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The theory of large deviations deals with techniqu
for estimating exponentially small probabilities.
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The theory of large deviations deals with techniqu
for estimating exponentially small probabilities.

It depends heavily on the duality between the
functionse” andxlogz — .

P,(A) = exp|—n inf I(x) 4+ o(n)]

rcA

for "nice" setsA.
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ore precisely

P,(U) > exp|—n inf I(x) + o(n)]

xelU

ropensets/ C X



More precisely

P,(U) > exp|—n inf I(x) + o(n)]

xelU

for open setd/ C X
For closed set§' C X,

P,(C) < exp|—n inf I(x) + o(n)]

rzeC
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Equivalently

/exp[nF(:L“)]dPn = exp|n sgp[F(az) —I(z)]+o(n)]

for bounded continuous functiods(x) on X.
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Equivalently
/exp[nF(:L“)]dPn = exp|n sgp[F(az) —I(z)]+o(n)]

for bounded continuous functiods(x) on X.

The non-negative rate functidh-) is assumed to be
lower semicontinuous and with compact level sets

K= {z: I(z) < ()

Large Deviations.A survey —p.4



If X; are I1.1.d. random variables with finite
exponential moments

M(6) = Elexpl6 X

then the distributiorP, of Z, = = 3" | X; satisfies
an LDP with rate function
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If X; are I1.1.d. random variables with finite
exponential moments

M(6) = Elexpl6 X

then the distributiorP, of Z, = = 3" | X; satisfies
an LDP with rate function

I(z) = Sl;p[@:lj‘ — log M (8)]

Large Deviations.A survey —p.5



IS IS a theorem of Cramér (1937).



This is a theorem of Cramer (1937).

One can replace red; with independent random
variables with values ik,

M(0) = Elexp[(8, X)]]
and

I(z) = :;1}5[@, X) —log M(0)]
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This is a theorem of Cramer (1937).

One can replace red; with independent random
variables with values ik,

M(0) = Elexp[(0, X)]]

and

I(z) = :;1}5[@, X) —log M(0)]

More generally{ X;} could be i.i.d random variable:
with values in someX with a common distribution
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1 n

P, to be the distribution of/,, with values inM (X))
and Cramer’s theorem morphs into Sanov’s theore
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1 n
Zp = E;%

P, to be the distribution of/,, with values inM (X))
and Crameér’s theorem morphs into Sanov’s theore

The dual ofM(X) is C(X) and

M(f) = Elexpl(6x, f)]] = / /@ da(z)

and forg € M(X)
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1(8) = sup / 5 ~1og [ e/dal

feC(X




[(8) = sup [/fdﬁ—log/fffda]

feC(X)

— h(ﬂ, Ck) — ha(ﬂ)



[(B) = sup / fds — log / el do]

fed(X

— h(67 a) — hoz(ﬁ)

h(3;a) = oo unlesss << a andb(z) = 92 (z) is
such that log b(x)| € L1(3).



[(B) = sup / fds — log / el do]

fed(X

— h(67 a) — hoz(ﬁ)

h(3;a) = oo unlesss << a andb(z) = 92 (z) is
such that log b(x)| € L1(3).

h(f;a) = /log b(x)dB = /b(x) log b(x) da



action principle

X —-Y,Q=PF 1
dP = dQ) dP,



Contraction principle

s F:X Y, Q=PF
dP = dQ dP,

= If P, on X satisfies an LDP with raté(x) and

F : X — Y is a continuous map thep,, = P, !
on Y satisfies an LDP with rate

J(y) = int I[(x

We optimize when we project.
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n= | xdv,. v — [ zdv mapsM — R.



n= | xdv,. v — [ zdv mapsM — R.

int o) =1
. fxld%(x):ah(ﬁ a) = I(a)



n= | xdv,. v — [ zdv mapsM — R.

int o) =1
. fxld%(x):ah(ﬁ a) = I(a)

= sup|af — log / e’ da(z)]
vVeR




The next step is to try and calculate (F')

1 -
lim — log Ep[exp[z F(%', Litly - - - ,l“z'+k—1)]]

n—oo 1, —
1=
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The next step is to try and calculate (F')

1 -
lim — log Ep[exp[z F(%', Litly - - - ,l“z'+k—1)]]

n—oo 1, —
1=

F' is a function ofk variables(x+, ..., z;)
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The next step is to try and calculate (F')

1 -
lim — log Ep[exp[z F(%', Litly - - - ,l“z'+k—1)]]

n—oo N,
1=1
F' is a function ofk variables(x+, ..., z;)

