}$.

$$
d P=d Q d P_{y}
$$

- If $P_{n}$ on $X$ satisfies an LDP with rate $I(x)$ and $F: X \rightarrow Y$ is a continuous map then $Q_{n}=P_{n} F^{-1}$ on $Y$ satisfies an LDP with rate

$$
J(y)=\inf _{x: F(x)=y} I(x)
$$

We optimize when we project.

- $\bar{X}_{n}=\int x d \nu_{n} . \nu \rightarrow \int x d \nu$ maps $\mathcal{M} \rightarrow R$.
- $\bar{X}_{n}=\int x d \nu_{n} . \nu \rightarrow \int x d \nu \operatorname{maps} \mathcal{M} \rightarrow R$.

$$
\inf _{\beta: \int x d \beta(x)=a} h(\beta ; \alpha)=I(a)
$$

$\square \bar{X}_{n}=\int x d \nu_{n} . \nu \rightarrow \int x d \nu \operatorname{maps} \mathcal{M} \rightarrow R$.

$$
\begin{aligned}
& \inf _{\beta: \int}^{x d \beta(x)=a} \operatorname{h(\beta ;\alpha )}=I(a) \\
= & \sup _{\theta \in R}\left[a \theta-\log \int e^{\theta x} d \alpha(x)\right]
\end{aligned}
$$

The next step is to try and calculate $\psi_{P}(F)$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log E^{P}\left[\exp \left[\sum_{i=1}^{n} F\left(x_{i}, x_{i+1}, \ldots, x_{i+k-1}\right)\right]\right]
$$

The next step is to try and calculate $\psi_{P}(F)$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log E^{P}\left[\exp \left[\sum_{i=1}^{n} F\left(x_{i}, x_{i+1}, \ldots, x_{i+k-1}\right)\right]\right]
$$

$\square F$ is a function of $k$ variables $\left(x_{1}, \ldots, x_{k}\right)$
$\square$ The next step is to try and calculate $\psi_{P}(F)$

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log E^{P}\left[\exp \left[\sum_{i=1}^{n} F\left(x_{i}, x_{i+1}, \ldots, x_{i+k-1}\right)\right]\right]
$$

- $F$ is a function of $k$ variables $\left(x_{1}, \ldots, x_{k}\right)$
- $P$ is stationary process with values in $X$. i.e a shift invariant probability measure on $X^{\infty}$, i.e $P \in \mathcal{M}_{s}(X)$.
- The empirical process which looks at all the finite dimensional distributions

$$
\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{1}, x_{i+1}, \ldots, x_{i+k-1}}
$$

- The empirical process which looks at all the finite dimensional distributions

$$
\frac{1}{n} \sum_{i=1}^{n} \delta_{x_{1}, x_{i+1}, \ldots, x_{i+k-1}}
$$

- Start with $\left(x_{1}, x_{2}, \ldots x_{n}\right)$ extend it periodically to get a sequence $\omega \in X^{\infty}$ and consider the orbital measure

$$
R_{n}\left(x_{1}, x_{2}, \ldots x_{n}\right)=\frac{1}{n} \sum_{i=1}^{n} \delta_{T^{i-1} \omega}
$$

$\square$ Let $P_{n}$ be the distribution of $R_{n} \in \mathcal{M}\left(\mathcal{M}_{s}(X)\right)$ It satisfies an LDP with rate function $I_{P}(Q)$ and

$$
\psi_{P}(F)=\sup _{Q \in \mathcal{M}_{s}(X)}\left[E^{Q}[F]-I_{P}(Q)\right]
$$

- Let $P_{n}$ be the distribution of $R_{n} \in \mathcal{M}\left(\mathcal{M}_{s}(X)\right)$ It satisfies an LDP with rate function $I_{P}(Q)$ and

