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The theory of large deviations deals with techniques
for estimating exponentially small probabilities.
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The theory of large deviations deals with techniques
for estimating exponentially small probabilities.

It depends heavily on the duality between the
functionsex andxlogx− x.
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The theory of large deviations deals with techniques
for estimating exponentially small probabilities.

It depends heavily on the duality between the
functionsex andxlogx− x.

Pn(A) = exp[−n inf
x∈A

I(x) + o(n)]

for "nice" setsA.
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More precisely

Pn(U) ≥ exp[−n inf
x∈U

I(x) + o(n)]

for open setsU ⊂ X
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More precisely

Pn(U) ≥ exp[−n inf
x∈U

I(x) + o(n)]

for open setsU ⊂ X

For closed setsC ⊂ X,

Pn(C) ≤ exp[−n inf
x∈C

I(x) + o(n)]
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Equivalently
∫

exp[nF (x)]dPn = exp[n sup
x

[F (x)−I(x)]+o(n)]

for bounded continuous functionsF (x) onX.
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Equivalently
∫

exp[nF (x)]dPn = exp[n sup
x

[F (x)−I(x)]+o(n)]

for bounded continuous functionsF (x) onX.

The non-negative rate functionI(·) is assumed to be
lower semicontinuous and with compact level sets

Kℓ = {x : I(x) ≤ ℓ}
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If Xi are i.i.d. random variables with finite
exponential moments

M(θ) = E[exp[θ X]]

then the distributionPn of Zn = 1
n

∑n
i=1Xi satisfies

an LDP with rate function

Large Deviations.A survey – p.5/43



If Xi are i.i.d. random variables with finite
exponential moments

M(θ) = E[exp[θ X]]

then the distributionPn of Zn = 1
n

∑n
i=1Xi satisfies

an LDP with rate function

I(x) = sup
θ

[θx− logM(θ)]
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This is a theorem of Cramér (1937).
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This is a theorem of Cramér (1937).

One can replace realXi with independent random
variables with values inRd.

M(θ) = E[exp[〈θ,X〉]]

and
I(x) = sup

θ∈Rd
[〈θ,X〉 − logM(θ)]
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This is a theorem of Cramér (1937).

One can replace realXi with independent random
variables with values inRd.

M(θ) = E[exp[〈θ,X〉]]

and
I(x) = sup

θ∈Rd
[〈θ,X〉 − logM(θ)]

More generally{Xi} could be i.i.d random variables
with values in someX with a common distributionα
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Zn =
1

n

n
∑

i=1

δXi
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Zn =
1

n

n
∑

i=1

δXi

Pn to be the distribution ofZn with values inM(X)
and Cramér’s theorem morphs into Sanov’s theorem.

Large Deviations.A survey – p.7/43



Zn =
1

n

n
∑

i=1

δXi

Pn to be the distribution ofZn with values inM(X)
and Cramér’s theorem morphs into Sanov’s theorem.

The dual ofM(X) isC(X) and

M(f) = Eα[exp[〈δX , f〉]] =

∫

ef(x)dα(x)

and forβ ∈ M(X)
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I(β) = sup
f∈C(X)

[

∫

fdβ − log

∫

efdα]
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I(β) = sup
f∈C(X)

[

∫

fdβ − log

∫

efdα]

= h(β;α) = hα(β)
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I(β) = sup
f∈C(X)

[

∫

fdβ − log

∫

efdα]

= h(β;α) = hα(β)

h(β ;α) = ∞ unlessβ << α andb(x) = dβ
dα

(x) is
such that| log b(x)| ∈ L1(β).
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I(β) = sup
f∈C(X)

[

∫

fdβ − log

∫

efdα]

= h(β;α) = hα(β)

h(β ;α) = ∞ unlessβ << α andb(x) = dβ
dα

(x) is
such that| log b(x)| ∈ L1(β).

h(β ;α) =

∫

log b(x) dβ =

∫

b(x) log b(x) dα
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Contraction principle

F : X → Y ,Q = PF−1.

dP = dQ dPy
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Contraction principle

F : X → Y ,Q = PF−1.

dP = dQ dPy

If Pn onX satisfies an LDP with rateI(x) and
F : X → Y is a continuous map thenQn = PnF

−1

onY satisfies an LDP with rate

J(y) = inf
x:F (x)=y

I(x)