P Is stationary process with values.i i.e a shift
Invariant probability measure ok, I.e

P e M (X).
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The empirical process which looks at all the finite
dimensional distributions

1 n
N E :5371733i+17---737i—|—k—1
n -

1=1
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The empirical process which looks at all the finite
dimensional distributions

1 )
E E , 51171733i+17---7517i+k—1
1=1

Start with(x1, 2o, . . . x,,) extend it periodically to

get a sequence € X and consider the orbital
NEERI(E

1 n
Rn(ﬂfl, WD oo - .CUn) — E E (STi—lw
=
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Let P, be the distribution of?,, € M(M (X)) It
satisfies an LDP with rate functiah(¢)) and

Yp(F)= sup [E[F]—Ip(Q)]
QeM,(X)
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Let P, be the distribution of?,, € M(M (X)) It
satisfies an LDP with rate functiah(¢)) and

Yp(F)= sup [E[F]—Ip(Q)]
QeM,(X)

The rate function'p(Q) is universal and is a versior
of Kolmogorov-Sinal entropy.
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Let p(dx,|w) andg(dz,|w) be the conditional
distributions ofr; given the pas{z; : « < 0} under
P and() respectively. Then

Ip(Q) = E¢[h(q(-|w) ; p(-|w))]
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as one problem.



as one problem.
oes not make sense!



Has one problem.
Does not make sense!

The problem is that(-|w) is only defined a.eP and
we need to integrate with respectdo
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Has one problem.
Does not make sense!

The problem is that(-|w) is only defined a.eP and
we need to integrate with respectdo

Put assumptions of so thaty(-|w) has a nice
everywhere defined version. Markov will do it.
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If £ is only a function of one variabl&'(z;) one can

contract

QEMs(X)
Qzy1=p
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If £ is only a function of one variabl&'(z;) one can

contract

QEMs(X)
Qzy1=p

In the Markov case

I+(3) = sup / log “2) i5()

u>0 7‘-“) (I)
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If £ is only a function of one variabl&'(z;) one can

contract

QEMs(X)
Qzy1=p

In the Markov case

I+(3) = sup / log “2) i5()

u>0 7‘-“) (I)

Controls the large deviations efy_ 4.,
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If £ is only a function of one variabl&'(z;) one can

contract

QEMs(X)
Qzy1=p

In the Markov case

I+(8) = sup / log “2) i5()

u>0 7‘-“) (I)

Controls the large deviations efy_ 4.,

If 7(x,dy) = a(dy) then we are back in the Sanov
case.
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We now turn to a more general problem. Calculate

n

|
J = lim —Ep[exp[z aiF(zi, Tiv1, .-, Tivk—1)]]

n—oo N _
=1

for a given sequencgu; : 2 > 1}.
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hen will it exist?



hen will it exist?
hat will it be?



nen will it exist?
nat will it be?
nat Is it good for?




We note that wher® Is a product measure arfdis
a function of one variable, we need to have the lir

1 n
log J = lim = f(a;)
1=1

n—o0 1, 4
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We note that wher® Is a product measure arfdis
a function of one variable, we need to have the lir

1 n
log J = lim = f(a;)
1=1

n—o0 1, 4

where
f(a) = log ElexplaF'(x)]]
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We note that wher® Is a product measure arfdis
a function of one variable, we need to have the lir

1 n
log J = lim = f(a;)
1=1

n—o0 1, 4

where
f(a) = log ElexplaF'(x)]]

This requires the empirical distributign ;" d,, to
have a limit.
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More generally we can assume that all the finite
dimensional joint distributions

1 n . .
n Ei:1 5ai,ai+1,...,ai+k_1 have |ImItS.
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More generally we can assume that all the finite
dimensional joint distributions

1 n . .
n Ei:1 5ai,ai+1,...,ai+k_1 have |ImItS.

The empirical procesB,, (a1, - .., a,) has a limit
v e M (X)
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More generally we can assume that all the finite
dimensional joint distributions

1 n . .
n Ei:1 5ai,ai+1,...,ai+k_1 have |ImItS.

The empirical procesB,, (a1, - .., a,) has a limit
v e M (X)

It looks like a sample frony.
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If {x;} is a Markov process with positive transition
probabilities on a finite seX, then for every{a; }

such thatRk, (a1, .. .,a,) — vthelimit J = J(v)
exists and Is a continuous linear functionvof
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If {x;} is a Markov process with positive transition
probabilities on a finite seX, then for every{a; }
such thatRk, (a1, .. .,a,) — vthelimit J = J(v)
exists and is a continuous linear functionof

Sub-additive argument will do It.
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If {x;} is a Markov process with positive transition
probabilities on a finite seX, then for every{a; }

such thatRk, (a1, .. .,a,) — vthelimit J = J(v)
exists and Is a continuous linear functionvof

Sub-additive argument will do It.
What Is it?
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Let M, be the set of stationary proceSswith
values InRk x X such that the marginal oR* is v.
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Let M, be the set of stationary proceSswith
values InRk x X such that the marginal oR* is v.

