Large Deviations. A survey

S.R.S. Varadhan Courant Institute, NYU

> ICTS, Bangalore Jan 1, 2010

The theory of large deviations deals with techniques for estimating exponentially small probabilities.

The theory of large deviations deals with techniques for estimating exponentially small probabilities.

It depends heavily on the duality between the functions e^x and x log x - x.

- The theory of large deviations deals with techniques for estimating exponentially small probabilities.
- It depends heavily on the duality between the functions e^x and x log x x.

$$P_n(A) = \exp\left[-n \inf_{x \in A} I(x) + o(n)\right]$$

for "nice" sets A.

More precisely

$$P_n(U) \ge \exp\left[-n \inf_{x \in U} I(x) + o(n)\right]$$

for open sets $U \subset X$

More precisely

$$P_n(U) \ge \exp\left[-n \inf_{x \in U} I(x) + o(n)\right]$$

for open sets $U \subset X$ For closed sets $C \subset X$,

 $|P_n(C)| \le \exp\left[-n \inf_{x \in C} I(x) + o(n)\right]|$

Equivalently

 $\int \exp[nF(x)]dP_n = \exp[n\sup_x [F(x) - I(x)] + o(n)]$

for bounded continuous functions F(x) on X.

Equivalently

 $\exp[nF(x)]dP_n = \exp[n\sup_x [F(x) - I(x)] + o(n)]$

for bounded continuous functions F(x) on X.

The non-negative rate function $I(\cdot)$ is assumed to be lower semicontinuous and with compact level sets

$$K_{\ell} = \{x : I(x) \le \ell\}$$

If X_i are i.i.d. random variables with finite exponential moments

$$M(\theta) = E[\exp[\theta X]]$$

then the distribution P_n of $Z_n = \frac{1}{n} \sum_{i=1}^n X_i$ satisfies an LDP with rate function If X_i are i.i.d. random variables with finite exponential moments

$$M(\theta) = E[\exp[\theta X]]$$

then the distribution P_n of $Z_n = \frac{1}{n} \sum_{i=1}^n X_i$ satisfies an LDP with rate function

$$I(x) = \sup_{\theta} [\theta x - \log M(\theta)]$$

This is a theorem of Cramér (1937).

This is a theorem of Cramér (1937). One can replace real X_i with independent random variables with values in R^d.

$$M(\theta) = E[\exp[\langle \theta, X \rangle]]$$

and

$$I(x) = \sup_{\theta \in R^d} [\langle \theta, X \rangle - \log M(\theta)]$$

This is a theorem of Cramér (1937).
One can replace real X_i with independent random variables with values in R^d.

 $M(\theta) = E[\exp[\langle \theta, X \rangle]]$

and

$$I(x) = \sup_{\theta \in R^d} [\langle \theta, X \rangle - \log M(\theta)]$$

• More generally $\{X_i\}$ could be i.i.d random variables with values in some X with a common distribution α

$$Z_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$$

$$Z_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$$

P_n to be the distribution of Z_n with values in $\mathcal{M}(X)$ and Cramér's theorem morphs into Sanov's theorem.

$$Z_n = \frac{1}{n} \sum_{i=1}^n \delta_{X_i}$$

P_n to be the distribution of *Z_n* with values in *M(X)* and Cramér's theorem morphs into Sanov's theorem.
The dual of *M(X)* is *C(X)* and

$$M(f) = E^{\alpha}[\exp[\langle \delta_X, f \rangle]] = \int e^{f(x)} d\alpha(x)$$

and for $\beta \in \mathcal{M}(X)$

$$I(\beta) = \sup_{f \in C(X)} \left[\int f d\beta - \log \int e^f d\alpha \right]$$

$$I(\beta) = \sup_{f \in C(X)} \left[\int f d\beta - \log \int e^f d\alpha \right]$$
$$= h(\beta; \alpha) = h_{\alpha}(\beta)$$

$$I(\beta) = \sup_{f \in C(X)} \left[\int f d\beta - \log \int e^{f} d\alpha \right]$$
$$= h(\beta; \alpha) = h_{\alpha}(\beta)$$