$$
\psi_{P}(F)=\sup _{Q \in \mathcal{M}_{s}(X)}\left[E^{Q}[F]-I_{P}(Q)\right]
$$

- The rate function $I_{P}(Q)$ is universal and is a version of Kolmogorov-Sinai entropy.
- Let $p\left(d x_{1} \mid \omega\right)$ and $q\left(d x_{1} \mid \omega\right)$ be the conditional distributions of $x_{1}$ given the past $\left\{x_{i}: i \leq 0\right\}$ under $P$ and $Q$ respectively. Then

$$
I_{P}(Q)=E^{Q}[h(q(\cdot \mid \omega) ; p(\cdot \mid \omega))]
$$

## - Has one problem.

- Has one problem.
$\square$ Does not make sense!
- Has one problem.
$\square$ Does not make sense!
$\square$ The problem is that $p(\cdot \mid \omega)$ is only defined a.e. $P$ and we need to integrate with respect to $Q$.
- Has one problem.
$\square$ Does not make sense!
$\square$ The problem is that $p(\cdot \mid \omega)$ is only defined a.e. $P$ and we need to integrate with respect to $Q$.
- Put assumptions on $P$ so that $p(\cdot \mid \omega)$ has a nice everywhere defined version. Markov will do it.
$\square$ if $F$ is only a function of one variable $F\left(x_{1}\right)$ one can contract

$$
I_{P}(\beta)=\inf _{\substack{Q \in \mathcal{M}_{s}(X) \\ Q x_{1}^{1}=\beta}} I_{P}(Q)
$$

- if $F$ is only a function of one variable $F\left(x_{1}\right)$ one can contract

$$
I_{P}(\beta)=\inf _{\substack{Q \in \mathcal{M}_{\mathrm{s}}(X) \\ Q x_{1}^{1}=\beta}} I_{P}(Q)
$$

- In the Markov case

$$
I_{\pi}(\beta)=\sup _{u>0} \int \log \frac{u(x)}{(\pi u)(x)} d \beta(x)
$$

- if $F$ is only a function of one variable $F\left(x_{1}\right)$ one can contract

$$
I_{P}(\beta)=\inf _{\substack{Q \in \mathcal{M}_{\mathrm{s}}(X) \\ Q x_{1}^{1}=\beta}} I_{P}(Q)
$$

- In the Markov case

$$
I_{\pi}(\beta)=\sup _{u>0} \int \log \frac{u(x)}{(\pi u)(x)} d \beta(x)
$$

Controls the large deviations of $\frac{1}{n} \sum \delta_{x_{i}}$

- if $F$ is only a function of one variable $F\left(x_{1}\right)$ one can contract

$$
I_{P}(\beta)=\inf _{\substack{Q \in \mathcal{M}_{\mathrm{s}}(X) \\ Q x_{1}^{1}=\beta}} I_{P}(Q)
$$

- In the Markov case

$$
I_{\pi}(\beta)=\sup _{u>0} \int \log \frac{u(x)}{(\pi u)(x)} d \beta(x)
$$

- Controls the large deviations of $\frac{1}{n} \sum \delta_{x_{i}}$
$\square$ If $\pi(x, d y)=\alpha(d y)$ then we are back in the Sanov case.
- We now turn to a more general problem. Calculate

$$
J=\lim _{n \rightarrow \infty} \frac{1}{n} E^{P}\left[\exp \left[\sum_{i=1}^{n} a_{i} F\left(x_{i}, x_{i+1}, \ldots, x_{i+k-1}\right)\right]\right]
$$

for a given sequence $\left\{a_{i}: i \geq 1\right\}$.

## $\square$ When will it exist?

$\square$ When will it exist?
$\square$ What will it be?
$\square$ When will it exist?
$\square$ What will it be?
$\square$ What is it good for?
$\square$ We note that when $P$ is a product measure and $F$ is a function of one variable, we need to have the limit

$$
\log J=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} f\left(a_{i}\right)
$$

$\square$ We note that when $P$ is a product measure and $F$ is a function of one variable, we need to have the limit

$$
\log J=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} f\left(a_{i}\right)
$$

- where

$$
f(a)=\log E[\exp [a F(x)]]
$$

- We note that when $P$ is a product measure and $F$ is a function of one variable, we need to have the limit

$$
\log J=\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{i=1}^{n} f\left(a_{i}\right)
$$

- where

$$
f(a)=\log E[\exp [a F(x)]]
$$

$\square$ This requires the empirical distribution $\frac{1}{n} \sum_{i=1}^{n} \delta_{a_{i}}$ to have a limit.