Let )y = v x P, i.e{a;} hasv for its distribution
and while{z;} is distributed according t&, the two
components are independent.
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e Kolomogorov-Sinai entropif (Q; Qo)



The Kolomogorov-Sinai entrop#f (Q; Q)

EC[h(q(dz1, dai|w) ; qo(dz1|w) % v(dai|w))

IS well defined for every, provided() € M.,,.
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The Kolomogorov-Sinai entrop#f (Q; Q)

EC[h(q(dz1, dai|w) ; qo(dz1|w) % v(dai|w))

IS well defined for every, provided() € M.,,.
qo(dz1|w) = qo(dx1|w1), v(da;|w) = v(day |ws)
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The Kolomogorov-Sinai entrop#f (Q; Q)

EC[h(q(dz1, dai|w) ; qo(dz1|w) % v(dai|w))

IS well defined for every, provided() € M.,,.
qo(dz1|w) = qo(dx1|w1), v(da;|w) = v(day |ws)
ThenJ(v) is equal to

sup [E€[a1 F(z1, ..., z1)] — H(Q; Q)]
QEM,
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efineH,(ay, ..., ay,)

n

log EP[QXP[Z aiF(xi) Litly .- - ,CCH_k_l]]
1=1



DefineH, (a4, ...,a,)

n

10g EP[GXP[Z aiF(m’b Lit1y - 7$i—|—k—1]]
1=1

Hyoml(ar, ... apem) — Hylag, ... ay)
— Hm(al,. .. ,CLm)‘ S C

uniformly inn, m and{a, }.
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’an(afla"'vank ZH 7, 1]{—0—17"'7(1'%)’
< (Cn
Partitioning of a block of sizén into blocks of size

k allows some freedom as to the location and one
can average over this collection
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(21,9, ... x,) IS @almost additive if



(21,9, ... x,) IS @almost additive if

|Aprm (21,29, ... xy) — Ap(T1, 29, ... )

— Am(xn—Fl) L2, - - xn+m)| < C



A, (21,9, ... x,) Is almost additive if

(A (21,29, ... 2p) — A1, 29, ... Tp)

— Ap(Tpi1,To, .. Tpam)| < C

Then for every typical {z;} the limit

|
lim —A,(x1,29,...2,) = A(V)

n—oo N,

exists and iIs a continuous linear functional on
M (X)
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|
H(v) = lim —H,(ay,as,...,ay)

n—oo M,

lim [ Hi(ai,as,...,a;)dv

k— 00

exists and depends (linearly and continuouslyyon
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slight variant is the following theorem.



A slight variant is the following theorem.

If H,((a1,x1), ..., (a,,x,)) IS an almost additive
sequence ofi(4 x X)"} with £= — H(-),
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A slight variant is the following theorem.

If H,((a1,x1), ..., (a,,x,)) IS an almost additive
sequence ofi(4 x X)"} with £= — H(-),

K,(ai,...,a,) defined as

log Ep[exp[Hn((al, 1), ..., (an, xp))]]
IS almost additive.
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converges tdC(-) where



converges tdC(-) where

Kv)= sup |H(Q)— H,xp(Q)
QeEM,



application.



application.
alculate

J = lim 1log EP[exp[Z U(xi)V (za;)]]

n—oo M, 1
1=




An application.
Calculate

J = lim llog Ep[exp[z U(xi)V ()]

n—o0 1 —
1=

To begin with consider the following simpler
problem.{z;} are i.i.d and/, V are bounded. Let

be large say” » for largek.
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e split the sum

Sokp = Sp + 82+ -+ SF



e split the sum

Sokp = Sp + 82+ -+ SF

ZU:U]



We split the sum
Sokp =S5 + 52+ .-+ 5F

For: > 2
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e denote byF,, theo-field generated by
i1 <n}.



We denote byF,, theo-field generated by
{x;, .1 < nj}.

S' is measurable w.r1,,

E[e5n] For,| = €517 E[e%| For,)

an
— SSZk_ln 62j:2k_1n+1 wl (CC])
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We denote byF,, theo-field generated by
{x;, .1 < nj}.

