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Plan of lectures

A: Motivation – introduction to the cuprates

B: Essentials of applied holography

C: Charged bosons

D: Charged fermions

E: D-branes
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A: Motivation – introduction to the cuprates

1 Anomalous scalings.

2 Critical temperature.

3 Absence of quasiparticles.

4 Fermi surface reconstruction.

Sean Hartnoll (Harvard U) AdS/CMT Jan 2010 3 / 58



Invitation to the cuprates

• The most glamorous non-Fermi liquids are the cuprate high-Tc

superconductors.

• There is no consistent theory for the ‘strange metal’ (non Fermi
liquid) regime. Many anomalous properties.
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Anomalous scalings

• The ‘strange metal’ regime is characterised by unconventional scaling
laws. Eg.

• DC resistivity: ρ ∼ T , optical conductivity σ(ω) ∼ ω−0.65.

[Plots from McKenzie et al. ’97 and van der Marel et al. ’03.]
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The critical temperature

• In BCS theory the critical temperature

Tc ∼ EDe−1/[N(0)g2] .

• Electron-phonon coupling g too large gives lattice instabilities.
⇒ Max. Tc ∼ 30 K.
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Absence of quasiparticles

• Weakly interacting Fermi liquid has sharp quasiparticle excitations at
the Fermi surface (left below).

• The strange metallic region of the cuprates does not (right below).

• Some structure in ARPES, but broad.

[Plot from Ding et al. ’96]
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Fermi surface reconstruction I

• de Haas - van Alphen oscillations detect the size of Fermi surface.

[Plots from Doiron-Leyraud et al. 2007, Vignolle et al. 2008]
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Fermi surface reconstruction II

• Fourier transform the oscillations

• Underdoped: Fermi pockets.
Overdoped: conventional Fermi surface.
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Possible scenario

• Summary:

1 Scaling laws
2 Change in shape of Fermi surface
3 Absence of well defined quasiparticles

• Consistent with a quantum critical point at T = 0 at a critical doping
controlling the strange metal region.

• Layered structure of cuprates suggests 2+1 dimensional critical
theory.

• Such theories generically strongly coupled. Traditional perturbative
methods not controlled.

⇒ Turn to the holographic correspondence....
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B: Essentials of applied holography

1 Holography and renormalisation

2 Finite temperature and black holes

3 Finite chemical potential and charged black holes

4 Relevant operators

5 Green’s functions

Sean Hartnoll (Harvard U) AdS/CMT Jan 2010 11 / 58



Holographic correspondence and renormalisation group

• A beautiful and nontrivial property of quantum theories:

Once defined at an energy Λ, defined for all energies E < Λ.

• Renormalisation shows low energy/long distance physics is not
sensitive to high energy and short distance details.

• Physics is local in energy (Wilson):

E
dg(E )

dE
= β(g(E )) .

• The essential structure of the holographic correspondence is to make
this locality geometrically manifest.
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• Holographic correspondence: add the energy scale as an extra curved
spacetime dimension.
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• Curvature of the ‘holographic direction’ contains the RG flow
information.

• Einstein’s equations are the RG equations.

• Locality in spacetime and in energy on the same footing.
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Scale invariance and z

• Field theories can be defined with a cutoff or at a UV fixed point.

• At a fixed point, theory is invariant under space and time scaling

t → λz t , ~x → λ~x .

• z is the dynamical critical exponent. There is no reason for z = 1.

• Minimal algebra has {Mij ,Pk ,H,D}. Dilatations act

[D,Mij ] = 0 , [D,Pi ] = iPi , [D,H] = izH .

• Sometimes called the Lifshitz algebra.
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Scale invariant geometries

• Can we realise the Lifshitz algebra geometrically?

• Kachru et al. (2008):

ds2 = L2

(
−dt2

r2z
+

dx idx i

r2
+

dr2

r2

)
.

• z = 1 is AdSd+1, ehancement to Lorentzian conformal algebra.