- More generally we can assume that all the finite dimensional joint distributions
$\frac{1}{n} \sum_{i=1}^{n} \delta_{a_{i}, a_{i+1}, \ldots, a_{i+k-1}}$ have limits.
$\square$ More generally we can assume that all the finite dimensional joint distributions
$\frac{1}{n} \sum_{i=1}^{n} \delta_{a_{i}, a_{i+1}, \ldots, a_{i+k-1}}$ have limits.
- The empirical process $R_{n}\left(a_{1}, \ldots, a_{n}\right)$ has a limit $\nu \in \mathcal{M}_{s}(X)$
- More generally we can assume that all the finite dimensional joint distributions
$\frac{1}{n} \sum_{i=1}^{n} \delta_{a_{i}, a_{i+1}, \ldots, a_{i+k-1}}$ have limits.
- The empirical process $R_{n}\left(a_{1}, \ldots, a_{n}\right)$ has a limit $\nu \in \mathcal{M}_{s}(X)$
$\square$ It looks like a sample from $\nu$.
- If $\left\{x_{i}\right\}$ is a Markov process with positive transition probabilities on a finite set $X$, then for every $\left\{a_{i}\right\}$ such that $R_{n}\left(a_{1}, \ldots, a_{n}\right) \rightarrow \nu$ the limit $J=J(\nu)$ exists and is a continuous linear function of $\nu$
- If $\left\{x_{i}\right\}$ is a Markov process with positive transition probabilities on a finite set $X$, then for every $\left\{a_{i}\right\}$ such that $R_{n}\left(a_{1}, \ldots, a_{n}\right) \rightarrow \nu$ the limit $J=J(\nu)$ exists and is a continuous linear function of $\nu$
$\square$ Sub-additive argument will do it.
- If $\left\{x_{i}\right\}$ is a Markov process with positive transition probabilities on a finite set $X$, then for every $\left\{a_{i}\right\}$ such that $R_{n}\left(a_{1}, \ldots, a_{n}\right) \rightarrow \nu$ the limit $J=J(\nu)$ exists and is a continuous linear function of $\nu$
$\square$ Sub-additive argument will do it.
$\square$ What is it?
- Let $\mathcal{M}_{\nu}$ be the set of stationary process $Q$ with values in $R \times X$ such that the marginal on $R^{\infty}$ is $\nu$.
- Let $\mathcal{M}_{\nu}$ be the set of stationary process $Q$ with values in $R \times X$ such that the marginal on $R^{\infty}$ is $\nu$.
- Let $Q_{0}=\nu \times P$, i.e $\left\{a_{i}\right\}$ has $\nu$ for its distribution and while $\left\{x_{i}\right\}$ is distributed according to $P$, the two components are independent.


## The Kolomogorov-Sinai entropy $H\left(Q ; Q_{0}\right)$

The Kolomogorov-Sinai entropy $H\left(Q ; Q_{0}\right)$

$$
E^{Q}\left[h\left(q\left(d x_{1}, d a_{1} \mid \omega\right) ; q_{0}\left(d x_{1} \mid \omega\right) \times \nu\left(d a_{1} \mid \omega\right)\right)\right.
$$

is well defined for every $\nu$, provided $Q \in \mathcal{M}_{\nu}$.

