Frustrated Magnetism

Leon Balents ICTS winter school, December 2009

The David and Lucile Packard Foundation

Recent Collaborators

- Doron Bergman
- Gang Chen
- Sungbin Lee
- Miles Stoudenmire
- Ribhu Kaul
- Jason Alicea
- Ryuichi Shindou
- Andreas Schnyder
- Yong-Baek Kim
- Arun Paramekanti
- Michael Lawler
- Lucile Savary

- Simon Trebst
- Emmanuel Gull
- Oleg Starykh
- Masanori Kohno
- Hosho Katsura
- Dmytro Pesin

Lesson Plan*

- Introduction: basic magnetism, empirical signs of frustration
- Classical Ising systems and spin ice
- Heisenberg systems and quantum effects
- Some interesting examples
- Quantum spin liquids

*Subject to change according to my whims

The setting

- We will be discussing Mott insulators, in which electrons can be regarded as localized into specific atomic or molecular orbitals
 - In this case, the degrees of freedom are the spin and sometimes orbital state of these electrons
 - This is vast simplification over itinerant systems

Hubbard Model

When is the localized assumption valid?
Useful to keep in mind a Hubbard-type model

$$H = \sum_{ij} t_{ij} c_{i\alpha}^{\dagger} c_{j\alpha} + U \sum_{i} (n_i - \overline{n})^2$$

 If average electron number per site is integer, and U/t is large enough, then the ground state is a Mott insulator

$U_c \sim W$

• Rule of thumb: compare U to bandwidth W

E

delocalized: pay Coulomb _____of O(U)

E

localized: pay KE of O(W)

Periodic Table of Elements

	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
1	1 ¹ H Hydrogen 1.00794	Atomic # Symbol Name Atomic Mass	С	Solid				Metals			Nonmet	als						2 ² He Helum 4.002802	К
2	3 ² Li Lithium 6.941	4 2 Be Beryllium 9.012182	Hç	=		Alkali metals	Alkaline earth metals	Lanthanoid	netals	Poor metals	Other	Noble a:	5 § B Boron 10.811	6 ‡ C Carbon 12.0107	7 6 N Nitrogen 14.0057	8 6 O Cxygen 15.9994	9 7 F Fluorine 18.9984032	10 8 Ne Neon 20.1797	ĸ
3	11 Na Sodium 22.98976928	12 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Rf	Unknow	'n	etals	etals	Actinoids	5	tals	<u>is</u>	dases	13 2 Al Aluminium 28.9815386	14 ² Sii 28.0855	15 8 P Phosphorus 30.973762	16 8 Sulfur 32.065	17 ² 9 CI Chlorine 35.453	18 6 Ar Argon 39.948	K L M