• $h(\beta; \alpha) = \infty$ unless $\beta << \alpha$ and $b(x) = \frac{d\beta}{d\alpha}(x)$ is such that $|\log b(x)| \in L_1(\beta)$.

$$I(\beta) = \sup_{f \in C(X)} \left[\int f d\beta - \log \int e^f d\alpha \right]$$
$$= h(\beta; \alpha) = h_{\alpha}(\beta)$$

• $h(\beta; \alpha) = \infty$ unless $\beta << \alpha$ and $b(x) = \frac{d\beta}{d\alpha}(x)$ is such that $|\log b(x)| \in L_1(\beta)$.

$$h(\beta; \alpha) = \int \log b(x) \, d\beta = \int b(x) \log b(x) \, d\alpha$$

Contraction principle

$$\blacksquare F : X \to Y, Q = PF^{-1}.$$

$$dP = dQ \ dP_y$$

Contraction principle

$$\bullet F: X \to Y, Q = PF^{-1}.$$

$$dP = dQ \ dP_y$$

If P_n on X satisfies an LDP with rate I(x) and $F: X \to Y$ is a continuous map then $Q_n = P_n F^{-1}$ on Y satisfies an LDP with rate

$$J(y) = \inf_{x:F(x)=y} I(x)$$

We optimize when we project.

$$\overline{X}_n = \int x d\nu_n. \ \nu \to \int x d\nu \text{ maps } \mathcal{M} \to R.$$

$$\bar{X}_n = \int x d\nu_n. \ \nu \to \int x d\nu \text{ maps } \mathcal{M} \to R.$$
$$\inf_{\beta: \int x d\beta(x) = a} h(\beta; \alpha) = I(a)$$

$$\begin{split} \bar{X}_n &= \int x d\nu_n. \ \nu \to \int x d\nu \text{ maps } \mathcal{M} \to R.\\ \inf_{\beta: \int x d\beta(x) = a} h(\beta; \alpha) &= I(a)\\ &= \sup_{\theta \in R} [a\theta - \log \int e^{\theta x} d\alpha(x)] \end{split}$$

The next step is to try and calculate $\psi_P(F)$

$$\lim_{n \to \infty} \frac{1}{n} \log E^{P}[\exp[\sum_{i=1}^{n} F(x_{i}, x_{i+1}, \dots, x_{i+k-1})]]$$

The next step is to try and calculate $\psi_P(F)$

$$\lim_{n \to \infty} \frac{1}{n} \log E^P[\exp[\sum_{i=1}^n F(x_i, x_{i+1}, \dots, x_{i+k-1})]]$$

 $\blacksquare F$ is a function of k variables (x_1, \ldots, x_k)

The next step is to try and calculate $\psi_P(F)$

$$\lim_{n \to \infty} \frac{1}{n} \log E^{P} \left[\exp \left[\sum_{i=1}^{n} F(x_{i}, x_{i+1}, \dots, x_{i+k-1}) \right] \right]$$

F is a function of k variables (x₁,...,x_k)
P is stationary process with values in X. i.e a shift invariant probability measure on X[∞], i.e P ∈ M_s(X).

The empirical process which looks at all the finite dimensional distributions

$$\frac{1}{n} \sum_{i=1}^{n} \delta_{x_1, x_{i+1}, \dots, x_{i+k-1}}$$

The empirical process which looks at all the finite dimensional distributions

$$\frac{1}{n} \sum_{i=1}^{n} \delta_{x_1, x_{i+1}, \dots, x_{i+k-1}}$$

Start with (x_1, x_2, \dots, x_n) extend it periodically to get a sequence $\omega \in X^{\infty}$ and consider the orbital measure

$$R_n(x_1, x_2, \dots, x_n) = \frac{1}{n} \sum_{i=1}^n \delta_{T^{i-1}\omega}$$

Let P_n be the distribution of $R_n \in \mathcal{M}(\mathcal{M}_s(X))$ It satisfies an LDP with rate function $I_P(Q)$ and

$$\psi_P(F) = \sup_{Q \in \mathcal{M}_s(X)} [E^Q[F] - I_P(Q)]$$

Let P_n be the distribution of $R_n \in \mathcal{M}(\mathcal{M}_s(X))$ It satisfies an LDP with rate function $I_P(Q)$ and

$$\psi_P(F) = \sup_{Q \in \mathcal{M}_s(X)} [E^Q[F] - I_P(Q)]$$

The rate function $I_P(Q)$ is universal and is a version of Kolmogorov-Sinai entropy.

