Frustrated Magnetism

Leon Balents
ICTS winter school, December 2009

Recent Collaborators

- Doron Bergman
- Gang Chen
- Sungbin Lee
- Miles Stoudenmire
- Ribhu Kaul
- Jason Alicea
- Ryuichi Shindou
- Andreas Schnyder
- Yong-Baek Kim
- Arun Paramekanti
- Michael Lawler
- Lucile Savary

- Simon Trebst
- Emmanuel Gull
- Oleg Starykh
- Masanori Kohno
- Hosho Katsura
- Dmytro Pesin

Lesson Plan*

- Introduction: basic magnetism, empirical signs of frustration
- Classical Ising systems and spin ice
- Heisenberg systems and quantum effects
- Some interesting examples
- Quantum spin liquids

*Subject to change according to my whims

The setting

- We will be discussing Mott insulators, in which electrons can be regarded as localized into specific atomic or molecular orbitals
 - In this case, the degrees of freedom are the spin and sometimes orbital state of these electrons
 - This is vast simplification over itinerant systems

Hubbard Model

- When is the localized assumption valid?
- Useful to keep in mind a Hubbard-type model

$$H = \sum_{ij} t_{ij} c_{i\alpha}^{\dagger} c_{j\alpha} + U \sum_{i} (n_i - \overline{n})^2$$

 If average electron number per site is integer, and U/t is large enough, then the ground state is a Mott insulator