We optimize when we project.
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X̄n =
∫

xdνn. ν →
∫

xdν mapsM → R.
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X̄n =
∫

xdνn. ν →
∫

xdν mapsM → R.

inf
β:

∫

x dβ(x)=a
h(β ;α) = I(a)
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X̄n =
∫

xdνn. ν →
∫

xdν mapsM → R.

inf
β:

∫

x dβ(x)=a
h(β ;α) = I(a)

= sup
θ∈R

[aθ − log

∫

eθx dα(x)]
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The next step is to try and calculateψP (F )

lim
n→∞

1

n
logEP [exp[

n
∑

i=1

F (xi, xi+1, . . . , xi+k−1)]]
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The next step is to try and calculateψP (F )

lim
n→∞

1

n
logEP [exp[

n
∑

i=1

F (xi, xi+1, . . . , xi+k−1)]]

F is a function ofk variables(x1, . . . , xk)
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The next step is to try and calculateψP (F )

lim
n→∞

1

n
logEP [exp[

n
∑

i=1

F (xi, xi+1, . . . , xi+k−1)]]

F is a function ofk variables(x1, . . . , xk)

P is stationary process with values inX. i.e a shift
invariant probability measure onX∞, i.e
P ∈ Ms(X).
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The empirical process which looks at all the finite
dimensional distributions

1

n

n
∑

i=1

δx1,xi+1,...,xi+k−1
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The empirical process which looks at all the finite
dimensional distributions

1

n

n
∑

i=1

δx1,xi+1,...,xi+k−1

Start with(x1, x2, . . . xn) extend it periodically to
get a sequenceω ∈ X∞ and consider the orbital
measure

Rn(x1, x2, . . . xn) =
1

n

n
∑

i=1

δT i−1ω
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Let Pn be the distribution ofRn ∈ M(Ms(X)) It
satisfies an LDP with rate functionIP (Q) and

ψP (F ) = sup
Q∈Ms(X)

[EQ[F ] − IP (Q)]
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Let Pn be the distribution ofRn ∈ M(Ms(X)) It
satisfies an LDP with rate functionIP (Q) and

ψP (F ) = sup
Q∈Ms(X)

[EQ[F ] − IP (Q)]

The rate functionIP (Q) is universal and is a version
of Kolmogorov-Sinai entropy.
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Let p(dx1|ω) andq(dx1|ω) be the conditional
distributions ofx1 given the past{xi : i ≤ 0} under
P andQ respectively. Then

IP (Q) = EQ[h(q(·|ω) ; p(·|ω))]
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Has one problem.
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Has one problem.

Does not make sense!
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Has one problem.

Does not make sense!

The problem is thatp(·|ω) is only defined a.e.P and
we need to integrate with respect toQ.

Large Deviations.A survey – p.15/43



Has one problem.

Does not make sense!

The problem is thatp(·|ω) is only defined a.e.P and
we need to integrate with respect toQ.

Put assumptions onP so thatp(·|ω) has a nice
everywhere defined version. Markov will do it.
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if F is only a function of one variableF (x1) one can
contract

IP (β) = inf
Q∈Ms(X)

Qx
−1
1 =β

IP (Q)
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if F is only a function of one variableF (x1) one can
contract

IP (β) = inf
Q∈Ms(X)

Qx
−1
1 =β

IP (Q)

In the Markov case

Iπ(β) = sup
u>0

∫

log
u(x)

(πu)(x)
dβ(x)
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if F is only a function of one variableF (x1) one can
contract

IP (β) = inf
Q∈Ms(X)

Qx
−1
1 =β

IP (Q)

In the Markov case

Iπ(β) = sup
u>0

∫

log
u(x)

(πu)(x)
dβ(x)

Controls the large deviations of1
n

∑

δxi
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if F is only a function of one variableF (x1) one can
contract

IP (β) = inf
Q∈Ms(X)

Qx
−1
1 =β

IP (Q)

In the Markov case

Iπ(β) = sup
u>0

∫

log
u(x)

(πu)(x)
dβ(x)

Controls the large deviations of1
n

∑

δxi

If π(x, dy) = α(dy) then we are back in the Sanov
case.
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We now turn to a more general problem. Calculate

J = lim
n→∞

1

n
EP [exp[

n
∑

i=1

aiF (xi, xi+1, . . . , xi+k−1)]]

for a given sequence{ai : i ≥ 1}.