Let $p(dx_1|\omega)$ and $q(dx_1|\omega)$ be the conditional distributions of x_1 given the past $\{x_i : i \leq 0\}$ under P and Q respectively. Then

 $I_P(Q) = E^Q[h(q(\cdot|\omega); p(\cdot|\omega))]$

Has one problem.

Has one problem.Does not make sense!

- Has one problem.
- Does not make sense!
- The problem is that $p(\cdot|\omega)$ is only defined a.e. P and we need to integrate with respect to Q.
- Has one problem.
- Does not make sense!
- The problem is that $p(\cdot|\omega)$ is only defined a.e. P and we need to integrate with respect to Q.
- Put assumptions on P so that $p(\cdot|\omega)$ has a nice everywhere defined version. Markov will do it.

$$I_P(\beta) = \inf_{\substack{Q \in \mathcal{M}_s(X) \\ Qx_1^{-1} = \beta}} I_P(Q)$$

$$I_P(\beta) = \inf_{\substack{Q \in \mathcal{M}_s(X) \\ Qx_1^{-1} = \beta}} I_P(Q)$$

In the Markov case

$$I_{\pi}(\beta) = \sup_{u>0} \int \log \frac{u(x)}{(\pi u)(x)} \, d\beta(x)$$

$$I_P(\beta) = \inf_{\substack{Q \in \mathcal{M}_s(X) \\ Qx_1^{-1} = \beta}} I_P(Q)$$

In the Markov case

$$I_{\pi}(\beta) = \sup_{u>0} \int \log \frac{u(x)}{(\pi u)(x)} \, d\beta(x)$$

Controls the large deviations of $\frac{1}{n} \sum \delta_{x_i}$

$$I_P(\beta) = \inf_{\substack{Q \in \mathcal{M}_s(X) \\ Qx_1^{-1} = \beta}} I_P(Q)$$

In the Markov case

$$I_{\pi}(\beta) = \sup_{u>0} \int \log \frac{u(x)}{(\pi u)(x)} \, d\beta(x)$$

Controls the large deviations of ¹/_n ∑ δ_{x_i}
 If π(x, dy) = α(dy) then we are back in the Sanov case.

■ We now turn to a more general problem. Calculate

$$J = \lim_{n \to \infty} \frac{1}{n} E^{P} \left[\exp \left[\sum_{i=1}^{n} a_{i} F(x_{i}, x_{i+1}, \dots, x_{i+k-1}) \right] \right]$$

for a given sequence $\{a_i : i \ge 1\}$.

When will it exist?

When will it exist?What will it be?

When will it exist?What will it be?What is it good for?

We note that when P is a product measure and F is a function of one variable, we need to have the limit

$$\log J = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} f(a_i)$$

We note that when P is a product measure and F is a function of one variable, we need to have the limit

$$\log J = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} f(a_i)$$

where

 $f(a) = \log E[\exp[aF(x)]]$

We note that when P is a product measure and F is a function of one variable, we need to have the limit

$$\log J = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} f(a_i)$$

where

 $f(a) = \log E[\exp[aF(x)]]$

This requires the empirical distribution $\frac{1}{n} \sum_{i=1}^{n} \delta_{a_i}$ to have a limit.

More generally we can assume that all the finite dimensional joint distributions $\frac{1}{n} \sum_{i=1}^{n} \delta_{a_i, a_{i+1}, \dots, \underline{a_{i+k-1}}}$ have limits.

More generally we can assume that all the finite dimensional joint distributions

 $\frac{1}{n}\sum_{i=1}^{n}\delta_{a_i,a_{i+1},\dots,a_{i+k-1}}$ have limits.

The empirical process $R_n(a_1, \ldots, a_n)$ has a limit $\nu \in \mathcal{M}_s(X)$

More generally we can assume that all the finite dimensional joint distributions

 $\frac{1}{n}\sum_{i=1}^{n}\delta_{a_i,a_{i+1},\dots,a_{i+k-1}}$ have limits.