4	19 ² K ¹ Potassium 39.0963	20 ⁸ Ca Caloium 40.078	21 5 Sc Scandium 44.955912	22 28 Ti ¹⁰² ² ² ²	23 ² V ¹¹ Vanadium 50.9415	24 2 Cr 1 Chromium 51.9961	25 Mn Manganese 54.938045	² ¹² ¹² ¹⁴ ¹⁴ ¹⁴ ¹⁴ ¹⁴ ¹⁴ ¹⁵	27 28 Co Cobalt 58.933195	28 Ni Nickel 58.6934	29 Cu Copper 63.546	30 ⁸ Zn ² ^{2ino} 65.38	31 ² Ga ³ Gallum 69.723	32 Ge Gemanium 72.84	33 28 As Arsenio 74.92180	34 ² Se Selenium 78.96	35 28 Br 79,904	36 ² Kr ⁸ Krypton 83.798	K LMN
5	37 8 Rb 18 Rubidium 85.4878	38 Sr Strontium 87.62	39 Y Yttrium 88.90585	40 8 Zr 10 21rconium 91.224	41 18 Nb 12 Nicolium 92.90638	42 8 Mo 18 Molybdenum 95.96	43 Tc Technetium (97.9072)	44 Rut Ruthenium 101.07	45 8 8 16 18 18 18 18 18 18 18 18 18 18 18 18 18	46 Pd Palladium 108.42	47 Ag ¹⁸ ¹⁸ ¹⁸ ¹⁸ ¹⁸	48 68 18 18 18 18 18 18 18 18 18 18 18 18 18	49 28 In 18 Indium 114,818	50 28 Sn 4 Tin 118.710	51 58 Sb 55 Antimony 121.760	52 58 Te 58 Tellurium 127.60	53 8 53 18 16 100ine 128.90447	54 18 Xe 18 Xenon 131.293	OZELA
6	55 28 Cs 18 Caesium 132.9054519	56 8 Ba 18 Barium 137.327	57–71	72 ⁸ Hf ¹⁵ Hafnium ² 178.49	73 ² Ta ¹⁸ ¹⁸ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰	74 28 W 32 Tungsten 183.84	75 Re Rhenium 186.207	76 18 05 05 12 0 0smium 12 190.23	77 2 Ir 32 Iridium 2 192.217	78 Pt 1 195.084	79 Au Gold 196.966569	80 ² Hg Mercury 200.59	81 20 TI 32 Thallium 3 204.3833	82 207.2 20	83 ² Bi ³² Bismuth ⁵ 208,98040	84 28 Po 10 Polonium (208.9824)	85 ² At ¹⁵ Astatine (209.9871)	86 88 Rn 18 Radon (222.0176)	KLMNOP
7	87 2 Fr 32 Francium 3 (223)	88 8 Ra 32 Radium 8 (220) 8	89–103	104 8 Rf 32 Rutherfordum 12 (281) 2	105 ¹⁸ Db ¹⁸ Dubnium ¹¹ (282) ²	106 20 Sg 32 Seaborgium 22 (208)	107 Bh Bohrium (284)	108 18 18 18 18 18 18 18 18 18 18 18 18 18 1	109 200 Mt 322 Meitnerium 15 (288)	110 Ds Damstadium (271)	111 30 30 30 30 30 30 30 30 30 30 30 30 30	112 Uub Ununbium (285)	113 2 Uut 32 Ununtrium 18 (284) 3	114 28 Uuq 22 Uunquadum 18 (289)	115 Uupentum (288)	116 Uuh Ununhexium 16 (292)	117 Uus Uhurseptum	118 Uuo Ununoctium (294)	N-02ZU-X
				F	For elem	ents wit	h no sta	able isoto	pes, the	mass n	umber o	f the iso	tope wit	h the lon	gest hal	f-life is i	n parent	heses.	
					[Design ar	nd Interf	ace Copyr	ight © 19	97 Micha	el Dayah ((michael@	@dayah.c	om). http:	//www.pta	able.com/			
				57 57 La	58 58 Ce	59 ²⁸ Pr ¹⁶	60 Nd	61 61 61 F	62 58 Sm	63 Eu ¹	64 Gd	65 10	66 10 Dy 10	67 67 Ho	68 5 Er 30	69 5 Tm 3	70 **** Yb ***	71 ²⁸ Lu ¹⁸	