• The case z = 1 is a solution to Einstein gravity

S =
1

2κ2

∫
dd+1x

√
−g

(
R +

d(d − 1)

L2

)
.

Other cases need additional matter.
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Finite temperature

• The zero temperature background is AdSd+1

ds2 = L2

(
−dt2

r2
+

dr2

r2
+

dx idx i

r2

)
.

• Which is a solution to the theory

S =
1

2κ2

∫
dd+1x

√
−g

(
R +

d(d − 1)

L2

)
.

• Want relevant deformations, break scale invariance in the IR.

• Expect geometry of the form

ds2 = L2

(
− f (r)dt2

r2
+

g(r)dr2

r2
+

h(r)dx idx i

r2

)
.

• Most universal deformation: temperature.
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Finite temperature

• Only one nontrivial solution to Einstein equations of this form:

ds2 =
L2

r2

(
−f (r)dt2 +

dr2

f (r)
+ dx idx i

)
,

where

f (r) = 1−
(

r

r+

)d

.

• Asymptotically AdS as r → 0. (UV)
• Horizon at r = r+. (IR)

UV

IR
QFT

T ≠ 0GRAVITY
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Finite temperature

• Corresponds to a temperature (from e.g. Euclidean solution)

T =
d

4πr+
.

• All T 6= 0 equivalent: (r , t, x i )→ r+(r , t, x i ) eliminates r+.

• By computing the action of the Euclidean solution

F = −T log Z = TSE [g?] = −(4π)dLd−1

2κ2dd
Vd−1T

d .

• Characterised by one number (‘central charge’):

(4π)dLd−1

2κ2dd
∼ N# .
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Finite chemical potential

• Want physics of a U(1) symmetry. E.g. electricity!

• In nature U(1) is gauged. In many condensed matter setups,
sufficient to work with global symmetry.

• Photons are screened in a charged medium.
• Sufficient to consider external sources (no virtual photons).

• What is the dual to a global U(1) in field theory?

• Take cue from global Lorentz invariance. Dual to part of the
diffeomorphism invariance of the bulk. Suggests:

Global symmetry (field theory)
d spacetime dimensions

!
Gauged symmetry (gravity)
d + 1 spacetime dimensions.

• Natural: QFT global symmetry are ‘large’ gauge symmetries in bulk.
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• Therefore: Need bulk Maxwell field. Minimal action

S =

∫
dd+1x

√
−g

[
1

2κ2

(
R +

d(d − 1)

L2

)
− 1

4g2
F 2

]
.

• Symmetries allow (magnetic term in d = 2 + 1 only)

A = At(r)dt + B(r)x dy .

• Put B = 0 for the moment. Metric solution

ds2 =
L2

r2

(
−f (r)dt2 +

dr2

f (r)
+ dx idx i

)
,

where

f (r) = 1−
(

1 +
r2
+µ

2

γ2

)(
r

r+

)d

+
r2
+µ

2

γ2

(
r

r+

)2(d−1)

.

• Scalar potential is (At(r+) = 0 for regularity)

At = µ

[
1−

(
r

r+

)d−2
]
.
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• Dimensionless constant

γ2 =
(d − 1)g2L2

(d − 2)κ2
.

• Temperature

T =
1

4πr+

(
d −

(d − 2)r2
+µ

2

γ2

)
.

• Near the boundary

Aµ(r) = A(0)µ + · · · as r → 0 .

(cf. gµν(r) = L2

r2 g(0)µν + · · · as r → 0 .)

• A(0)µ is background gauge field. A(0)t = µ is the chemical potential.
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Charged black hole
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• There is now a physical dimensionless temperature T/µ.

• Limit T/µ→ 0 can be taken continuously. Extremal black hole.

• Free energy

Ω = −T log Z = F
(

T

µ

)
Vd−1T

d .

• F
(

T
µ

)
is a nontrivial function that is an output of AdS/CFT.

