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Lesson Plan*

• Introduction: basic magnetism, empirical 
signs of frustration

• Classical Ising systems and spin ice

• Heisenberg systems and quantum effects

• Some interesting examples

• Quantum spin liquids 

*Subject to change according to my whims



The setting

• We will be discussing Mott insulators, in 
which electrons can be regarded as 
localized into specific atomic or molecular 
orbitals

• In this case, the degrees of freedom are 
the spin and sometimes orbital state of 
these electrons

• This is vast simplification over itinerant 
systems 



Hubbard Model

• When is the localized assumption valid?

• Useful to keep in mind a Hubbard-type 
model

• If average electron number per site is 
integer, and U/t is large enough, then the 
ground state is a Mott insulator

H =
∑

ij

tijc
†
iαcjα + U

∑

i

(ni − n)2



Uc ~ W

• Rule of thumb: compare U to bandwidth W

E

delocalized: 
pay Coulomb 

of O(U)

E

localized:  pay 
KE of O(W) 



Phase diagram
U/W

metal

strong Mott insulator

weak Mott insulator
~1



Chemistry



Chemistry

Small W:
d and f 

electrons



Chemistry

f electrons 
are nearly 
perfectly 

localized - 
very small 

W



Chemistry

Decreasing 
U with n:

U3d>U4d>U5d

Strongest 
correlations 
in 3d TMs



Chemistry and 
Structure

• Most Mott insulators have some ionic 
character - often oxides

• TM or RE atoms should donate their s 
electrons

• Bandwidth can be substantially reduced by 
separating TMs by filled shell ions like O2-



How to tell?

• In practice, it is often useful to rely on 
experiments to tell you how localized the 
electrons are

• resistivity - is it a good insulator? if you can 
measure it, it is probably not!

• optics - measure optical gap.

• are there local moments?



• Atoms with partially filled shells

• Hund’s rules give magnetic state

• These moments are well-formed for 
kBT<< U

• Exchange between moments J ~ t2/U

• When U>>kBT >> J, see Curie law

e.g. Mn2+

χ ∼ A

T
A =

Ng2µ2
BS(S + 1)

3 Curie constant

Local moment 
magnetism



Entropy

• If you can separate non-magnetic 
contribution, then you can count states

Cm/T

T

Sm

T

R ln(2S+1)

S(T ) =
∫ T

0
dT ′ C(T ′)

T ′



Frustration



Spin models

• In a strong Mott insulator, we can assume ni 
is fixed and just study the spin (and perhaps 
orbital) state of the electrons

• e.g. Heisenberg Hamiltonian

• Exchange couplings |Jij| ~ (tij)2/U

• More complex Hamiltonians may be less 
symmetric, and involve orbital operators

Heff =
1
2

∑

ij

Jij
!Si · !Sj



Frustration

• Exchange interactions usually favor a 
magnetically ordered state

• The spins act approximately classically, and 
align to minimize Heff

• However, in some cases there is no single, 
simple way to do this

〈!Si〉 #= 0



Frustration

• Simplest idea: pairwise exchange 
interactions cannot be simultaneously 
satisfied

• But this is a bit simplistic, and overstates 
the problem

“geometric 
frustration”



Degeneracy
• Characterize frustration by number of 

ground states 

• Ising models H = J
∑

〈ij〉

σiσj σi = ±1



Degeneracy
• Characterize frustration by number of 

ground states

• Ising models 

1 frustrated 
bond per 
triangle



Degeneracy
• Characterize frustration by number of 

ground states

• Ising models 

1 frustrated 
bond per 
triangle

exponentially many ground states



Degeneracy
• Characterize frustration by number of 

ground states

• Ising models 

1 frustrated 
bond per 
triangle

Wannier (1950): Ω = eS/kB S ≈ 0.34NkB



Other lattices

checkerboard S ~ 0.216 N kB

kagome S ~ 0.5 N kB

pyrochlore S ~ 0.203 N kB

FCC: S ~ c N1/3 kB



But...

• Such an Ising model is very special

• Not so common to find simple Ising spins

• Generally there are more interactions

• This degeneracy is very finely tuned

• In practice, we will usually need to think 
about more subtle models

• How do we look for frustration if we are 
not sure of the model?