95

Pu

Am

96

Cm

68.9342

102

No

103

Lr

101

Md

99 **Es**

100

Fm

97

Bk

98

Cf

Plablo	La 15 Lanthanum 2 138.90547	Cerium 22	Praeeodymium 21 140.90765	Nd 18 Neodymium 2 144.242	Prom (145)
.com	89 AC	90 20 Th 10 Thorium 10 202 01808	91 20 20 20 20 20 20 20 20 20 20 20 20 20	92 20 55 55 52 55 55 55 55 55 55 55 55 55 55	93

Small W: d and f electrons

Periodic Table of Elements

6

7

5

Periodic Table of Elements

10 11 12 13

9

Q

14 15

18

17

f electrons are nearly perfectly localized very small W

		2	3	4	Э	0	1	8	9	10	11	12	13	14	15	10	17	18	
1	1 1 H Hydrogen 1.00794	Atomic # Symbol Name Atomic Mass	(Solid				Metals			Nonmeta	als						2 ² He Helium 4.002502	к
2	3 î Li Lithium 6.941	4 22 Be Berytium 9.012182	ŀ	l g Liquid ┨ Gas		Alkali metals	Alkaline earth metals	Lanthanoid	metals	Poor metals	Other nonmetals	Noble gases	5 3 B Boron 10.811	6 2 C Carbon 12.0107	7	8 8 O Oxygen 15.9994	9 7 F Fluorine 18.9984032	10 ² Ne Neon 20.1797	ĸ
3	11 2 Na Sodium 22.96976928	12 Mg Magnesium 24.3050	F	Cf Unknor	wn	als	als	Actinoids		<u>a</u> s	S	ses	13 28 Al Aluminium 26.9815386	14 3 Silicon 28.0855	15 P Phosphorus 30.973762	16 S Sulfur 32.065	17 g Cl Chlorine 35.453	18 8 Ar Argon 39.948	K L M
4	19 28 K Potassium 39.0983	20 28 Ca Calcium 40.078	21 Sc Scandium 44.955912	22 22 Ti 1itanium 47,087	23 V Vanadium 50.9415	² ² ² ² ² ² ² ² ² ²	25 Mn Manganese 54.938045	² ¹³ ² ¹⁴ ¹⁶ ¹⁶ ¹⁶ ¹⁶ ¹⁶ ¹⁶ ¹⁶ ¹⁶	27 Co Cobalt 58.933195	28 Ni Nickel 58.6934	29 Cu Copper 63.546	30 ⁸ Zn ¹⁸ ² ² ² ^{65.38}	31 3 Ga Gallum 69.723	32 2 Ge Gemanium 72.64	33 As Arsenio 74.92160	34 Se Selenium 78.96	35 28 Br 77 Bromine 79.904	36 ² Kr ⁸ Krypton 83.798	K L M N
5	37 Rb Rubidium 85.4878	38 58 Sr 52 Strontium 87.62	39 Y Yttrium 88.90585	40 Zr 21rconium 91.224	41 Niobium 92.90038	42 Molybdenum 95.96	43 TC Technetium (97.9072)	44 15 15 10 10 10 10 10 10 10 10 10 10 10 10 10	45 Rh Rhodium 102.90550	46 Pd Palladium 108.42	47 Ag Silver 107.8582	48 68 68 68 68 68 68 68 68 68 68 68 68 68	49 3 In 18 Indium 114.818	50 58 55 55 55 55 55 55 55 55 55 55 55 55	51 Sb Antimony 121.760	52 Te 127.60	53 8 18 19 100ine 125.90447	54 Xe ¹⁸ Xenon 131.293	KLMNO
6	55 28 Csesium 1 132.9054519	56 28 Ba 18 Barlum 2 137.327	57–71	72 Hf Hafnium 178.49	73 Tantalum 180.94788	² ⁸ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰	75 Re Rhenium 188.207	76 28 322 132 132 0smium 22 190.23	77 Ir Iridium 192.217	78 Pt Platinum 195.084	79 20 20 20 20 20 20 20 20 20 20 20 20 20	80 80 80 80 80 80 80 80 80 80 80 80 80 8	81 20 Ti 32 Thallium 204,3833	82 207.2	83 Bi Bismuth 208.98040	84 20 Polonium (208.9824)	85 ¹⁰ At ¹⁰ (209.9871)	86 28 Rn 32 Radon (222.0176)	KLMNOP
7	87 28 Fr 32 Francium 8 (223)	88 28 Ra 15 Radium 22 (220) 22	89–10	104 Rf Rutierfoolum (251)	105 105 Db Dubnium (282)	² ³ ¹⁰⁶ ³⁰² ³⁰	107 Bh Bohrium (254)	² ³ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰ ¹⁰	109 Mt Meitnerium (208)	110 DS Damstadium (271)	111 28 Rg Roentgerium 19 (272)	112 Uub Ununbium (285)	113 Uut (284)	114 Uuquadum 14 (289)	115 Uupertum (288)	116 Uuh Ununhexium 16 (292)	117 Uus Uhurseptum	118 Uuo Ununoctium (294)	N NOZZLI
					For eler	ments wit	h no sta	able isoto	pes, the	e mass n	umber o	f the iso	tope wit	h the lor	igest hal	lf-life is i	n parent	heses.	
						Design ar	nd Interf	ace Copyr	ight © 19	97 Micha	el Davah ((michael@	Ddavah.c	om), http:	//www.pta	able.com/			
				57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu ¹	64 Gd	65 Tb	66 100 100 100 100 100 100 100 100 100 1	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
	Dta	ble		Lanthanum 138.90547	2 Cerium 140.118	² Praseodymium ² 140.90765	Neodymium 144.242	² Promethium ² (145)	Samarium 150.36	Europium 151.964	Gadolinium 2 157.25	Terbium 2 158.92535	Dysprosium * 162.500	Holmium ² 164.93032	Erbium 167.259	Thulium 2 168.93421	Ytterbium ² 173.054	Lutetium 2 174.9008	
	.(com		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf 31	99 Es	100 Fm	101 Md	102 No	103 Lr	
				Actinium (1227)	Thorium 233,03808	Protactinium 2	Uranium 238,02891	Neptunium 2	Plutonium 7/249	Americium (243) x 50 rp.	Curium 2	Berkelium 2 (747)	Californium	Einsteinium	Fermium (1997)	Mandalavium (1998)	Nobelium (259)	Lawrencium	ų.