## The Kolomogorov-Sinai entropy $H\left(Q ; Q_{0}\right)$

$$
E^{Q}\left[h\left(q\left(d x_{1}, d a_{1} \mid \omega\right) ; q_{0}\left(d x_{1} \mid \omega\right) \times \nu\left(d a_{1} \mid \omega\right)\right)\right.
$$

is well defined for every $\nu$, provided $Q \in \mathcal{M}_{\nu}$.
$-q_{0}\left(d x_{1} \mid \omega\right)=q_{0}\left(d x_{1} \mid \omega_{1}\right), \nu\left(d a_{1} \mid \omega\right)=\nu\left(d a_{1} \mid \omega_{2}\right)$

- The Kolomogorov-Sinai entropy $H\left(Q ; Q_{0}\right)$

$$
E^{Q}\left[h\left(q\left(d x_{1}, d a_{1} \mid \omega\right) ; q_{0}\left(d x_{1} \mid \omega\right) \times \nu\left(d a_{1} \mid \omega\right)\right)\right.
$$

is well defined for every $\nu$, provided $Q \in \mathcal{M}_{\nu}$.
$\square q_{0}\left(d x_{1} \mid \omega\right)=q_{0}\left(d x_{1} \mid \omega_{1}\right), \nu\left(d a_{1} \mid \omega\right)=\nu\left(d a_{1} \mid \omega_{2}\right)$
$\square$ Then $J(\nu)$ is equal to

$$
\sup _{Q \in \mathcal{M}_{\nu}}\left[E^{Q}\left[a_{1} F\left(x_{1}, \ldots, x_{k}\right)\right]-H\left(Q ; Q_{0}\right)\right]
$$

$\square$ Define $H_{n}\left(a_{1}, \ldots, a_{n}\right)$

$$
\log E^{P}\left[\exp \left[\sum_{i=1}^{n} a_{i} F\left(x_{i}, x_{i+1}, \ldots, x_{i+k-1}\right]\right]\right.
$$

$\square$ Define $H_{n}\left(a_{1}, \ldots, a_{n}\right)$

$$
\begin{gathered}
\log E^{P}\left[\exp \left[\sum_{i=1}^{n} a_{i} F\left(x_{i}, x_{i+1}, \ldots, x_{i+k-1}\right]\right]\right. \\
\mid H_{n+m}\left(a_{1}, \ldots, a_{n+m}\right)-H_{n}\left(a_{1}, \ldots, a_{n}\right) \\
-H_{m}\left(a_{1}, \ldots, a_{m}\right) \mid \leq C
\end{gathered}
$$

uniformly in $n, m$ and $\left\{a_{i}\right\}$.

$$
\begin{gathered}
\left|H_{n k}\left(a_{1}, \ldots, a_{n k}\right)-\sum_{i=1}^{k} H_{n}\left(a_{(i-1) k+1}, \ldots, a_{i k}\right)\right| \\
\leq C n
\end{gathered}
$$

$$
\begin{gathered}
\left|H_{n k}\left(a_{1}, \ldots, a_{n k}\right)-\sum_{i=1}^{k} H_{n}\left(a_{(i-1) k+1}, \ldots, a_{i k}\right)\right| \\
\leq C n
\end{gathered}
$$

- Partitioning of a block of size $k n$ into blocks of size $k$ allows some freedom as to the location and one can average over this collection

$$
\begin{aligned}
\limsup _{n \rightarrow \infty} & \left\lvert\, \frac{1}{n} H_{n}\left(a_{1}, \ldots, a_{n}\right)\right. \\
& \left.-\int \frac{1}{k} H_{k}\left(a_{1}, \ldots, a_{k}\right) d R_{n} \right\rvert\, \leq \frac{C}{k}
\end{aligned}
$$

$\square A_{n}\left(x_{1}, x_{2}, \ldots x_{n}\right)$ is almost additive if

- $A_{n}\left(x_{1}, x_{2}, \ldots x_{n}\right)$ is almost additive if

$$
\begin{aligned}
& \mid A_{n+m}\left(x_{1}, x_{2}, \ldots x_{n}\right)-A_{n}\left(x_{1}, x_{2}, \ldots x_{n}\right) \\
& -A_{m}\left(x_{n+1}, x_{2}, \ldots x_{n+m}\right) \mid \leq C
\end{aligned}
$$