The empirical process $R_n(a_1, \ldots, a_n)$ has a limit $\nu \in \mathcal{M}_s(X)$

It looks like a sample from ν .

If $\{x_i\}$ is a Markov process with positive transition probabilities on a finite set X, then for every $\{a_i\}$ such that $R_n(a_1, \ldots, a_n) \rightarrow \nu$ the limit $J = J(\nu)$ exists and is a continuous linear function of ν If {x_i} is a Markov process with positive transition probabilities on a finite set X, then for every {a_i} such that R_n(a₁,..., a_n) → ν the limit J = J(ν) exists and is a continuous linear function of ν
Sub-additive argument will do it.

If {x_i} is a Markov process with positive transition probabilities on a finite set X, then for every {a_i} such that R_n(a₁,..., a_n) → ν the limit J = J(ν) exists and is a continuous linear function of ν
Sub-additive argument will do it.
What is it?

Let \mathcal{M}_{ν} be the set of stationary process Q with values in $R \times X$ such that the marginal on R^{∞} is ν .

Let M_ν be the set of stationary process Q with values in R × X such that the marginal on R[∞] is ν.
Let Q₀ = ν × P, i.e {a_i} has ν for its distribution and while {x_i} is distributed according to P, the two components are independent.

The Kolomogorov-Sinai entropy $H(Q;Q_0)$

The Kolomogorov-Sinai entropy $H(Q; Q_0)$

 $E^{Q}[h(q(dx_{1}, da_{1}|\omega); q_{0}(dx_{1}|\omega) \times \nu(da_{1}|\omega))$ is well defined for every ν , provided $Q \in \mathcal{M}_{\nu}$.

The Kolomogorov-Sinai entropy $H(Q;Q_0)$

 $E^{Q}[h(q(dx_{1}, da_{1}|\omega); q_{0}(dx_{1}|\omega) \times \nu(da_{1}|\omega))$ is well defined for every ν , provided $Q \in \mathcal{M}_{\nu}$. $q_{0}(dx_{1}|\omega) = q_{0}(dx_{1}|\omega_{1}), \nu(da_{1}|\omega) = \nu(da_{1}|\omega_{2})$

The Kolomogorov-Sinai entropy $H(Q; Q_0)$

 $E^{Q}[h(q(dx_{1}, da_{1}|\omega); q_{0}(dx_{1}|\omega) \times \nu(da_{1}|\omega))$ is well defined for every ν , provided $Q \in \mathcal{M}_{\nu}$. $q_{0}(dx_{1}|\omega) = q_{0}(dx_{1}|\omega_{1}), \nu(da_{1}|\omega) = \nu(da_{1}|\omega_{2})$ Then $J(\nu)$ is equal to

$$\sup_{Q\in\mathcal{M}_{\nu}} \left[E^Q[a_1F(x_1,\ldots,x_k)] - H(Q;Q_0) \right]$$

Define $H_n(a_1,\ldots,a_n)$

$$\log E^{P}[\exp[\sum_{i=1}^{n} a_{i}F(x_{i}, x_{i+1}, \dots, x_{i+k-1}]]]$$

Define $H_n(a_1, \ldots, a_n)$

$$\log E^{P}[\exp[\sum_{i=1}^{n} a_{i}F(x_{i}, x_{i+1}, \dots, x_{i+k-1}]]]$$

$$|H_{n+m}(a_1,\ldots,a_{n+m}) - H_n(a_1,\ldots,a_n) - H_m(a_1,\ldots,a_m)| \le C$$

uniformly in n, m and $\{a_i\}$.

$$|H_{nk}(a_1, \dots, a_{nk}) - \sum_{i=1}^k H_n(a_{(i-1)k+1}, \dots, a_{ik})|$$

 $\leq Cn$

$$|H_{nk}(a_1, \dots, a_{nk}) - \sum_{i=1}^k H_n(a_{(i-1)k+1}, \dots, a_{ik})|$$

 $\leq Cn$

Partitioning of a block of size kn into blocks of size k allows some freedom as to the location and one can average over this collection

$$\limsup_{n \to \infty} \left| \frac{1}{n} H_n(a_1, \dots, a_n) - \int \frac{1}{k} H_k(a_1, \dots, a_k) dR_n \right| \le \frac{C}{k}$$