• Entropy: S = − ∂Ω
∂T .

• Discomforting fact: S 6= 0 and T = 0.
• Large N effect?
• Weak gravity conjecture → should be unstable?
• Prediction?
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Relevant operators

• What is dual to adding a relevant operator to the theory?
• Take inspiration from metric. If g → g(0) + δg(0):

δS =

∫
ddx

√
−g(0)δg(0)µνT

µν .

.• Equality of bulk and boundary partition functions implies:

Zbulk[g → g(0) + δg(0)] = 〈exp

(
i

∫
ddx

√
−g(0)δg(0)µνT

µν

)
〉F.T. .

• Similarly for the gauge field. If A→ δA(0):

δS =

∫
ddx

√
−g(0)δA(0)µJ

µ .

• Thus

Zbulk[A→ δA(0)] = 〈exp

(
i

∫
ddx

√
−g(0)δA(0)µJ

µ

)
〉F.T. .
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• Suggests a general correspondence

operator O
(field theory)

!
dynamical field φ

(bulk) ,

such that

Zbulk[φ→ δφ(0)] = 〈exp

(
i

∫
ddx

√
−g(0)δφ(0)O

)
〉F.T. .

where

φ(r) =
( r

L

)d−∆
φ(0) + · · · as r → 0 ,

• I.e. Boundary value of field → source for dual operator.

• ∆ is the scaling dimension of the operator O.

• Can see that if O is relevant, ∆ < d , then φ→ 0 near the boundary.
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Expectation values

• From previous formula clear that

〈O〉 = −i
δZbulk[φ(0)]

δφ(0)
=
δS [φ(0)]

δφ(0)
.

• Useful to make a Hamilton-Jacobi-esque identification

δS [φ(0)]

δφ(0)
= − lim

r→0

δS [φ(0)]

δ∂rφ(0)
≡ lim

r→0
Π[φ(0)] .

• Straightforward to check (adding appropriate counterterms) that if

φ(r) =
( r

L

)d−∆
φ(0) +

( r

L

)∆
φ(1) + · · · as r → 0 .

• Then

〈O〉 =
2∆− d

L
φ(1) .
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Linear response
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Retarded Green’s functions

• Basic object describing perturbations away from equilibrium

δ〈OA〉(ω, k) = GR
OAOB

(ω, k)δφB(0)(ω, k) .

• From previous expression

GR
OAOB

=
δ〈OA〉
δφB(0)

∣∣∣∣
δφ=0

= lim
r→0

δΠA

δφB(0)

∣∣∣∣
δφ=0

=
2∆A − d

L

δφA(1)

δφB(0)
.

• Near the boundary require: δφA(r) = rd−∆δφA(0) + · · · .
• Regularity on the future horizon → ingoing boundary conditions

δφA(r) = CAe−i4πω/T log(r−r+) + · · · as r → r+ .
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Example: Electrical and Thermal conductivity

• Want: zero momentum conductivity with a chemical potential.

• Chemical potential mixes thermal and electric conductivities(
〈Jx〉
〈Qx〉

)
=

(
σ(ω) α(ω)T
α(ω)T κ̄(ω)T

)(
Ex

−(∇xT )/T

)
,

where
Qx = Ttx − µJx .

• Why the extra term in Qx? Will see shortly that

δS =

∫
dd−1xdt

√
−g(0)

(
T txδgtx(0) + JxAx(0)

)
=

∫
dd−1xdt

√
−g(0)

(
(T tx − µJx)

−∇xT

iωT
+ Jx Ex

iω

)
.
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• Background electric field:

iωδAx(0) = Ex .

• Background thermal gradient:

iωδgtx(0) = −∇xT

T
& iωδAx(0) = µ

∇xT

T
.

[To see this: rescale time so that the period of Euclidean time is
fixed, then gtt(0) = − 1

T 2 . A thermal gradient is then

δgtt(0) = −2x∇xT

T 3
.