Large Deviations.A survey – p.17/43



When will it exist?
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When will it exist?

What will it be?
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When will it exist?

What will it be?

What is it good for?
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We note that whenP is a product measure andF is
a function of one variable, we need to have the limit

log J = lim
n→∞

1

n

n
∑

i=1

f(ai)
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We note that whenP is a product measure andF is
a function of one variable, we need to have the limit

log J = lim
n→∞

1

n

n
∑

i=1

f(ai)

where
f(a) = logE[exp[aF (x)]]
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We note that whenP is a product measure andF is
a function of one variable, we need to have the limit

log J = lim
n→∞

1

n

n
∑

i=1

f(ai)

where
f(a) = logE[exp[aF (x)]]

This requires the empirical distribution1
n

∑n
i=1 δai to

have a limit.
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More generally we can assume that all the finite
dimensional joint distributions
1
n

∑n
i=1 δai,ai+1,...,ai+k−1

have limits.
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More generally we can assume that all the finite
dimensional joint distributions
1
n

∑n
i=1 δai,ai+1,...,ai+k−1

have limits.

The empirical processRn(a1, . . . , an) has a limit
ν ∈ Ms(X)
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More generally we can assume that all the finite
dimensional joint distributions
1
n

∑n
i=1 δai,ai+1,...,ai+k−1

have limits.

The empirical processRn(a1, . . . , an) has a limit
ν ∈ Ms(X)

It looks like a sample fromν.
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If {xi} is a Markov process with positive transition
probabilities on a finite setX, then for every{ai}
such thatRn(a1, . . . , an) → ν the limit J = J(ν)
exists and is a continuous linear function ofν
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If {xi} is a Markov process with positive transition
probabilities on a finite setX, then for every{ai}
such thatRn(a1, . . . , an) → ν the limit J = J(ν)
exists and is a continuous linear function ofν

Sub-additive argument will do it.
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If {xi} is a Markov process with positive transition
probabilities on a finite setX, then for every{ai}
such thatRn(a1, . . . , an) → ν the limit J = J(ν)
exists and is a continuous linear function ofν

Sub-additive argument will do it.

What is it?
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Let Mν be the set of stationary processQ with
values inR×X such that the marginal onR∞ is ν.
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Let Mν be the set of stationary processQ with
values inR×X such that the marginal onR∞ is ν.

LetQ0 = ν × P , i.e{ai} hasν for its distribution
and while{xi} is distributed according toP , the two
components are independent.
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The Kolomogorov-Sinai entropyH(Q;Q0)
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The Kolomogorov-Sinai entropyH(Q;Q0)

EQ[h(q(dx1, da1|ω) ; q0(dx1|ω) × ν(da1|ω))

is well defined for everyν, providedQ ∈ Mν.
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The Kolomogorov-Sinai entropyH(Q;Q0)

EQ[h(q(dx1, da1|ω) ; q0(dx1|ω) × ν(da1|ω))

is well defined for everyν, providedQ ∈ Mν.

q0(dx1|ω) = q0(dx1|ω1), ν(da1|ω) = ν(da1|ω2)
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The Kolomogorov-Sinai entropyH(Q;Q0)

EQ[h(q(dx1, da1|ω) ; q0(dx1|ω) × ν(da1|ω))

is well defined for everyν, providedQ ∈ Mν.

q0(dx1|ω) = q0(dx1|ω1), ν(da1|ω) = ν(da1|ω2)

ThenJ(ν) is equal to

sup
Q∈Mν

[EQ[a1F (x1, . . . , xk)] −H(Q;Q0)]
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DefineHn(a1, . . . , an)

logEP [exp[
n

∑

i=1

aiF (xi, xi+1, . . . , xi+k−1]]
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DefineHn(a1, . . . , an)

logEP [exp[
n

∑

i=1

aiF (xi, xi+1, . . . , xi+k−1]]

|Hn+m(a1, . . . , an+m) −Hn(a1, . . . , an)

−Hm(a1, . . . , am)| ≤ C

uniformly in n,m and{ai}.
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|Hnk(a1, . . . , ank)−
k

∑

i=1

Hn(a(i−1)k+1, . . . , aik)|

≤ Cn
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|Hnk(a1, . . . , ank)−
k