$\blacksquare A_n(x_1, x_2, \dots, x_n)$ is almost additive if

•
$$A_n(x_1, x_2, \ldots x_n)$$
 is almost additive if
 $|A_{n+m}(x_1, x_2, \ldots x_n) - A_n(x_1, x_2, \ldots x_n) - A_m(x_{n+1}, x_2, \ldots x_{n+m})| \le C$

•
$$A_n(x_1, x_2, \dots, x_n)$$
 is almost additive if
 $|A_{n+m}(x_1, x_2, \dots, x_n) - A_n(x_1, x_2, \dots, x_n) - A_m(x_{n+1}, x_2, \dots, x_{n+m})| \le C$
• Then for every ν typical $\{x_i\}$ the limit
 $\lim_{n \to \infty} \frac{1}{n} A_n(x_1, x_2, \dots, x_n) = \mathcal{A}(\nu)$
exists and is a continuous linear functional on
 $\mathcal{M}_s(X)$

$$\mathcal{H}(
u) = \lim_{n \to \infty} \frac{1}{n} H_n(a_1, a_2, \dots, a_n)$$

= $\lim_{k \to \infty} \int H_k(a_1, a_2, \dots, a_k) d
u$

exists and depends (linearly and continuously) on ν .

A slight variant is the following theorem.

A slight variant is the following theorem. If H_n((a₁, x₁), ..., (a_n, x_n)) is an almost additive sequence on {(A × X)ⁿ} with H_n → H(·),

A slight variant is the following theorem.
If H_n((a₁, x₁), ..., (a_n, x_n)) is an almost additive sequence on {(A × X)ⁿ} with H_n/n → H(·),
K_n(a₁,..., a_n) defined as log E^P[exp[H_n((a₁, x₁), ..., (a_n, x_n))]] is almost additive.

An application.

An application.Calculate

$$J = \lim_{n \to \infty} \frac{1}{n} \log E^P[\exp[\sum_{i=1}^n U(x_i)V(x_{2i})]]$$

An application.Calculate

$$J = \lim_{n \to \infty} \frac{1}{n} \log E^P[\exp[\sum_{i=1}^n U(x_i)V(x_{2i})]]$$

To begin with consider the following simpler problem. {x_i} are i.i.d and U, V are bounded. Let n be large say 2^k n for large k.

• We split the sum

$$S_{2^{k}n} = S_{n}^{1} + S_{n}^{2} + \dots + S_{n}^{k}$$

• We split the sum

$$S_{2^k n} = S_n^1 + S_n^2 + \dots + S_n^k$$

$$S_n^1 = \sum_{j=1}^n U(x_j) V(x_{2j})$$

We split the sum

$$S_{2^k n} = S_n^1 + S_n^2 + \dots + S_n^k$$

$$S_n^1 = \sum_{j=1}^{n} U(x_j) V(x_{2j})$$

For $i \ge 2$

$$S_n^i = \sum_{j=2^{i-1}n+1}^{2^i n} U(x_j) V(x_{2j})$$

We denote by \mathcal{F}_n the σ -field generated by $\{x_i : i \leq n\}.$

We denote by \mathcal{F}_n the σ -field generated by $\{x_i : i \leq n\}.$

 $\blacksquare S_n^i$ is measurable w.r.t $\mathcal{F}_{2^{i+1}n}$

$$E[e^{S_{2^{k_n}}}|\mathcal{F}_{2^{k_n}}] = e^{S_{2^{k-1}n}} E[e^{S_n^k}|\mathcal{F}_{2^{k_n}}]$$
$$= e^{S_{2^{k-1}n}} e^{\sum_{j=2^{k-1}n+1}^{2^{k_n}}\psi_1(x_j)}$$

We denote by *F_n* the *σ*-field generated by {*x_i* : *i* ≤ *n*}. *Sⁱ_n* is measurable w.r.t *F_{2^{i+1n}*</sub>}

$$E[e^{S_{2^{k_n}}}|\mathcal{F}_{2^{k_n}}] = e^{S_{2^{k-1}n}} E[e^{S_n^k}|\mathcal{F}_{2^{k_n}}]$$
$$= e^{S_{2^{k-1}n}} e^{\sum_{j=2^{k-1}n+1}^{2^{k_n}}\psi_1(x_j)}$$

where $\psi_1(x) = \log E^y[e^{U(x)V(y)}]$. The odd *j*'s do not appear again and hence $2^{k-2}n$ terms separate out.