Now to a gauge transformation on the background field
δgab(0) = ∂aξb + ∂bξa, with ξt = x∇xT/ωT 3. The Maxwell field also
changes under this diffeomorphism.]
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• Therefore:(
〈Jx〉
〈Qx〉

)
=

(
σ αT
αT κ̄T

)(
iω(δAx(0) + µgtx(0))

iωδgtx(0)

)
.

• So conductivities are Green’s functions! For instance

σ(ω) =
−iGR

JxJx
(ω)

ω
.

• Need to solve bulk equations for Ax and gtx such that
Ax → Ax(0) .
gtx → L2/r2 gtx(0).

• Get a decoupled equation for Ax :

(f δA′x)′ +
ω2

f
δAx −

4µ2r2

γ2r2
+

δAx = 0 .

• Near boundary:

δAx = δAx(0) +
r

L
δAx(1) + · · · as r → 0 .
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• Work out the ‘momenta’ (ρ = −∂Ω/∂µ/V )

Πgtx = − δS

δ∂rgtx(0)
= −ρ δAx(0) +

2L2

κ2r3
(1− f −1/2)δgtx(0) ,

ΠAx = − δS

δ∂rAx(0)
=

f δA′x(0)

g2
− ρ δgtx(0) .

• Taking the boundary limit r → 0:(
〈Jx〉
〈Tx〉

)
=

(
1
g2

δAx(1)

LδAx(0)
−ρ

−ρ −ε

)(
δAx(0)

δgtx(0)

)
,

(ε = −2Ω/V , energy density).

• Compare with above:

σ(ω) =
−i

g2ω

δAx(1)

LδAx(0)
; Tα(ω) =

iρ

ω
−µσ(ω) ; T κ̄(ω) =

i(Ts − µρ)

ω
+µ2σ(ω) .
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• Solve the differential equation for Ax to get electrical conductivity
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• For amusement, compare with experimental data on a 2+1
dimensional relativistic theory, graphene!
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• Note that the real conductivity in the data goes up again at low
frequencies, this is the Drude peak due to momentum relaxation from
impurities, ions, etc.

• In the AdS/CFT theories (without impurities) there will be a delta
function in the conductivity at ω = 0.

• This is because a translation-invariant medium with a net charge
cannot relax a DC (ω = 0) current due to momentum conservation.
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C: Charged bosons

1 Symmetry breaking and superconductivity

2 BCS theory

3 Holographic superconductors

4 Conductivity

5 String landscape of superconductors
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Superconductivity, symmetry breaking and charge density

• Superconductivity ∼ spontaneous symmetry breaking.

• Contrast condensate with charge density
• Charge density breaks Lorentz invariance, a condensate does not.
• The charge operator ρ = J t is neutral, so does not break symmetry.

• Suppose we have a Lagrangian with U(1) symmetry. Change variables
so that the symmetry only acts by shifting a phase: θ → θ + δθ.

• By definition: kinetic term for the phase is: Jt∂tθ .

• The charge density ρ = Jt and the phase θ are conjugate:

[θ, ρ] = i~ .

• Therefore a state with definite phase, breaking the symmetry, is
maximally different from a state with a definite charge density.
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Superconductivity and symmetry breaking

• Superconductivity follows from symmetry breaking.

• Free energy:

F =

∫
ddx

√
g(0)F [A− dθ] ,

• Current:

Ji = − δF

δAi

∣∣∣∣
A=dθ+δA

= −F ′′[0]δAi .

• Conductivity:

Ji =
iF ′′[0]

ω
δEi ≡ σ(ω)δEi .
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What does a typical theory of superconductivity look like?

• In a textbook on superconductivity one finds the ‘BCS Hamiltonian’

H =
∑
k,σ

εkc†kσckσ − |geff|2
∑
k,k ′

c†k↑c
†
−k↓c−k ′↓ck ′↑ +

∑
k

Ak · J−k .