Looking for Frustration

• We are looking to see that, instead of 
ordering, the system fluctuates amongst the 
many degenerate states even when kBT<<J

• To determine this empirically, we need to 
have an experimental estimate of “J” and 
also put an upper bound on the ordering/
freezing temperature



Curie-Weiss Law

• Antiferromagnetic exchange leads to 
suppression of susceptibility

• mean field theory/high temperature 
expansion

• Curie-Weiss temperature 

•

χ ∼ A

T −ΘCW

ΘCW = −
( ∑

j

Jij

)S(S + 1)
3kB

(<0 in AFs)



Frustration “fingerprint”
• Experimental plot of inverse susceptibility:

• Frustration/fluctuation parameter

T

χ−1

0ΘCW Tc

>>1 indicates 
suppressed orderingf =

|ΘCW |
Tc

|ΘCW |



Some older examples
GEOMETRICALLY FRUSTRATED MAGNETS

’able 1 Strongly geometrically frustrated magnets

463

Magnetic - O~w Tc Ordered Electronic

Compound lattice (K) (K) f state configuration Reference

’wo-dimensional magnets

VC12 triangular 437 36 12 AF 3d3 64

NaTiO 2 triangular 1000 < 2 > 500 -- 3d ~ 34

LiCrO: triangular 490 15 33 AF 3d3 35

Gd0.sLao.iCuO2 triangular 12.5 0.7 16 SG 4f7
38

SrCrsGa40 ~9 kagome 515 3.5 150 SG 3d3 23

KCr3(OH)6(SO4)2 kagome 70 1.8 39 AF 3d3 31

’hree-dimensional magnets

ZnCr~O4 B-spinel 390 16 24 AF 3d3 54

K2IrC16 FCC 321 3.1 10 AF 5d5 62

FeF3 B-spinel 240 15 16 AF 3d5 65

CsNiFeF5 B-spinel 210 4.4 48 SG 3d8, 3d5 60

MnIn ~Te4 zinc blende 100 4 25 SG 3d~
66

Gd3Ga~O~2 garnet 2.3 <0.03 > 100 -- 4f7 52

Sr2NbFeO6 perovskite 840 28 30 SG 3d4 67

Ba2NbVO6 perovskite 450 15 30 SG 3d3
A Ramirez,
E Bucher,

unpublished

information

have been anticipated--we have already discussed the need for highly

anisotropic interactions to achieve a SGF state. It is known, however, that

both moment and interaction anisotropieshave the same origin rooted in

the orbital degrees of freedom, and that they usually appear in consort in

a given material (18). In some sense, this class complements ~he class 

metamagnets (4). The interesting physical effects in these materials arise

from competition between applied, field and strong local anisotropy. It is
apparent that the interesting effects in SGF magnets arise from the inter-

play between temperature and strong conflicffng interactions.

Difference Between Stron 9 Geometrical Frustration and Low

Dimensionality

The phenomenon of a transition temperature much lower than predicted

by a given exchange constant magnitude and number of nearest neighbors

is not unique to SGF systems. In one dimension, for example, it can easily
be shown that entropy effects, prohibit long.range ordering, regar, dless of
the spin-dimensionality. In. two di.mensions, long range configurational

order only occurs for Ising systems (19); Thus these are examples 

systems where Tc can, in principle, be suppressed and perhaps confused

www.annualreviews.org/aronline
Annual Reviews
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Questions

• What is the nature of the “spin liquid” 
regime where Tc<T<|ΘCW|?

• Here spins are correlated but fluctuating

• What is the nature of the ground state, or 
low temperature phase if Tc>0?

• What are the elementary excitations of the 
system?



Questions

• What is the nature of the “spin liquid” 
regime where Tc<T<|ΘCW|?

• Here spins are correlated but fluctuating

• Do these correlations have any long-
distance consequences?



Lattice Transition
Correlations 
(T << |ΘCW|)

FCC Yes! Tc = 1.8J LRO

triangular no power law

checkerboard no power law

pyrochlore no power law

kagome no very short range

For AF NN Ising 
Models



Back to the Ising model
• Correlations: we know that for T<<J, there 

are “no” triangles with 3 aligned spins

• How does this induce long-distance 
correlations?



Back to the Ising model
• Dual representation

• honeycomb lattice



Back to the Ising model
• Dual representation

• focus on the frustrated bonds



Back to the Ising model
• Dual representation

• color “dimers” corresponding to 
frustrated bonds

• “hard core” dimer covering



Back to the Ising model
• Dual representation

• A 2:1 mapping from Ising ground states 
to dimer coverings



Dimer states
• First exercise: can we understand Wannier’s 

result?