- $A_{n}\left(x_{1}, x_{2}, \ldots x_{n}\right)$ is almost additive if

$$
\begin{array}{r}
\mid A_{n+m}\left(x_{1}, x_{2}, \ldots x_{n}\right)-A_{n}\left(x_{1}, x_{2}, \ldots x_{n}\right) \\
-A_{m}\left(x_{n+1}, x_{2}, \ldots x_{n+m}\right) \mid \leq C
\end{array}
$$

Then for every $\nu$ typical $\left\{x_{i}\right\}$ the limit

$$
\lim _{n \rightarrow \infty} \frac{1}{n} A_{n}\left(x_{1}, x_{2}, \ldots x_{n}\right)=\mathcal{A}(\nu)
$$

exists and is a continuous linear functional on $\mathcal{M}_{s}(X)$

$$
\begin{aligned}
\mathcal{H}(\nu) & =\lim _{n \rightarrow \infty} \frac{1}{n} H_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
& =\lim _{k \rightarrow \infty} \int H_{k}\left(a_{1}, a_{2}, \ldots, a_{k}\right) d \nu
\end{aligned}
$$

exists and depends (linearly and continuously) on $\nu$.
$\square$ A slight variant is the following theorem.
$\square$ A slight variant is the following theorem.

- If $H_{n}\left(\left(a_{1}, x_{1}\right), \ldots,\left(a_{n}, x_{n}\right)\right)$ is an almost additive sequence on $\left\{(A \times X)^{n}\right\}$ with $\frac{H_{n}}{n} \rightarrow \mathcal{H}(\cdot)$,
$\square$ A slight variant is the following theorem.
- If $H_{n}\left(\left(a_{1}, x_{1}\right), \ldots,\left(a_{n}, x_{n}\right)\right)$ is an almost additive sequence on $\left\{(A \times X)^{n}\right\}$ with $\frac{H_{n}}{n} \rightarrow \mathcal{H}(\cdot)$,
- $K_{n}\left(a_{1}, \ldots, a_{n}\right)$ defined as

$$
\log E^{P}\left[\exp \left[H_{n}\left(\left(a_{1}, x_{1}\right), \ldots,\left(a_{n}, x_{n}\right)\right)\right]\right]
$$

is almost additive.
$\frac{K_{n}}{n}$ converges to $\mathcal{K}(\cdot)$ where

## $\frac{K_{n}}{n}$ converges to $\mathcal{K}(\cdot)$ where

$$
\mathcal{K}(\nu)=\sup _{Q \in \mathcal{M}_{\nu}}\left[\mathcal{H}(Q)-H_{\nu \times P}(Q)\right]
$$

- An application.
- An application.
- Calculate

$$
J=\lim _{n \rightarrow \infty} \frac{1}{n} \log E^{P}\left[\exp \left[\sum_{i=1}^{n} U\left(x_{i}\right) V\left(x_{2 i}\right)\right]\right]
$$

- An application.
- Calculate

$$
J=\lim _{n \rightarrow \infty} \frac{1}{n} \log E^{P}\left[\exp \left[\sum_{i=1}^{n} U\left(x_{i}\right) V\left(x_{2 i}\right)\right]\right]
$$

$\square$ To begin with consider the following simpler problem. $\left\{x_{i}\right\}$ are i.i.d and $U, V$ are bounded. Let $n$ be large say $2^{k} n$ for large $k$.

## - We split the sum

$$
S_{2^{k} n}=S_{n}^{1}+S_{n}^{2}+\cdots+S_{n}^{k}
$$

## - We split the sum

$$
\begin{aligned}
S_{2^{k} n} & =S_{n}^{1}+S_{n}^{2}+\cdots+S_{n}^{k} \\
S_{n}^{1} & =\sum_{j=1}^{n} U\left(x_{j}\right) V\left(x_{2 j}\right)
\end{aligned}
$$

## - We split the sum

$$
\begin{aligned}
S_{2^{k} n} & =S_{n}^{1}+S_{n}^{2}+\cdots+S_{n}^{k} \\
S_{n}^{1} & =\sum_{j=1}^{n} U\left(x_{j}\right) V\left(x_{2 j}\right)
\end{aligned}
$$