Decreasing U with n: U_{3d}>U_{4d}>U_{5d}

Strongest correlations in 3d TMs

2 3 5 6 8 9 10 12 13 14 15 17 18 11 16 Atomic # 1 H Symbol C Solid Nonmetals Name Atomic Mass Metals Alkaline earth metals Hg Liquid metals Transition 10 Alkali meta Voble gase Lanthanoids oor metal: Li Ne Be Ν H Gas Neon 20.1797 Actinoids 11 Rf Unknown 12 18 Argon 39.948 3 Na Mg Si s CL 36 20 4 K Ca v Cr Mn Fe Co Ni Cu Zn Zno 85.38 Kr Ti Ga Sc Ge As Se Br Caloiun 40.078 Titanium 47.887 Vanadium 50.9415 Chromium 51,9981 Manganese 54.938045 Iron 55.845 Cobalt 58.93319 Nickel 58.6934 Copper 63.548 Krypton 83,798 3erma 12.64 38 40 **Zr** 41 42 43 44 45 46 47 54 Pd Ag Silver 107.8882 Xe Sr Nb Мо Тс Ru Rh 5 Rb Cd In Sn Sb Те Technetium (97.9072) Palladiun 108.42 Xenon 131.293 Stronti 87.62 Zirconium 91.224 Niobium 92 90438 Molybde 95.98 Ruthenia 101.07 Rhodium 102.9055 ndium 114.818 73 74 75 76 77 79 86 6 Cs Barium Hf Та w Re Os lr. Pt Au ТΙ Pb Bi Po Rn At lg 57-71 Tungste Iridium 192.21 Radon (222.0176 113 114 15 117 118 16 7 Fr Ra 89–103 Db Sg Babriur Hs Mt Ds Rg Uus Uuo For elements with no stable isotopes, the mass number of the isotope with the longest half-life is in parentheses. Design and Interface Copyright © 1997 Michael Dayah (micha dayah.com). http://www.ptable.com/ 62 64 65 66 70 Ce Pr Yb La Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Lu Lanthar 138.905 Cerium 140.116 Lutetium 174.9668 Ptable Prasecdymi 140.90765 Neodyn 144.242 Samariu 150.36 Europiur 151.964 Gadolini 157.25 Terbium 158.92538 Holmium 164.93032 Erbium 167.255 Thulium 168.93421 Ytterbium 173.054 89 97 102 103 90 91 92 93 94 95 96 98 99 100 101 Es Ac Th Pa U Np Pu Bk Cf Md Lr Am Cm Fm No Einsteiniun Mendelevium Nobelium Lawrencium

Periodic Table of Elements

Chemistry and Structure

- Most Mott insulators have some ionic character - often oxides
 - TM or RE atoms should donate their s electrons
- Bandwidth can be substantially reduced by separating TMs by filled shell ions like O²⁻

How to tell?

- In practice, it is often useful to rely on experiments to tell you how localized the electrons are
- resistivity is it a good insulator? if you can measure it, it is probably not!
- optics measure optical gap.
- are there local moments?

Local moment magnetism

- Atoms with partially filled shells
 - Hund's rules give magnetic state
 e.g. Mn²⁺

- These moments are well-formed for $k_{\rm B}T << U$
- Exchange between moments $| \sim t^2/U$

 $\chi \sim \frac{A}{T}$ $A = \frac{Ng^2 \mu_B^2 S(S+1)}{3}$ Curie constant

• When $U >> k_B T >> J$, see Curie law

Entropy

 If you can separate non-magnetic contribution, then you can count states

$$S(T) = \int_0^T dT' \frac{C(T')}{T'}$$

C_m/T

Frustration

Spin models

- In a strong Mott insulator, we can assume n_i is fixed and just study the spin (and perhaps orbital) state of the electrons
- e.g. Heisenberg Hamiltonian $1 \sum_{i=1}^{n} \vec{z}_{i}$
- $H_{eff} = \frac{1}{2} \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j$ • Exchange couplings $|J_{ij}| \sim (t_{ij})^2/U$
- More complex Hamiltonians may be less symmetric, and involve orbital operators