We can remove $2^{k-2}n$ factors of

$$E[e^{\psi_1(x)}] = e^{c_1}$$

We can remove $2^{k-2}n$ factors of

$$E[e^{\psi_1(x)}] = e^{c_1}$$

Left with

$$e^{S_{2^{k-1}n}}e^{\sum_{j=2^{k-2}n+1}^{2^{k-1}n}\psi_1(x_{2j})}$$

We can remove
$$2^{k-2}n$$
 factors of $E[e^{\psi_1(x)}] = e^{c_1}$

$$e^{S_{2^{k-1}n}}e^{\sum_{j=2^{k-2}n+1}^{2^{k-1}n}\psi_1(x_{2j})}$$

Now condition with respect to $\mathcal{F}_{2^{k-1}n}$. We get

$$e^{S_{2^{k-2}n}} E[e^{\sum_{j=2^{k-2}n+1}^{2^{k-1}n} [U(x_j)V(x_{2j}) + \psi_1(x_{2j})]} |\mathcal{F}_{2^{k-1}n}]$$

If we define

$$\psi_2(x) = \log E[e^{U(x)V(y) + \psi_1(y)}]$$

If we define

$$\psi_2(x) = \log E[e^{U(x)V(y) + \psi_1(y)}]$$

This reduces to

$$e^{S_{2^{k-2}n}}e^{\sum_{j=2^{k-2}N+1}^{2^{k-1}n}e^{\psi_2(x_j)}}$$

If we define

$$\psi_2(x) = \log E[e^{U(x)V(y) + \psi_1(y)}]$$

This reduces to

$$e^{S_{2^{k-2}n}}e^{\sum_{j=2^{k-2}N+1}^{2^{k-1}n}e^{\psi_{2}(x_{j})}}$$

Again the odd ones stand alone. Can factor 2^{k-3}n factors of

$$E[e^{\psi_2(x)}] = E[e^{U(x)V(y) + \psi_1(y)}] = e^{c_2}$$

 $e^{S_{2^{k-2}n}}e^{\sum_{j=2^{k-3}n+1}^{2^{k-2}n}e^{\psi_2(x_{2j})}}$

 $e^{S_{2^{k-2}n}}e^{\sum_{j=2^{k-3}n+1}^{2^{k-2}n}e^{\psi_2(x_{2j})}}$

Continuing recursively

$$\psi_k(x) = \log E[e^{U(x)V(y) + \psi_{k-1}(y)}]$$

 $e^{S_{2^{k-2}n}}e^{\sum_{j=2^{k-3}n+1}^{2^{k-2}n}e^{\psi_2(x_2_j)}}$

Continuing recursively

$$\psi_k(x) = \log E[e^{U(x)V(y) + \psi_{k-1}(y)}]$$

$$E[e^{\psi_k(x)}] = E[e^{U(x)V(y) + \psi_{k-1}(y)}] = e^{c_k}$$

We have some terms left over from $1 \le j \le n$. But for k large they can be ignored. Hence the limit equals

$$\lim_{n \to \infty} \frac{1}{n} \log E[\exp[\sum_{i=1}^{n} U(x_i)V(x_{2i})]$$
$$= \sum_{j=1}^{\infty} \frac{c_j}{2^{j+1}}$$

$$\lim_{n \to \infty} \frac{1}{n} \log E\left[\exp\left[\sum_{i=1}^{n} U(x_i)V(x_{2i})\right]\right]$$
$$= \sum_{j=1}^{\infty} \frac{c_j}{2^{j+1}}$$

Now we turn to the more general case where $\{x_i\}$ is a finite state space Markov chain that is mixing.