For $i \geq 2$

$$
S_{n}^{i}=\sum_{j=2^{i-1} n+1}^{2^{i n}} U\left(x_{j}\right) V\left(x_{2 j}\right)
$$

- We denote by $\mathcal{F}_{n}$ the $\sigma$-field generated by $\left\{x_{i}: i \leq n\right\}$.
- We denote by $\mathcal{F}_{n}$ the $\sigma$-field generated by $\left\{x_{i}: i \leq n\right\}$.
- $S_{n}^{i}$ is measurable w.r.t $\mathcal{F}_{2^{i+1} n}$

$$
\begin{aligned}
E\left[e^{S_{2^{k} n}} \mid \mathcal{F}_{2^{k} n}\right] & =e^{S_{2^{k-1}} n} E\left[e^{S_{n}^{k}} \mid \mathcal{F}_{2^{k} n}\right] \\
& =e^{S_{2^{k-1}} n} e^{\sum_{j=2^{k-1} k_{n+1}}^{2^{k}} \psi_{1}\left(x_{j}\right)}
\end{aligned}
$$

$\square$ We denote by $\mathcal{F}_{n}$ the $\sigma$-field generated by $\left\{x_{i}: i \leq n\right\}$.

- $S_{n}^{i}$ is measurable w.r.t $\mathcal{F}_{2^{i+1} n}$

$$
\begin{aligned}
E\left[e^{S_{2^{k}}} \mid \mathcal{F}_{2^{k} n}\right] & =e^{S_{2^{k-1}} n} E\left[e^{S_{n}^{k}} \mid \mathcal{F}_{2^{k} n}\right] \\
& =e^{S_{2^{k-1_{n}}}} e^{\sum_{j=2^{k-1} k_{n+1}}^{2^{k}} \psi_{1}\left(x_{j}\right)}
\end{aligned}
$$

- where $\psi_{1}(x)=\log E^{y}\left[e^{U(x) V(y)}\right]$. The odd $j$ 's do not appear again and hence $2^{k-2} n$ terms separate out.
- We can remove $2^{k-2} n$ factors of

$$
E\left[e^{\psi_{1}(x)}\right]=e^{c_{1}}
$$

- We can remove $2^{k-2} n$ factors of

$$
E\left[e^{\psi_{1}(x)}\right]=e^{c_{1}}
$$

- Left with

$$
e^{S_{2^{k-1}}} e^{\sum_{j=2^{k-2} n+1}^{2^{k-1}} \psi_{1}\left(x_{2 j}\right)}
$$

- We can remove $2^{k-2} n$ factors of

$$
E\left[e^{\psi_{1}(x)}\right]=e^{c_{1}}
$$

- Left with

$$
e^{S_{2^{k-1}} n} e^{\sum_{j=2^{k-2} 2_{n+1}}^{2_{1}\left(x_{2 j}\right)}}
$$

$\square$ Now condition with respect to $\mathcal{F}_{2^{k-1} n}$. We get

$$
e^{S_{2^{k-2}}} E\left[e^{\sum_{j=2^{k}-2_{n+1}}^{2^{k-1}}\left[U\left(x_{j}\right) V\left(x_{2 j}\right)+\psi_{1}\left(x_{2 j}\right)\right]} \mid \mathcal{F}_{2^{k-1} n}\right]
$$

## $\square$ If we define

$$
\psi_{2}(x)=\log E\left[e^{U(x) V(y)+\psi_{1}(y)}\right]
$$

- If we define

$$
\psi_{2}(x)=\log E\left[e^{U(x) V(y)+\psi_{1}(y)}\right]
$$

$\square$ This reduces to

$$
e^{S_{2^{k-2} n}} e^{\sum_{j=2^{k-2} N+1}^{2^{k-1} n} e^{\psi_{2}\left(x_{j}\right)}}
$$