• count the dimer coverings



Dimer states
• Consider the “Y” dual sites

• each has 3 configurations

• this choice fully determines the dimer covering

• But we have to make sure the Y-1 sites are singly 
covered.  Make a crude approximation:

• Prob(dimer) = 1- Prob(no dimer)= 1/3

• Prob(good Y-1) = 2/3 * 2/3 * 1/3 * 3 = 4/9

• Hence 

Ω ≈ 3N

(
4
9

)N

= eN ln(4/3) S ≈ 0.29 N kB

S ≈ 0.34NkBWannier



“Magnetostatics”
• Define a dimer number nij=0,1on bond (ij)

• Turn this into a lattice “magnetic field” Bij

Bij = {nij

-nij

i ∈ Y

i ∈ Y-1

(div B)i = ∑j Bij =  εi = ±1

Some magnetostatic representation exists for all 
the cases with power-law correlations!



“Magnetostatics”

• Focus on fluctuations

(div B)i = ∑j Bij =  εi = ±1

Bij = Bij + bij

div(Bij) = εi

div(bij)=0

• Fluctuating component bij is divergenceless



“Magnetostatics”

• Divergenceless condition, div b = 0, implies 
long-distance correlations in the 
fluctuations by Gauss’ law

• no monopole fluctuations



“Magnetostatics”

• Divergenceless condition, div b = 0, implies 
long-distance correlations in the 
fluctuations by Gauss’ law

• no monopole fluctuations

∂

∂xi
〈bi(x)bj(x′)〉 = 0



Long distances

• For long distance correlations, we can 
consider a coarse-grained bi(x) field

• Either there are no significant b 
fluctuations, in which case some specific 
ordered state is picked out

• - or - the fluctuations are large, and 
hence coarse-grained b field can be 
regarded as a continuous variable

• The latter is true in many cases



Effective theory

• Effective free energy

• Solve divergence constraint

βF =
∫

d2x
c

2
|"b(x)|2 + h.o.t.s

bµ = εµν∂νφ

βF =
∫

d2x
c

2
|∇φ|2



Effective theory

• Solve divergence constraint

• Gaussian correlation

• 2d power-law “dipolar” form

bµ = εµν∂νφ

βF =
∫

d2x
c

2
|∇φ|2

〈bµ(r)bν(r′)〉 ∼ εµλενγ
∂

∂xλ

∂

∂x′γ

(
c−1 ln |r − r′|

)

〈bµ(r)bν(0)〉 ∼ −c−1εµλενγ
r̂λr̂γ

r2



?

 copied from Lori H. Barrett Fine Art



?

• The degeneracy is 
probably removed by 
any weak perturbation

• power-laws are not 
“universal” the way 
that those at critical 
points are

• It is hard to get any 
simple NN Ising system 
without substantial 
corrections



Magnetic Anisotropy

• Microscopically, SU(2) symmetry is broken 
by spin-orbit coupling λL⋅S

• need to consider atomic physics

• Several effects

• H = H0 + He-e+Hcrystal field + HSOI

• Relative magnitudes different for 
transition metals (d) and rare earth (f) 
ions



Transition Metals

• Typically, He-e (responsible for Hund’s rules I 
and II) and Hcf are up to of order a few eV 
in magnitude

• Spin-orbit is a relatively small

• Varies as Z4, from of order tens of meV 
for 3d TMs to of order 0.5-1eV in late 5d 
TMs

• Except for heaviest 5d ions, it is a weak 
perturbation compared to crystal fields 



Transition Metals

• Crystal fields split orbital degeneracy

• There is always at least this much splitting

• The crystal field splitting reduces orbital 
degeneracy

• When this results in a half-filled shell, effects 
of SOIs are second order ~ λ2/Δcf

e.g. cubic 
symmetry

eg: x2-y2, 2z2-x2-y2

t2g: yz, xz, xy



Ising TMs?

• To get an Ising spin, you need a low symmetry 
environment (with a singled out axis)

• in this case, all the orbital degeneracy is 
usually split

• must have a situation with some 
“accidental” degeneracy to allow SOIs to 
work, or else weak exchange J << λ2/Δcf

• This happens, e.g. in Co2+,Co3+ ions which 
show “spin state transitions”



Rare Earths

• In Ln (4f) rare earths, electrons are relatively 
close to the nucleus and screened from 
crystal fields, so typically SOIs are larger than 
crystal fields

• Since SOIs just result in a partial splitting of 
L+S degeneracies to a J degeneracy, the 
crystal fields then select anisotropic states at 
O(Δcf)

• Also, exchange interactions are weak for 
rare earths (typically only a few K)



Rare Earths

• Rare earth Lns tend to exhibit anisotropic 
magnetism

• But...