• Interaction term is generated by the exchange of a soft phonon
between two effective electrons. Need |εk − εF |, |εk ′ − εF | � ωD .

• Theory predicts the symmetry breaking condensate

∆ ≡ |geff|2〈c−k↓ck↑〉 = 2ωDe−1/|geff|2g(εF ) .

ωD is Debye frequency (energy scale of phonons) and g(εF ) density
of states at Fermi energy.
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More on BCS theory

• Theory predicts the critical temperature in terms of the condensate

2∆

TC
= 3.52 .

• The electrical conductivity in the superconducting phase is computed
from the current two point function

σ(ω) =
−i〈JxJx〉R(ω)

ω
.

• The U(1) symmetry is global in BCS theory – photons not important.
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Superconductivity without glue

• There is a natural instability of the black hole in the presence of
charged bulk matter. Charged scalars can lead to superconductivity.
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• Geometric instability. No ‘glue’ or weakly coupled ‘pairing’ required.
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Minimal ingredients for a holographic superconductor

• Minimal ingredients
• Continuum theory ⇒ have Tµν ⇒ need bulk gab.
• Conserved charge ⇒ have Jµ ⇒ need bulk Aa.
• ‘Cooper pair’ operator ⇒ have O ⇒ need bulk φ.

• Write a minimal ‘phenomenological’ bulk Lagrangian

L1+3 =
1

2κ2
R +

3

L2κ2
− 1

4g2
FabF

ab − |∇φ− iqAφ|2 −m2 |φ|2 .

There are four dimensionless quantities in this action.
• Newton’s constant ⇒ central charge of the CFT: c = 192L2/κ2.
• Maxwell coupling ⇒ DC conductivity σxx = 1

g2 .

• Mass ⇒ scaling dimension ∆(∆− 3) = (mL)2 .
• Charge q is the charge of the dual operator O.
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Two instabilities of a charged AdS black hole

• By dimensional analysis Tc ∝ µ.

• RN-AdS can be unstable against a (charged) scalar for two reasons.

• Reason 1 [Gubser ’08]: Background charge shifts mass:

m2
eff. ∼ m2 − q2A2

t .

• Reason 2 [SAH-Herzog-Horowitz ’08]: Near extremality AdS2 throat
with

m2
BF-2 = − 1

4L2
2

= − 3

2L2
> − 9

4L2
= m2

BF−4 .

• Precise criterion for instability at T = 0 [Denef-SAH ’09, Gubser ’08]

q2γ2 ≥ 3 + 2∆(∆− 3) .
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Endpoint – hairy black holes

• Endpoint of instability is a hairy black hole:

ds2 = −g(r)e−χ(r)dt2 +
dr2

g(r)
+ r2

(
dx2 + dy2

)
,

At = At(r) , φ = φ(r) .

• Solve numerically (take ∆ = 2). Can obtain 〈O〉:

0.0 0.2 0.4 0.6 0.8 1.0
0

2

4

6

8

T

Tc

q È<O2>È

Tc

• Compare 8 to ∼ 3.5 for BCS and ∼ 5− 8 for High-TC .
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Electrical conductivity

• Computed the conductivity. At T ∼ 0, typical curves
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• If the gap is 2∆ then we found that

Reσ(ω → 0) ∼ e−α∆/T .

• Generally α 6= 1, unlike BCS theory, no weakly coupled picture in
terms of Cooper ‘pairs’.
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Landscape of superconducting membranes

• There appear to be many vacua of string theory.

• Potentially implies philosophical problems for stringy cosmology or
stringy particle physics (only do experiments in one universe).

• Resonates well with atomic physics, which also has a landscape

Atomic Landscape String Landscape

Microscopic theory Standard Model M theory
Fundamental excitations Leptons, quarks, photons, etc. ??
Typical vacuum Atomic lattice Compactification
Low energy excitations Dressed electrons, phonons, Gravitons, gauge bosons,

spinons, triplons, etc. moduli, intersectons, etc.
Low energy theory Various QFTs Various supergravities

• Logic: Let’s look at statistical properties of string AdS4 vacua from
the dual perspective as quantum critical points.
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• Studied the stability of AdS4 × X7 vacua for Sasaki-Einstein X7.