- If we define

$$
\psi_{2}(x)=\log E\left[e^{U(x) V(y)+\psi_{1}(y)}\right]
$$

$\square$ This reduces to

$$
e^{S_{2^{k-2}}} e^{\sum_{j=2^{k-2} 2_{N+1}}^{2^{k-1} e^{\psi_{2}\left(x_{j}\right)}}}
$$

Again the odd ones stand alone. Can factor $2^{k-3} n$ factors of

$$
E\left[e^{\psi_{2}(x)}\right]=E\left[e^{U(x) V(y)+\psi_{1}(y)}\right]=e^{c_{2}}
$$

- Left with

$$
e^{S_{2^{k-2} n}} e^{\sum_{j=2^{k-3} n+1}^{2^{k-2} n} e^{\psi_{2}\left(x_{2 j}\right)}}
$$

- Left with

$$
e^{S_{2^{k-2}} n} e^{\sum_{j=2^{k-3} n+1}^{2^{k-2}} e^{\psi_{2}\left(x_{2 j}\right)}}
$$

- Continuing recursively

$$
\psi_{k}(x)=\log E\left[e^{U(x) V(y)+\psi_{k-1}(y)}\right]
$$

- Left with

$$
e^{S_{2^{k-2} n}} e^{\sum_{j=2^{k-3}{ }_{n+1}}^{2^{k-2} n} e^{\psi_{2}\left(x_{2 j}\right)}}
$$

- Continuing recursively

$$
\begin{aligned}
\psi_{k}(x) & =\log E\left[e^{U(x) V(y)+\psi_{k-1}(y)}\right] \\
E\left[e^{\psi_{k}(x)}\right] & =E\left[e^{U(x) V(y)+\psi_{k-1}(y)}\right]=e^{c_{k}}
\end{aligned}
$$

We have some terms left over from $1 \leq j \leq n$. But for $k$ large they can be ignored. Hence the limit equals

$$
\begin{array}{r}
\lim _{n \rightarrow \infty} \frac{1}{n} \log E\left[\exp p \sum_{i=1}^{n} U\left(x_{i}\right) V\left(x_{2 i}\right)\right] \\
=\sum_{j=1}^{\infty} \frac{c_{j}}{2^{j+1}}
\end{array}
$$

$$
\begin{array}{r}
\lim _{n \rightarrow \infty} \frac{1}{n} \log E\left[\exp \left[\sum_{i=1}^{n} U\left(x_{i}\right) V\left(x_{2 i}\right)\right]\right. \\
=\sum_{j=1}^{\infty} \frac{c_{j}}{2^{j+1}}
\end{array}
$$

Now we turn to the more general case where $\left\{x_{i}\right\}$ is a finite state space Markov chain that is mixing.

- Let

$$
f_{n}=\frac{1}{n} \log E^{P}\left[\exp \left[\sum_{i=1}^{n} U\left(x_{i}\right) V\left(x_{2 j}\right)\right]\right]
$$

$\square$ Let

$$
f_{n}=\frac{1}{n} \log E^{P}\left[\exp \left[\sum_{i=1}^{n} U\left(x_{i}\right) V\left(x_{2 j}\right)\right]\right]
$$

Replace $n$ by $2^{k} n$. We can pretend $x_{2 j}$ for
$j \geq 2^{k-1} n+1$ are independent of what happened before i.e. $x_{j}$ for $j \leq 2^{k} n$.

$$
\begin{aligned}
f_{2^{k} n} & =\frac{1}{2^{k} n} \log E^{P \times P}\left[\operatorname { e x p } \left[\sum_{i=1}^{2^{k-1} n} U\left(x_{i}\right) V\left(x_{2 j}\right)\right.\right. \\
& \left.\left.+\sum_{i=2^{k-1} n+1}^{2^{k} n} U\left(x_{i}\right) V\left(y_{2 j}\right)\right]\right] \\
& =\frac{1}{2^{k} n} \log E^{P}\left[\operatorname { e x p } \left[\sum_{i=1}^{2^{k-1_{n}}} U\left(x_{i}\right) V\left(x_{2 j}\right)\right.\right. \\
& \left.\left.+H_{2^{k-1} n}\left(U\left(x_{2^{k-1}}\right), \ldots, U\left(x_{2^{k_{n}} n}\right)\right)\right]\right]
\end{aligned}
$$