• dipolar forces can be comparable to 
exchange

• anisotropy does not need to be so simple 
as an Ising model

• usually with respect to some local axes, 
which can be different for different spins



Spin Ice



Materials

• Rare earth pyrochlores

• Ln2Ti2O7, Ln=Dy,Ho

• The Ln’s occupy a magnetic 
pyrochlore lattice

• Strong easy-axis anisotropy 
oriented along <111> axes 
connecting tetrahedra centers

Introduction

100

101

102

103

104

105

106

107

0 50 100 150 200 250 300

!
 (

m
"

 c
m

)

T(K)

Pr

Nd

Gd

Sm

Eu

Tb

Dy

Ho

Ln
2
Ir

2
O

7

103

104

105

106

60 80 100 300

Tb

Dy
Ho

Resistivity (polycrystalline samples)
Ln2Ir2O7

Ir4+: 5d5 Conduction electrons

Ln3+: (4f)n Localized moment
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Itinerant electron system 
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Ir[t2g]+O[2p] conduction band

Metal Insulator Transition
(Ln=Nd, Sm, Eu, Gd, Tb, Dy, Ho)

K. Matsuhira et al. : J. Phys. Soc. Jpn. 76 (2007) 043706.
(Ln=Nd, Sm, Eu)
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TiO6



Anisotropy

• Crystal fields create a potential that 
depends on the spin state

• This leads to two Ising ground states with 
Siz=±S

9

FIG. 3 The coordination geometry of the A-site by O (shaded
spheres) and O′(open spheres) atoms. The O′ − A − O′ unit
is oriented normal to the average plane of a puckered six-
membered ring. This bond is one of the shortest seen between
a rare earth and oxygen ions.

B. Local Environment of the A and B-Sites

The coordination geometry about the two metal sites
is controlled by the value of x for the O atom in the 48f
site. For x = 0.3125 one has a perfect octahedron about
16c and x = 0.375 gives a perfect cube about 16d. In fact
x is usually found in the range 0.320 to 0.345 and the two
geometries are distorted from the ideal polyhedra. For a
typical pyrochlore the distortion about the B ion or 16c
site is relatively minor. The 3̄m(D3d) point symmetry
requires that all six B - O bonds must be of equal length.
The O - B - O angles are distorted only slightly from the
ideal octahedral values of 90◦ ranging between 81◦ and
100◦. The distortion of the A site geometry from an
ideal cube is on the other hand very large. This site is
depicted in Fig. 3 and is best described as consisting of
a puckered six-membered ring of O atoms with two O′

atoms forming a linear O′ - A - O′ stick oriented normal
to the average plane of the six-membered ring. The A -
O and A - O′ bond distances are very different. While
typical A - O values are 2.4 -2.5 Å, in accord with the
sum of the ionic radii, the A - O′ bonds are amongst
the shortest known for any rare earth oxide, ≈ 2.2 Å.
Thus, the A-site has very pronounced axial symmetry,
the unique axis of which is along a local 〈111〉 direction.
This in turn has profound implications for the crystal
field at the A-site which determines much of the physics
found in the pyrochlore materials.

Recall that the spin-orbit interaction is large in rare
earth ions and the total angular momentum, J = L + S
is a good quantum number. For a given ion one can ap-
ply Hund’s rules to determine the isolated (usually) elec-
tronic ground state. Electrostatic and covalent bonding
effects originating from the local crystalline environment,
the so-called crystal field (CF), lift the 2J + 1 degener-
acy of the ground state. A discussion of modern meth-
ods for calculation of the CF for f-element ions is be-
yond the scope of this review but is described in several
monographs for example, one by Hüfner (1978). For our
purposes we will assume that the single ion energy levels
and wave functions, the eigenvectors and eigenenergies of

the CF Hamiltonian Hcf have been suitably determined
either through ab initio calculations or from optical or
neutron spectroscopy (see for example Rosenkranz et al.
(2000) and more recently Mirebeau et al. (2007)).
Hcf can be expressed either in terms of the so-called

tensor operators or the “operator equivalents” due to
Stevens (1952). The two approaches are contrasted by
Hüfner (1978). While the tensor operators are more con-
venient for ab-initio calculations, the latter are better
suited to our purposes here. In this formalism, Hcf is ex-
pressed in terms of polynomial functions of the Jiz and
Ji±, with Ji± = Jix ± Jiy , which are components of the
Ji angular momentum operator. The most general ex-
pression for Hcf is:

Hcf =
∑

i

∑

l,m

Bm
l Om

l (Ji) , (4)

where, for example, the operator equivalents are O0
2 =

3Jz
2−J(J +1) and O6

6 = J+
6 +J−

6. The full CF Hamil-
tonian for -3m (D3d) point symmetry involves a total of
six terms for l = 2, 4 and 6 (Greedan, 1992a). In fact, due
to the strong axial symmetry of the A-site, described pre-
viously, it can be argued that the single l = 2 term, B0

2 ,
plays a major role in the determination of the magnetic
anisotropy of the ground state. In the Stevens formalism,
B0

2 = A0
2〈r2〉αJ (1-σ2), where A0

2 is a point charge lattice
sum representing the CF strength, 〈r2〉 is the expecta-
tion value of r2 for the 4f electrons, σ2 is an electron
shielding factor and αJ is the Stevens factor (Stevens,
1952). This factor changes sign in a systematic pattern
throughout the lanthanide series, being positive for A=
Sm, Er, Tm and Yb and negative for all others. So,
the sign of B0

2 depends on the product αJA0
2 and A0

2 is
known from measurements of the electric field gradient
from for example 155Gd Mössbauer studies to be posi-
tive for pyrochlore oxides (Barton and Cashion, 1979).
Thus, B0

2 should be positive for A = Sm, Er, Tm and
Yb and negative for all others. From the form of B0

2
above, it is clear that states of different |MJ〉 do not mix
and that the energy spectrum will consist of a ladder of
states with either |MJ(min)

〉 (B0
2 > 0) or |MJ(min)

〉 (B0
2 <

0) as the ground state. Note that the former constitutes
an easy plane and the latter an easy axis with respect
to the quantization axis which is <111> for pyrochlores.
A comparison of the known anisotropy for the A2Ti2O7

and A2Sn2O7 materials, that is, easy axis for A = Pr,
Nd, Tb, Dy and Ho and easy plane for A = Er and Yb
with the sign of B0

2 shows a remarkable agreement with
this very simple argument. [Note that only the Stevens
formalism works here. The tensor operator definition of
B0

2 is B0
2 = A0

2〈r2〉, so this quantity is always positive
for pyrochlore oxides, independent of the rare earth A.
We do not maintain that the actual ground state wave
function can be obtained within such a simple model (al-
though the agreement for A = Dy and Ho is remarkable),
rather, that the overall anisotropy can be predicted with-
out a detailed calculation.]

Hcf ≈ −D
∑

i

(Si · n̂i)
2



Magnetic moment

• Basically the Ising anisotropy means that 
there are two ground states forming a 
doublet, such that we can define a S=1/2 
“spin” from it, and associated Pauli 
matrices, such that

• The magnetic moment is nearly uniaxial

• Here m0 is a large intrinsic magnetic 
moment of the Ln spin, m0≈10μB

!µi = m0n̂i(n̂i · !σ) σ



Dipolar Interactions

• Because m0 is so large, the dipolar 
interactions are relatively strong

• Note that only σ enters this interaction!

• Hence it is effectively classical

• It is also “ferromagnetic” in the sense 
that the 2nd term is larger than the first

Hdip =
∑

i>j

[
!µi · !µj − 3(!µi · r̂ij)(!µj · r̂ij)

|rij |3

]



NN model

• Taking just the NN term of the dipolar 
interaction, one obtains an effective model 

• with Jeff>0, i.e. like an AF Ising model.

• It is believed that this is partially 
compensated by some weaker exchange (not 
dipolar) of the opposite sign, but the net Jeff 
remains positive.

Heff = Jeff

∑

〈ij〉

σiσj



Spin ice ground states

• The NN energy is minimized by making the 
σi add to 0 on each tetrahedron, so the 
spins point “two in/two out”: the “ice rule”

• This is the origin of the name “spin ice”

M.J. Harris et al, 1997



Entropy

• The integrated specific 
heat of Dy2Ti2O7 showed 
explicitly the low 
temperature entropy in 
spin ice as a “missing” part 
of R ln(2)

• quantitative agreement 
with Pauling’s 1935 
estimate 

A.P. Ramirez et al, 1999



“Magnetostatics”

• It is clear from the picture that we can 
directly define a divergenceless “magnetic 
field” bij from the direction of the spin 
connecting the centers of tetrahedra i and 
j, which reside on a diamond lattice



Power law correlations

• Effective theory

• Using vector potential b = ∇×a

Heff =
∫

d3r
c

2
|!b|2

〈bµ(r)bν(0)〉 ∼ 1/c

(
δµν − 3r̂µr̂ν

r3

)



Power law correlations

• Effective theory

• Using vector potential b = ∇×a

• This is directly proportional to the static 
magnetic structure factor measured in a 
neutron experiment

• e.g.