Frustration

 Exchange interactions usually favor a magnetically ordered state

 $\langle \vec{S}_i \rangle \neq 0$

 The spins act approximately classically, and align to minimize H_{eff}

 However, in some cases there is no single, simple way to do this

Frustration

 Simplest idea: pairwise exchange interactions cannot be simultaneously satisfied

"geometric frustration"

 But this is a bit simplistic, and overstates the problem

- Characterize frustration by number of ground states
- Ising models $H = J \sum_{\langle ij \rangle} \sigma_i \sigma_j$ $\sigma_i = \pm 1$

- Characterize frustration by number of ground states
- Ising models

I frustrated bond per triangle

- Characterize frustration by number of ground states
- Ising models

l frustrated bond per triangle

exponentially many ground states

- Characterize frustration by number of ground states
- Ising models

Other lattices

checkerboard S ~ 0.216 N k_B

kagome S ~ 0.5 N k_B

pyrochlore S ~ 0.203 N k_B

FCC: S ~ c N^{1/3} k_B

But...

• Such an Ising model is very special

Not so common to find simple Ising spins

- Generally there are more interactions
- This degeneracy is very finely tuned
- In practice, we will usually need to think about more subtle models
 - How do we look for frustration if we are not sure of the model?

Looking for Frustration

- We are looking to see that, instead of ordering, the system fluctuates amongst the many degenerate states even when k_BT<<J
- To determine this empirically, we need to have an experimental estimate of "J" and also put an upper bound on the ordering/ freezing temperature

Curie-Weiss Law

- Antiferromagnetic exchange leads to suppression of susceptibility
- mean field theory/high temperature expansion $\chi \sim \frac{\overline{A}}{T - \Theta_{CW}}$
- Curie-Weiss temperature

$$\Theta_{CW} = -\left(\sum_{j} J_{ij}\right) \frac{S(S+1)}{3k_B}$$

(<0 in AFs)

Frustration "fingerprint"

• Experimental plot of inverse susceptibility:

• Frustration/fluctuation parameter

$$f = \frac{|\Theta_{CW}|}{T_c}$$

>>1 indicates suppressed ordering

Some older examples

A.P. Ramirez review, 1994

Compound	Magnetic lattice	$- heta_{cw}$ (K)	T _c (K)	ſ	Ordered state	Electronic configuration
wo-dimensional ma	agnets					
VCl ₂	triangular	437	36	12	AF	3d ³
NaTiO ₂	triangular	1000	<2	> 500		3d1
LiCrO ₂	triangular	490	15	33	AF	3d ³
$Gd_{0.8}La_{0.2}CuO_2$	triangular	12.5	0.7	16	SG	4 f ⁷
SrCr ₈ Ga ₄ O ₁₉	kagome	515	3.5	150	SG	3d ³
$KCr_3(OH)_6(SO_4)_2$	kagome	70	1.8	39	AF	3d ³
'hree-dimensional n	nagnets					
$ZnCr_2O_4$	B -spinel	390	16	24	AF	3d ³
K ₂ IrCl ₆	FCC	321	3.1	10	AF	5d ⁵
FeF ₃	B -spinel	240	15	16	AF	3d ⁵
CsNiFeF ₅	B -spinel	210	4.4	48	SG	3d ⁸ , 3d ⁵
$MnIn_2Te_4$	zinc blende	100	4	25	SG	3d ⁵
$Gd_{3}Ga_{5}O_{12}$	garnet	2.3	< 0.03	>100		$4f^7$
Sr ₂ NbFeO ₆	perovskite	840	28	30	SG	3d⁴
Ba ₂ NbVO ₆	perovskite	450	15	30	SG	3d ³

Questions

- What is the nature of the "spin liquid" regime where $T_c < T < |\Theta_{CW}|$?
 - Here spins are correlated but fluctuating
- What is the nature of the ground state, or low temperature phase if $T_c > 0$?
- What are the elementary excitations of the system?

Questions

- What is the nature of the "spin liquid" regime where $T_c < T < |\Theta_{CW}|$?
 - Here spins are correlated but fluctuating
 - Do these correlations have any longdistance consequences?

For AF NN Ising Models

Lattice	Transition	Correlations (T << Θ _{CW})			
FCC	Yes! $T_c = I.8J$	LRO			
triangular	no	power law			
checkerboard	no	power law			
pyrochlore	no	power law			
kagome	no	very short range			

- Correlations: we know that for T<<J, there are "no" triangles with 3 aligned spins
 - How does this induce long-distance correlations?