Let

$f_n = \frac{1}{n} \log E^P[\exp[\sum_{i=1}^n U(x_i)V(x_{2j})]]$

Let

$$f_n = \frac{1}{n} \log E^P[\exp[\sum_{i=1}^n U(x_i)V(x_{2j})]]$$

Replace n by 2^k n. We can pretend x_{2j} for
 j ≥ 2^{k-1}n + 1 are independent of what happened
 before i.e. x_j for j ≤ 2^kn.

$$f_{2^{k_n}} = \frac{1}{2^{k_n}} \log E^{P \times P} \left[\exp \left[\sum_{i=1}^{2^{k-1}n} U(x_i) V(x_{2j}) + \sum_{i=2^{k-1}n+1}^{2^{k_n}} U(x_i) V(y_{2j}) \right] \right]$$

$$= \frac{1}{2^{k_n}} \log E^P \left[\exp \left[\sum_{i=1}^{2^{k-1}n} U(x_i) V(x_{2j}) + H_{2^{k-1}n} (U(x_{2^{k-1}n+1}), \dots, U(x_{2^k n})) \right] \right]$$

Now we peel off $j \le 2^{k-2}n$ and pretend the rest is independent.

Now we peel off $j \le 2^{k-2}n$ and pretend the rest is independent.

$$f_{2^{k_n}} \simeq \frac{1}{2^{k_n}} \log E^{P \times P} \left[\exp \left[\sum_{i=1}^{2^{k-2}n} U(x_i) V(x_{2j}) + \sum_{i=2^{k-2}n+1}^{2^{k-1}n} U(x_i) V(y_{2j}) \right] \right] + H_{2^{k-1}n} \left(U(y_{2^{k-1}n+1}), \dots, U(y_{2^{k_n}})) \right]$$

The induction step is

The induction step is

$$\begin{aligned} I_{2^{k-r-1}n}^{r+1}(a_1,\ldots,a_{2^{k-r-1}n}) \\ &= \log E^P \bigg[\exp [\sum_{i=2^{k-r-1}+1}^{2^{k-r}} a_i V(x_{2i}) \\ &+ H_{2^{k-r}n}^r(U(x_{2^{k-r}n+1}),\ldots,U(x_{2^{k-r+1}n}))] \end{aligned}$$

The induction step is

$$H_{2^{k-r-1}n}^{r+1}(a_1, \dots, a_{2^{k-r-1}n})$$

$$= \log E^P \left[\exp \left[\sum_{i=2^{k-r-1}+1}^{2^{k-r}} a_i V(x_{2i}) + H_{2^{k-r}n}^r(U(x_{2^{k-r}n+1}), \dots, U(x_{2^{k-r+1}n})) \right] \right]$$

This leads to a map

$$\mathcal{H}_r(\cdot) \to \mathcal{H}_{r+1}(\cdot)$$

Large Deviations. A survey – p.41/42

Starting from $\mathcal{H}_0(\cdot) \equiv 0$. After many iterations $\mathcal{H}_r(\nu)$ will be nearly a constant. Or we drop the first *n* terms and just calculate

Starting from $\mathcal{H}_0(\cdot) \equiv 0$. After many iterations $\mathcal{H}_r(\nu)$ will be nearly a constant. Or we drop the first *n* terms and just calculate

 $\lim_{n \to \infty} \frac{1}{2^k n} \log E^P[\exp[H_n^k(U(x_{n+1}, \dots, x_{2n}))]]$

Starting from $\mathcal{H}_0(\cdot) \equiv 0$. After many iterations $\mathcal{H}_r(\nu)$ will be nearly a constant. Or we drop the first *n* terms and just calculate

$$\lim_{n \to \infty} \frac{1}{2^k n} \log E^P[\exp[H_n^k(U(x_{n+1},\ldots,x_{2n}))]]$$

Remark. One can extend this to the calculation of

$$\lim_{n \to \infty} \frac{1}{n} \log E^P[\exp[\sum_{i=1}^n f(x_i, x_{2i}, \dots, x_{ki})]]$$

THE END

Large Deviations. A survey – p.43/43