$\square$ Now we peel off $j \leq 2^{k-2} n$ and pretend the rest is independent.
$\square$ Now we peel off $j \leq 2^{k-2} n$ and pretend the rest is independent.

$$
\begin{aligned}
f_{2^{k} n} & \simeq \frac{1}{2^{k} n} \log E^{P \times P}\left[\operatorname { e x p } \left[\sum_{i=1}^{2^{k-2} n} U\left(x_{i}\right) V\left(x_{2 j}\right)\right.\right. \\
& \left.\left.+\sum_{i=2^{k-2} n+1}^{2^{k-1} n} U\left(x_{i}\right) V\left(y_{2 j}\right)\right]\right] \\
& \left.\left.+H_{2^{k-1} n}\left(U\left(y_{2^{k-1} n+1}\right), \ldots, U\left(y_{2^{k} n}\right)\right)\right]\right]
\end{aligned}
$$

- The induction step is


## The induction step is

$$
\begin{aligned}
& H_{2^{k-r-1} n}^{r+1}\left(a_{1}, \ldots, a_{2^{k-r-1} n}\right) \\
& \quad=\log E^{P}\left[\operatorname { e x p } \left[\sum_{i=2^{k-r-1}+1}^{2^{k-r}} a_{i} V\left(x_{2 i}\right)\right.\right. \\
& \left.\left.\quad+H_{2^{k-r} n}^{r}\left(U\left(x_{2^{k-r} n+1}\right), \ldots, U\left(x_{2^{k-r+1} n}\right)\right)\right]\right]
\end{aligned}
$$

- The induction step is

$$
\begin{aligned}
& H_{2^{k-r-1} n}^{r+1}\left(a_{1}, \ldots, a_{2^{k-r-1} n}\right) \\
& \quad=\log E^{P}\left[\operatorname { e x p } \left[\sum_{i=2^{k-r-1}+1}^{2^{k-r}} a_{i} V\left(x_{2 i}\right)\right.\right. \\
& \left.\left.\quad+H_{2^{k-r} n}^{r}\left(U\left(x_{2^{k-r} n+1}\right), \ldots, U\left(x_{2^{k-r+1} n}\right)\right)\right]\right]
\end{aligned}
$$

- This leads to a map

$$
\mathcal{H}_{r}(\cdot) \rightarrow \mathcal{H}_{r+1}(\cdot)
$$

$\square$ Starting from $\mathcal{H}_{0}(\cdot) \equiv 0$. After many iterations $\mathcal{H}_{r}(\nu)$ will be nearly a constant. Or we drop the first $n$ terms and just calculate
$\square$ Starting from $\mathcal{H}_{0}(\cdot) \equiv 0$. After many iterations $\mathcal{H}_{r}(\nu)$ will be nearly a constant. Or we drop the first $n$ terms and just calculate

$$
\lim _{n \rightarrow \infty} \frac{1}{2^{k} n} \log E^{P}\left[\exp \left[H_{n}^{k}\left(U\left(x_{n+1}, \ldots, x_{2 n}\right)\right)\right]\right]
$$

$\square$ Starting from $\mathcal{H}_{0}(\cdot) \equiv 0$. After many iterations $\mathcal{H}_{r}(\nu)$ will be nearly a constant. Or we drop the first $n$ terms and just calculate

$$
\lim _{n \rightarrow \infty} \frac{1}{2^{k} n} \log E^{P}\left[\exp \left[H_{n}^{k}\left(U\left(x_{n+1}, \ldots, x_{2 n}\right)\right)\right]\right]
$$

$\square$ Remark. One can extend this to the calculation of

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log E^{P}\left[\exp \left[\sum_{i=1}^{n} f\left(x_{i}, x_{2 i}, \ldots, x_{k i}\right)\right]\right]
$$

## Last Slide

## THE END