- Dual representation
 - honeycomb lattice

- Dual representation
 - focus on the frustrated bonds

- Dual representation
 - color "dimers" corresponding to frustrated bonds
 - "hard core" dimer covering

Back to the Ising model

- Dual representation
 - A 2:1 mapping from Ising ground states to dimer coverings

Dimer states

- First exercise: can we understand Wannier's result?
 - count the dimer coverings

Dimer states

- Consider the "Y" dual sites
 - each has 3 configurations
 - this choice fully determines the dimer covering
- But we have to make sure the Y⁻¹ sites are singly covered. Make a crude approximation:
 - Prob(dimer) = I Prob(no dimer) = I/3
 - $Prob(good Y^{-1}) = 2/3 * 2/3 * 1/3 * 3 = 4/9$
- Hence

 $\Omega \approx 3^{N} \left(\frac{4}{9}\right)^{N} = e^{N \ln(4/3)} \quad S \approx 0.29 \text{ N k}_{B}$ Wannier $S \approx 0.34Nk_{B}$

- Define a dimer number n_{ij}=0, I on bond (ij)
- Turn this into a lattice "magnetic field" B_{ij}

$$B_{ij} = \begin{cases} n_{ij} & i \in Y \\ -n_{ij} & i \in Y^{-1} \end{cases}$$

 $(\operatorname{div} B)_i = \sum_j B_{ij} = \varepsilon_i = \pm I$

Some magnetostatic representation exists for all the cases with power-law correlations!

 $(\operatorname{div} B)_i = \sum_j B_{ij} = \varepsilon_i = \pm I$

Focus on fluctuations

 $B_{ij} = \overline{B}_{ij} + b_{ij}$ $div(\overline{B}_{ij}) = \varepsilon_i$ $div(b_{ij})=0$

Fluctuating component b_{ij} is divergenceless

- Divergenceless condition, div b = 0, implies long-distance correlations in the fluctuations by Gauss' law
- no monopole fluctuations

- Divergenceless condition, div b = 0, implies long-distance correlations in the fluctuations by Gauss' law
- no monopole fluctuations

 $\frac{\partial}{\partial x_i} \langle b_i(x) b_j(x') \rangle = 0$

Long distances

 For long distance correlations, we can consider a coarse-grained b_i(x) field

- Either there are no significant b fluctuations, in which case some specific ordered state is picked out
- or the fluctuations are large, and hence coarse-grained b field can be regarded as a continuous variable
- The latter is true in many cases

Effective theory

• Effective free energy

$$\beta F = \int d^2x \, \frac{c}{2} |\vec{b}(x)|^2 + \text{h.o.t.s}$$

• Solve divergence constraint $b_{\mu} = \epsilon_{\mu\nu} \partial_{\nu} \phi$

$$\beta F = \int d^2 x \, \frac{c}{2} |\nabla \phi|^2$$

Effective theory

• Solve divergence constraint $b_{\mu} = \epsilon_{\mu\nu}\partial_{\nu}\phi$ $\beta F = \int d^2x \frac{c}{2} |\nabla \phi|^2$ • Gaussian correlation $\langle b_{\mu}(r)b_{\nu}(r')\rangle \sim \epsilon_{\mu\lambda}\epsilon_{\nu\gamma}\frac{\partial}{\partial x_{\lambda}}\frac{\partial}{\partial x'_{\gamma}} \left(c^{-1}\ln|r-r'|\right)$ • 2d power-law "dipolar" form

$$\langle b_{\mu}(r)b_{\nu}(0)\rangle \sim -c^{-1}\epsilon_{\mu\lambda}\epsilon_{\nu\gamma}\frac{\hat{r}_{\lambda}\hat{r}_{\gamma}}{r^{2}}$$

copied from Lori H. Barrett Fine Art

- power-laws are not "universal" the way that those at critical points are
- It is hard to get any simple NN Ising system without substantial corrections

Magnetic Anisotropy

- Microscopically, SU(2) symmetry is broken by spin-orbit coupling $\lambda L \cdot S$
 - need to consider atomic physics
- Several effects
 - $H = H_0 + H_{e-e} + H_{crystal field} + H_{SOI}$
 - Relative magnitudes different for transition metals (d) and rare earth (f) ions

Transition Metals

- Typically, H_{e-e} (responsible for Hund's rules I and II) and H_{cf} are up to of order a few eV in magnitude
- Spin-orbit is a relatively small
 - Varies as Z⁴, from of order tens of meV for 3d TMs to of order 0.5-1eV in late 5d TMs
 - Except for heaviest 5d ions, it is a weak perturbation compared to crystal fields

Transition Metals

• Crystal fields split orbital degeneracy

e.g. cubic symmetry

 $e_g: x^2-y^2, 2z^2-x^2-y^2$

- t_{2g}: yz, xz, xy

• There is always at least this much splitting

- The crystal field splitting reduces orbital degeneracy
 - When this results in a half-filled shell, effects of SOIs are second order ~ λ^2/Δ_{cf}

Ising TMs?