• If X7 has moduli: can build a 3-form mode that linearly decouples
from all other modes, even in a background electric field.

• Calabi-Yau cone over X7 has an anti-self dual closed (3,1)-form.
Contracting with r∂r get 3-form on Sasaki-Einstein. Mode is

δC = φY3 + c.c. .

• This mode is always unstable and leads to superconductivity.

• Examples supplied by Brieskorn-Pham cones:

zm1
1 + · · ·+ zm5

5 = 0 .

• Computed a distribution of superconducting temperatures by
scanning.
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String landscape of superconductors
[Denef-SAH ’09]

• This setup is realised in many concrete theories.

• Distribution of critical temperatures

0 20 40 60 80 100 120 140
1

10

100

1000

104

Tc

Μ
@K mV-1D

ð
So

lu
tio

ns

Sean Hartnoll (Harvard U) AdS/CMT Jan 2010 49 / 58



D: Charged fermions

1 Fermion spectral functions

2 Quasiparticles versus quasinormal modes

3 Quantum oscillations
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Fermion Green’s functions in charged black holes

• Charged fermion [Sung-sik Lee, MIT group, Leiden group]

S [ψ] =

∫
dd+1x

√
−g
(
iψ̄Γ ·

(
∂ + 1

4ωµνΓµν − iqA
)
ψ + mψ̄ψ

)
,

• ψ dual to charge fermionic operator Ψ.

• Compute Im 〈ΨΨ〉R(ω, k).

• At T = 0, µ > 0 find a peak with dispersion

ω?
vF

+ he iθω2ν
? = k − kF ,
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• When ν < 1
2 the branch cut dominates ⇒ non-Fermi liquid dispersion.
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Quasinormal modes versus quasiparticles

• At finite temperature, branch cut resolved into poles.

• In general, all these poles contribute to physics.

Im(ω/μ)

Re(ω/μ)

•

Ω1-loop, F = −|qB|AT
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∑
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Violation of Lifshitz-Kosevich scaling
[Denef, SAH, Sachdev + SAH, Hofman]

• For free fermions, the amplitude of quantum oscillations at T � B is

A ∼ e−mT/B .

• Seems to fit data in underdoped and overdoped cuprates.

• Strongly interacting fermions of the holographic correspondence give

A ∼ e−µT/B·(T/µ)1−2ν
.
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E: D branes

1 Towards strange metals

2 Probe brane setup
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Towards strange metals
[Hartnoll, Polchinski, Silverstein, Tong]

• Model: Quantum critical sector coupled to gapped charge carriers.

Quantum critical
z

Charge carriers
Eg

self-
interactiondissipation

• Quantum critical sector has a dynamical scaling exponent z .

• Results so far

ρ ∼ T 2/z

Jt
, σ(ω) ∼ Jt

ω2/z
.

z = 2 matches resistivity experiments and z = 3 optical conductivity.
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Probe brane setup

• Quantum critical Liftshitz ‘bath’

ds2 = L2

(
−dt2

r2z
+

dx idx i

r2
+

dr2

r2

)
.

• Probe D brane bending into internal dimensions (charge carriers)

S = −τeff

∫
dτd3σ V (θ)n

√
|?g + 2πα′ F | ,

• Find D brane embedding and then compute conductivity etc.

• Conceptually similar to studies of mesons in Holographic QCD.
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Some future directions

• Disorder and strongly coupled theories.

• ‘String phenomenology’ model building approach.

• Holographic fermions in different (non-AdS2) near horizon geometries.

• Effects of rotation?

• Bose metals? How to think about the finite density?

• BTZ and 1+1 dimensional CFTs.

• Explicit duals to full quantum phase transitions.
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