∑

i=1

Hn(a(i−1)k+1, . . . , aik)|

≤ Cn

Partitioning of a block of sizekn into blocks of size
k allows some freedom as to the location and one
can average over this collection
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lim sup
n→∞

|
1

n
Hn(a1, . . . , an)

−

∫

1

k
Hk(a1, . . . , ak)dRn| ≤

C

k
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An(x1, x2, . . . xn) is almost additive if
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An(x1, x2, . . . xn) is almost additive if

|An+m(x1,x2, . . . xn) − An(x1, x2, . . . xn)

− Am(xn+1, x2, . . . xn+m)| ≤ C
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An(x1, x2, . . . xn) is almost additive if

|An+m(x1,x2, . . . xn) − An(x1, x2, . . . xn)

− Am(xn+1, x2, . . . xn+m)| ≤ C

Then for everyν typical{xi} the limit

lim
n→∞

1

n
An(x1, x2, . . . xn) = A(ν)

exists and is a continuous linear functional on
Ms(X)
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H(ν) = lim
n→∞

1

n
Hn(a1, a2, . . . , an)

= lim
k→∞

∫

Hk(a1, a2, . . . , ak)dν

exists and depends (linearly and continuously) onν.
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A slight variant is the following theorem.
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A slight variant is the following theorem.

If Hn((a1, x1), . . . , (an, xn)) is an almost additive
sequence on{(A×X)n} with Hn

n
→ H(·),
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A slight variant is the following theorem.

If Hn((a1, x1), . . . , (an, xn)) is an almost additive
sequence on{(A×X)n} with Hn

n
→ H(·),

Kn(a1, . . . , an) defined as

logEP [exp[Hn((a1, x1), . . . , (an, xn))]]

is almost additive.
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Kn

n
converges toK(·) where
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Kn

n
converges toK(·) where

K(ν) = sup
Q∈Mν

[

H(Q) −Hν×P (Q)

]
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An application.
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An application.

Calculate

J = lim
n→∞

1

n
logEP [exp[

n
∑

i=1

U(xi)V (x2i)]]
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An application.

Calculate

J = lim
n→∞

1

n
logEP [exp[

n
∑

i=1

U(xi)V (x2i)]]

To begin with consider the following simpler
problem.{xi} are i.i.d andU, V are bounded. Letn
be large say2k n for largek.
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We split the sum

S2k n = S1
n + S2

n + · · · + Skn
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We split the sum

S2k n = S1
n + S2

n + · · · + Skn

S1
n =

n
∑

j=1

U(xj)V (x2j)
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We split the sum

S2k n = S1
n + S2

n + · · · + Skn

S1
n =

n
∑

j=1

U(xj)V (x2j)

For i ≥ 2

Sin =
2in
∑

j=2i−1n+1

U(xj)V (x2j)
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We denote byFn theσ-field generated by
{xi : i ≤ n}.
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We denote byFn theσ-field generated by
{xi : i ≤ n}.

Sin is measurable w.r.tF2i+1n

E[eS2kn|F2kn] = eS2k−1nE[eS
k
n|F2kn]

= eS2k−1ne
∑2kn
j=2k−1n+1 ψ1(xj)
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We denote byFn theσ-field generated by
{xi : i ≤ n}.

Sin is measurable w.r.tF2i+1n

E[eS2kn|F2kn] = eS2k−1nE[eS
k
n|F2kn]

= eS2k−1ne
∑2kn
j=2k−1n+1 ψ1(xj)

whereψ1(x) = logEy[eU(x)V (y)]. The oddj’s do not
appear again and hence2k−2n terms separate out.
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We can remove2k−2n factors of

E[eψ1(x)] = ec1
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We can remove2k−2n factors of

E[eψ1(x)] = ec1

Left with

eS2k−1ne
∑2k−1n
j=2k−2n+1 ψ1(x2j)
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We can remove2k−2n factors of

E[eψ1(x)] = ec1

Left with

eS2k−1ne
∑2k−1n
j=2k−2n+1 ψ1(x2j)

Now condition with respect toF2k−1n. We get

eS2k−2nE[e
∑2k−1n
j=2k−2n+1[U(xj)V (x2j)+ψ1(x2j)]|F2k−1n]

Large Deviations.A survey – p.34/43



If we define

ψ2(x) = logE[eU(x)V (y)+ψ1(y)]
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If we define

ψ2(x) = logE[eU(x)V (y)+ψ1(y)]