- To get an Ising spin, you need a low symmetry environment (with a singled out axis)
 - in this case, all the orbital degeneracy is usually split
 - must have a situation with some "accidental" degeneracy to allow SOIs to work, or else weak exchange J << λ^2/Δ_{cf}
- This happens, e.g. in Co²⁺,Co³⁺ ions which show "spin state transitions"

Rare Earths

- In Ln (4f) rare earths, electrons are relatively close to the nucleus and screened from crystal fields, so typically SOIs are *larger* than crystal fields
- Since SOIs just result in a partial splitting of L+S degeneracies to a J degeneracy, the crystal fields then select anisotropic states at O(Δ_{cf})
- Also, exchange interactions are weak for rare earths (typically only a few K)

Rare Earths

- Rare earth Lns tend to exhibit anisotropic magnetism
- But...
 - dipolar forces can be comparable to exchange
 - anisotropy does not need to be so simple as an Ising model
 - usually with respect to some local axes, which can be different for different spins

Spin Ice

Materials

Rare earth pyrochlores
Ln₂Ti₂O₇, Ln=Dy,Ho

- The Ln's occupy a magnetic pyrochlore lattice
 - Strong easy-axis anisotropy oriented along <111> axes connecting tetrahedra centers

Anisotropy

 Crystal fields create a potential that depends on the spin state

$$H_{cf} \approx -D \sum_{i} \left(\mathbf{S}_{i} \cdot \hat{\mathbf{n}}_{i} \right)^{2}$$

 This leads to two Ising ground states with S_i^z=±S

Magnetic moment

 Basically the Ising anisotropy means that there are two ground states forming a doublet, such that we can define a S=1/2 "spin" from it, and associated Pauli matrices, such that

The magnetic moment is nearly uniaxial

$$\vec{\mu}_i = m_0 \hat{n}_i (\hat{n}_i \cdot \vec{\sigma}) \longrightarrow$$

 \mathbf{O}

• Here m_0 is a large intrinsic magnetic moment of the Ln spin, $m_0 \approx 10 \mu_B$

Dipolar Interactions

 Because m₀ is so large, the dipolar interactions are relatively strong

$$H_{dip} = \sum_{i>j} \left[\frac{\vec{\mu}_i \cdot \vec{\mu}_j - 3(\vec{\mu}_i \cdot \hat{r}_{ij})(\vec{\mu}_j \cdot \hat{r}_{ij})}{|r_{ij}|^3} \right]$$

- Note that only σ enters this interaction!
 - Hence it is effectively classical
 - It is also "ferromagnetic" in the sense that the 2nd term is larger than the first

NN model

 Taking just the NN term of the dipolar interaction, one obtains an effective model

$$H_{eff} = J_{eff} \sum_{\langle ij \rangle} \sigma_i \sigma_j$$

with J_{eff}>0, i.e. like an AF Ising model.

 It is believed that this is partially compensated by some weaker exchange (not dipolar) of the opposite sign, but the net J_{eff} remains positive.

Spin ice ground states

- The NN energy is minimized by making the σ_i add to 0 on each tetrahedron, so the spins point "two in/two out": the "ice rule"
- This is the origin of the name "spin ice"

M.J. Harris et al, 1997

Entropy

- The integrated specific heat of Dy₂Ti₂O₇ showed explicitly the low temperature entropy in spin ice as a "missing" part of R ln(2)
 - quantitative agreement with Pauling's 1935 estimate

A.P. Ramirez et al, 1999

 It is clear from the picture that we can directly define a divergenceless "magnetic field" b_{ij} from the direction of the spin connecting the centers of tetrahedra i and j, which reside on a diamond lattice

Power law correlations

• Effective theory

$$H_{eff} = \int d^3r \, \frac{c}{2} |\vec{b}|^2$$

• Using vector potential $b = \nabla \times a$

$$\langle b_{\mu}(r)b_{\nu}(0)\rangle \sim 1/c \left(\frac{\delta_{\mu\nu} - 3\hat{r}_{\mu}\hat{r}_{\nu}}{r^3}\right)$$