Heff =
∫

d3r
c

2
|!b|2

〈bµ(−k)bν(k)〉 = 1/c

(
δµν − kµkν

k2

)

S(K200 + k) ∼
k2

y + k2
z

k2



 pinch points in Ho2Ti2O7

experiment theory

S(K200 + k) ∼
k2

y + k2
z

k2
vanishes along lines

T. Fennell et al, 2009



Quality of singularity

pinch point sharpens 
with lower T

“Correlation length” for 
rounding of pinch point

Roughly ξ~ e1.8K/T



Defects

• The ice rules constraint is not perfectly 
enforced at T>0

• Primitive defect is a “charged” tetrahedron 
with ∑i σi = ±1.

costs energy 2Jeff



What to call it?

• Consider Ising “spin”

• Single flipped tetrahedron has SzTOT=±1/2

• “spinon”? (M. Hermele et al, 2004) 

• But Sz is not very meaningful in spin ice

• Use magnetic analogy: magnetic monopole

Sz
TOT =

∑

i

σi =
1
2

∑

t

Sz
t



Magnetic monopoles

• Defect tetrahedra are sources and sinks of 
“magnetic” flux

• It is a somewhat non-local object

• Must flip a semi-infinite string of spins to 
create a single monopole

div b = 1

Castelnovo et al, 2008



String

stolen (by somebody else on youtube) 
from Steve Bramwell

• Note that the string is 
tensionless because the 
energy depends only on 
∑i σi on each tetrahedra

• this should be spoiled 
at low temperature 
by corrections to H

• Once created, the 
monopole can move by 
single spin flips



Monopoles are “real”

• Monopoles actually are sources for (internal) 
magnetic field

• Magnetization M ∝ b

• hence div M ~ div H ~ q δ(r)

• Actual magnetic charge is small

• Coulomb interaction constant is 
approximately 14000 times smaller than for 
electrons, but still 1/r2 forces are present 
and measurable at low temperature 

Castelnovo et al, 2008



Monopoles for 
dumbbells



Experimental evidence 
for monopoles

• Careful study of quasi-activation behavior of 
magnetization relaxation rate (Jaubert 
+Holdsworth, 2009)

• measures the energy of a monopole

• Magnetic “Wien” effect (Bramwell et al, 2009)

• measures a monopole’s magnetic charge

• Several neutron measurements see “strings” in 
applied fields

• Hopefully Peter Holdsworth will discuss all these!



Kivelson’s argument
“Dear Leon,

I now have evidence direct from Hollywood that you were 
wrong in assessing the relative importance of topological 
insulators vs spin ice...”



More on Ising models?
• Quantum dynamics can be introduced by transverse 

exchange or field

• transverse field: rather hard to find in experiment, but 
see talk by Ribhu Kaul

• XY exchange:  more easily realized 

• with lattice bosons (e.g. cold atoms in optical lattice)

• Heisenberg systems in strong magnetic fields often 
have collinear states for which one can use such an 
expansion (example later?)

H =
1
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∑

ij
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i
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2d Results
• In 2d, these problems have been heavily studied

• In a transverse field by Moessner et al

• With XY exchange more recently by several groups

• Generally, the result is that Ising order develops with 
an infinitesimal quantum perturbation whenever the 
classical system has power-law correlations

• This is related to a classic result in QFT by 
Polyakov that a compact U(1) gauge theory is 
confining in 2d due to proliferation of instantons 
(monopoles*)

*these are not anything like the spin ice monopoles



3d Results

• By contrast, in the 3d pyrochlore lattice, 
quantum perturbations lead to the 
emergence of a true quantum spin liquid 
state

• This you can think of as analogous to the 
Coulomb phase of spin ice but with quantum 
dynamics added instead of just 
magnetostatics

• This is all possible because compact U(1) 
gauge theory is stable in 3 dimensions

M. Hermele et al, 2004
A. Banerjee et al, 2008