This reduces to

eS2k−2ne
∑2k−1n
j=2k−2N+1 e

ψ2(xj)
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If we define

ψ2(x) = logE[eU(x)V (y)+ψ1(y)]

This reduces to

eS2k−2ne
∑2k−1n
j=2k−2N+1 e

ψ2(xj)

Again the odd ones stand alone. Can factor2k−3n
factors of

E[eψ2(x)] = E[eU(x)V (y)+ψ1(y)] = ec2
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Left with

eS2k−2ne
∑2k−2n
j=2k−3n+1 e

ψ2(x2j)
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Left with

eS2k−2ne
∑2k−2n
j=2k−3n+1 e

ψ2(x2j)

Continuing recursively

ψk(x) = logE[eU(x)V (y)+ψk−1(y)]
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Left with

eS2k−2ne
∑2k−2n
j=2k−3n+1 e

ψ2(x2j)

Continuing recursively

ψk(x) = logE[eU(x)V (y)+ψk−1(y)]

E[eψk(x)] = E[eU(x)V (y)+ψk−1(y)] = eck

We have some terms left over from1 ≤ j ≤ n. But
for k large they can be ignored. Hence the limit
equals
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lim
n→∞

1

n
logE[exp[

n
∑

i=1

U(xi)V (x2i)]

=
∞

∑

j=1

cj

2j+1
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lim
n→∞

1

n
logE[exp[

n
∑

i=1

U(xi)V (x2i)]

=
∞

∑

j=1

cj

2j+1

Now we turn to the more general case where{xi} is
a finite state space Markov chain that is mixing.
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Let

fn =
1

n
logEP [exp[

n
∑

i=1

U(xi)V (x2j)]]
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Let

fn =
1

n
logEP [exp[

n
∑

i=1

U(xi)V (x2j)]]

Replacen by 2k n. We can pretendx2j for
j ≥ 2k−1n+ 1 are independent of what happened
before i.e.xj for j ≤ 2kn.
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f2kn =
1

2kn
logEP×P [exp[

2k−1n
∑

i=1

U(xi)V (x2j)

+
2kn
∑

i=2k−1n+1

U(xi)V (y2j)]]

=
1

2kn
logEP [exp[

2k−1n
∑

i=1

U(xi)V (x2j)

+H2k−1n(U(x2k−1n+1), . . . , U(x2kn))]]
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Now we peel offj ≤ 2k−2n and pretend the rest is
independent.
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Now we peel offj ≤ 2k−2n and pretend the rest is
independent.

f2kn ≃
1

2kn
logEP×P [exp[

2k−2n
∑

i=1

U(xi)V (x2j)

+
2k−1n
∑

i=2k−2n+1

U(xi)V (y2j)]]

+H2k−1n(U(y2k−1n+1), . . . , U(y2kn))]]
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The induction step is
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The induction step is

Hr+1
2k−r−1n

(a1, . . . , a2k−r−1n)

= logEP

[

exp[
2k−r
∑

i=2k−r−1+1

aiV (x2i)

+Hr
2k−rn(U(x2k−rn+1), . . . , U(x2k−r+1n))]

]
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The induction step is

Hr+1
2k−r−1n

(a1, . . . , a2k−r−1n)

= logEP

[

exp[
2k−r
∑

i=2k−r−1+1

aiV (x2i)

+Hr
2k−rn(U(x2k−rn+1), . . . , U(x2k−r+1n))]

]

This leads to a map

Hr(·) → Hr+1(·)
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Starting fromH0(·) ≡ 0. After many iterations
Hr(ν) will be nearly a constant. Or we drop the first
n terms and just calculate
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Starting fromH0(·) ≡ 0. After many iterations
Hr(ν) will be nearly a constant. Or we drop the first
n terms and just calculate

lim
n→∞

1

2kn
logEP [exp[Hk

n(U(xn+1, . . . , x2n))]]
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Starting fromH0(·) ≡ 0. After many iterations
Hr(ν) will be nearly a constant. Or we drop the first
n terms and just calculate

lim
n→∞

1

2kn
logEP [exp[Hk

n(U(xn+1, . . . , x2n))]]

Remark. One can extend this to the calculation of

lim
n→∞

1

n
logEP [exp[

n
∑

i=1

f(xi, x2i, . . . , xki)]]
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THE END
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