Power law correlations

• Effective theory

$$H_{eff} = \int d^3r \, \frac{c}{2} |\vec{b}|^2$$

• Using vector potential $b = \nabla x_a$

$$\langle b_{\mu}(-k)b_{\nu}(k)\rangle = 1/c\left(\delta_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2}\right)$$

 This is directly proportional to the static magnetic structure factor measured in a neutron experiment

• e.g.
$$S(\mathbf{K}_{200}+\mathbf{k})\sim rac{k_y^2+k_z^2}{k^2}$$

pinch points in Ho₂Ti₂O₇

T. Fennell et al, 2009

$$S(\mathbf{K}_{200} + \mathbf{k}) \sim \frac{k_y^2 + k_z^2}{k^2}$$

experiment

vanishes along lines

Quality of singularity

pinch point sharpens with lower T "Correlation length" for rounding of pinch point

Roughly ξ~ e^{1.8K/T}

Defects

- The ice rules constraint is not perfectly enforced at T>0
- Primitive defect is a "charged" tetrahedron with $\sum_i \sigma_i = \pm I$.

What to call it?

Consider Ising "spin"

$$S_{\text{TOT}}^z = \sum_i \sigma_i = \frac{1}{2} \sum_t S_t^z$$

- Single flipped tetrahedron has S^zTOT=±1/2
 - "spinon"? (M. Hermele et al, 2004)
 - But S^z is not very meaningful in spin ice
- Use magnetic analogy: *magnetic monopole*

Magnetic monopoles

Castelnovo et al, 2008

 Defect tetrahedra are sources and sinks of "magnetic" flux

div b = 1

• It is a somewhat non-local object

Must flip a semi-infinite string of spins to create a single monopole

String

stolen (by somebody else on youtube) from Steve Bramwell

- Note that the string is tensionless because the energy depends only on Σ_i σ_i on each tetrahedra
 - this should be spoiled at low temperature by corrections to H
- Once created, the monopole can move by single spin flips

Monopoles are "real"

Castelnovo et al, 2008

- Monopoles actually are sources for (internal) magnetic field
 - Magnetization $M \propto b$
 - hence div M ~ div H ~ q $\delta(r)$
- Actual magnetic charge is small
 - Coulomb interaction constant is approximately 14000 times smaller than for electrons, but still 1/r² forces are present and measurable at low temperature

Monopoles for dumbbells

Experimental evidence for monopoles

- Careful study of quasi-activation behavior of magnetization relaxation rate (Jaubert +Holdsworth, 2009)
 - measures the energy of a monopole
- Magnetic "Wien" effect (Bramwell et al, 2009)
 - measures a monopole's magnetic charge
- Several neutron measurements see "strings" in applied fields
- Hopefully Peter Holdsworth will discuss all these!

Kivelson's argument

"Dear Leon,

I now have evidence direct from Hollywood that you were wrong in assessing the relative importance of topological insulators vs spin ice..."

More on Ising models?

 Quantum dynamics can be introduced by transverse exchange or field

$$H = \frac{1}{2} \sum_{ij} J_{ij} \left[\sigma_i^z \sigma_j^z + \alpha (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y) \right] - h \sum_i \sigma_i^x$$

- transverse field: rather hard to find in experiment, but see talk by Ribhu Kaul
- XY exchange: more easily realized
 - with lattice bosons (e.g. cold atoms in optical lattice)
 - Heisenberg systems in strong magnetic fields often have collinear states for which one can use such an expansion (example later?)

2d Results

- In 2d, these problems have been heavily studied
 - In a transverse field by Moessner et al
 - With XY exchange more recently by several groups
- Generally, the result is that Ising order develops with an infinitesimal quantum perturbation whenever the classical system has power-law correlations
 - This is related to a classic result in QFT by Polyakov that a compact U(1) gauge theory is confining in 2d due to proliferation of instantons (monopoles*)

*these are *not* anything like the spin ice monopoles

3d Results

- By contrast, in the 3d pyrochlore lattice, quantum perturbations lead to the emergence of a true quantum spin liquid state
 M. Hermele et al, 2004 A. Banerjee et al, 2008
- This you can think of as analogous to the Coulomb phase of spin ice but with quantum dynamics added instead of just magnetostatics
- This is all possible because compact U(1) gauge theory is stable in 3 dimensions