S' is measurable w.r1,,

E[e5n] For,| = €517 E[e%| For,)

2kn
— GSZk_ln 62j:2k_1n+1 wl (CC])

wherey, (z) = log EY[eV® VW], The odd;’s do not
appear again and hengé n terms separate out.
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e can remove&:—2y factors of

E[ewl(‘”)] — e“



e can remove*—2n factors of
E[ewl(‘”)] — e“
>ft with

2k_1n

652k_1n62j:2k_2”+1 1 (w2;)



We can remove&:—2n factors of
) [ewl(gj)] — e
Left with

ok—1,
SSQk_lneszQk_2n+1 wl (5623)

Now condition with respect t&.-1,,. We get

Qk_ln

esgk—QnE [ezjzzk—%ﬂ U (5)V(225)+41(225) |]:2’f—1n]

Large Deviations.A survey — p.34



e define

Wo(z) = log E[eU (fv)V(y)+¢1(y)]



e define
Wo(z) = log E[eU (fv)V(y)+¢1(y)]

IS reduces to

ok—1 ,
6S2k—2nezj=2kﬁ2N+1 e¥2("5)



If we define
Wo(z) = log E[eV®VW+il)

This reduces to

Zk_ln

652’f—2n ezjz2’<—2N+1 e¥2(7)

Again the odd ones stand alone. Can faétorn
factors of

E[e?2@)] = E[eV@VO)1H10)] = o2
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2ft with

k—2
2 :
€S2k_2n ezj:2’£3n+1 c¥2(225)



ft with
ok—2,

€S2k—2n ezﬂ':2k—3n+1 e¥2(72))

ontinuing recursively

Un(z) = 1OgE[€U(w)V(y)+wk_1(y)]



Left with
ok—2,

Yo (zg;)
652k—2n62j:2k—3n+16 =

Continuing recursively

U(z) = log E[eV® VW)

E[@wk(x)] — E[GU(:C)V(:U)—i_wk—l(y)] — eck

We have some terms left over frohn< 5 < n. But
for k large they can be ignored. Hence the limit
equals
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lim 1 log E[exp[ZU(%;)V(x%)]

n—oo 71 1
1=
o
= G
27+1
j=1



n

lim l log E[exp[ZU(Iz)V(@z’)]

n—oo N, —
1=

Now we turn to the more general case whérg} is
a finite state space Markov chain that is mixing.
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1
n

log E”[exp[ > _ U(z:)V (x2;)]

1=1

Jn




L et
1

n

log E”[exp[» _ U(xi)V (wy))]]

1=1

fn

Replacen by 27 n. We can pretend,; for

j > 2"1n 4+ 1 are independent of what happened
before i.e.x; for j < 2%n.
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for, = : logEPXP[exp[Z U(z;)V (22;)
+ Y U@)Viyy)l

1=2k—1n+1

1
— 2—log E[exp Z U(z;)V(x2;)

.+.jﬁék_Ln(lfoQh_h%+¥i,..-,(](1an))ﬂ

2k—1p
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Now we peel off; < 2¥2n and pretend the rest is
Independent.
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Now we peel off; < 2¥2n and pretend the rest is
Independent.

H2k—1n(U(y2k—1n—|—1)7 R U(ZJT‘%))H

Large Deviations.A survey — p.40



e induction step Is



The induction step Is

Hg,ﬂ_ln(al, e, ok—r—1p)

2k—r

logEP{exp[ Z a;V (x2;)

j=2k—r=141

5k_rn(U(ZC2k—rn+1), 0o U($2k—r+1n))]
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The induction step Is

Hg,ﬂ_ln(al, e, ok—r—1p)

2k—r

logEP{exp[ Z a;V (x2;)

j=2k—r=141

5k_rn(U(ZC2k—rn+1), 0o U($2k—r+1n))]

This leads to a map

He(-) = Hria()
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Starting fromH,(-) = 0. After many iterations

H..(v) will be nearly a constant. Or we drop the fir:
n terms and just calculate
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Starting fromH,(-) = 0. After many iterations

H..(v) will be nearly a constant. Or we drop the fir:
n terms and just calculate

1
lim — log B [exp[H*(U(xpi1, ..., zon))]]

n—oo 2kn
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Starting fromH,(-) = 0. After many iterations
H..(v) will be nearly a constant. Or we drop the fir:
n terms and just calculate

1
lim — log B [exp[H*(U(xpi1, ..., zon))]]

n—oo 2kn

Remark. One can extend this to the calculation of

1 n
lim — lOg EP[GXP[Z f(aj’l,p L2y - - - 733]%)“

n—oo 1 =
1=
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THE END
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