$U_c \sim W$

Rule of thumb: compare U to bandwidth W

Phase diagram

U/W

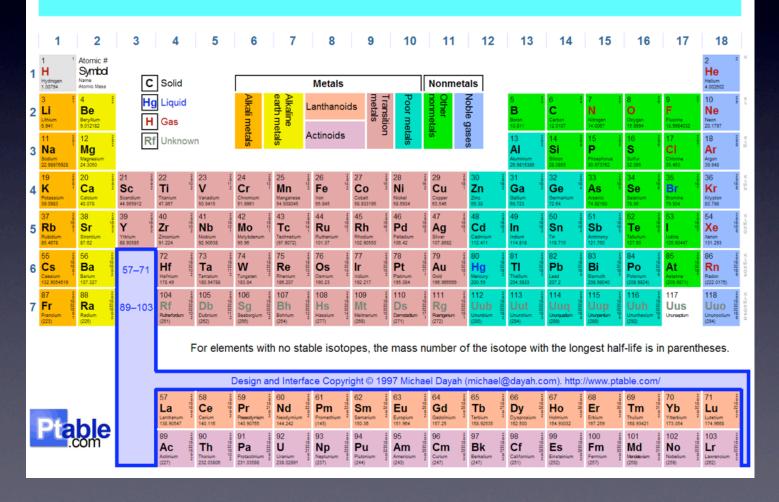
~1

strong Mott insulator

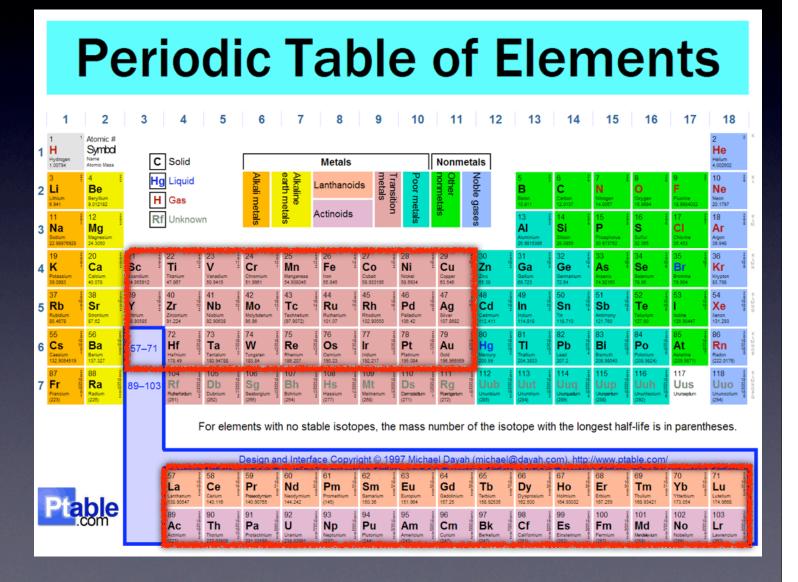
weak Mott insulator

metal

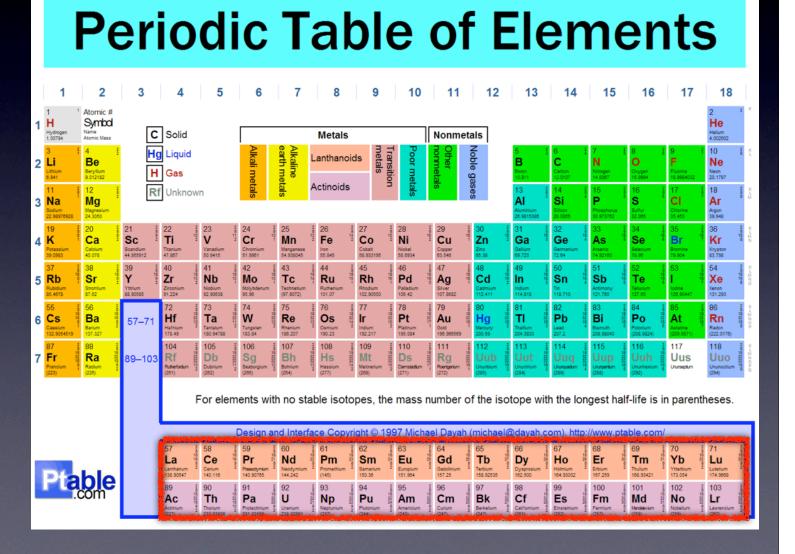
Periodic Table of Elements



Small W: d and f electrons

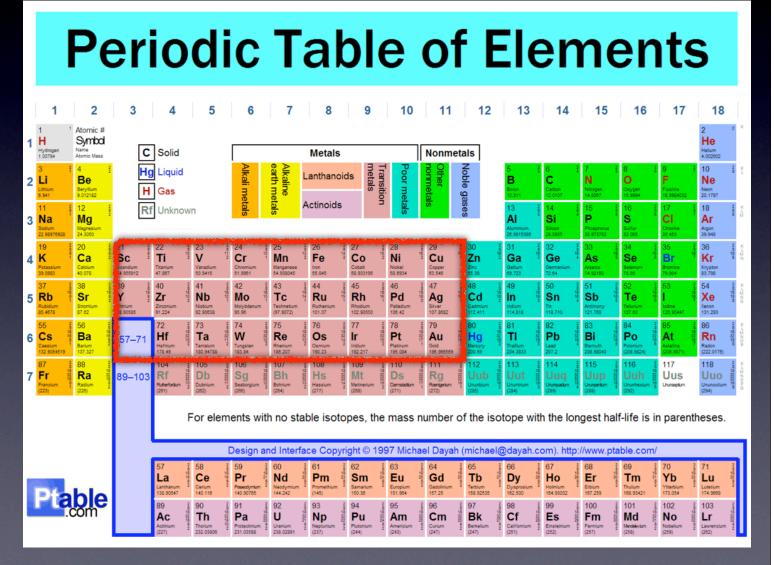


f electrons are nearly perfectly localized very small W



Decreasing
U with n:
U_{3d}>U_{4d}>U_{5d}

Strongest correlations in 3d TMs



Chemistry and Structure

- Most Mott insulators have some ionic character - often oxides
 - TM or RE atoms should donate their s electrons
- Bandwidth can be substantially reduced by separating TMs by filled shell ions like O²⁻

How to tell?

- In practice, it is often useful to rely on experiments to tell you how localized the electrons are
- resistivity is it a good insulator? if you can measure it, it is probably not!
- optics measure optical gap.
- are there local moments?

Local moment magnetism

- Atoms with partially filled shells
 - Hund's rules give magnetic state
 e.g. Mn²⁺

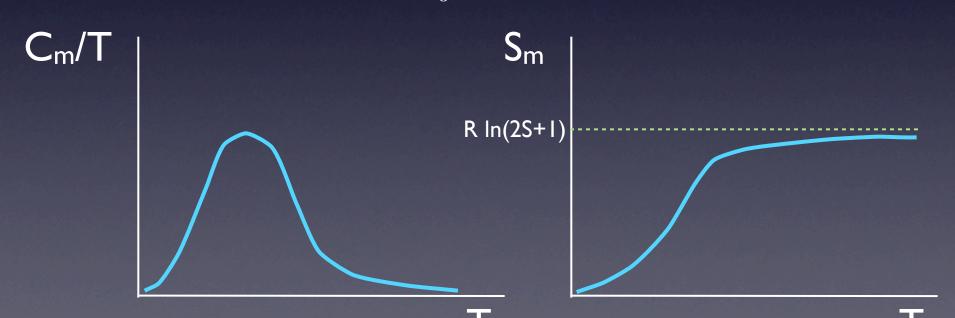
- These moments are well-formed for k_BT<< U
- Exchange between moments | ~ t²/U
- When $U >> k_B T >> I$, see Curie law

$$\chi \sim rac{A}{T}$$
 $A = rac{Ng^2 \mu_B^2 S(S+1)}{3}$ Curie constant

Entropy

• If you can separate non-magnetic contribution, then you can count states

$$S(T) = \int_0^T dT' \frac{C(T')}{T'}$$



Frustration

Spin models

- In a strong Mott insulator, we can assume n_i is fixed and just study the spin (and perhaps orbital) state of the electrons
- e.g. Heisenberg Hamiltonian

$$H_{eff} = \frac{1}{2} \sum_{ij} J_{ij} \vec{S}_i \cdot \vec{S}_j$$

- Exchange couplings $|J_{ij}| \sim (t_{ij})^2/U$
- More complex Hamiltonians may be less symmetric, and involve orbital operators

Frustration

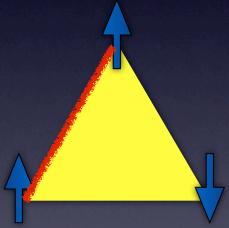
Exchange interactions usually favor a magnetically ordered state

$$\langle \vec{S}_i \rangle \neq 0$$

- \bullet The spins act approximately classically, and align to minimize H_{eff}
- However, in some cases there is no single, simple way to do this

Frustration

 Simplest idea: pairwise exchange interactions cannot be simultaneously satisfied



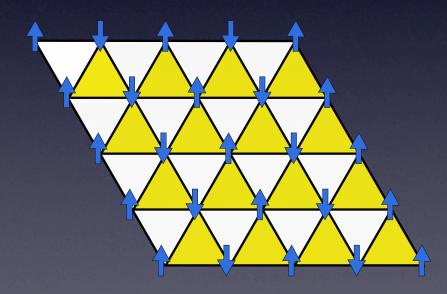
"geometric frustration"

 But this is a bit simplistic, and overstates the problem

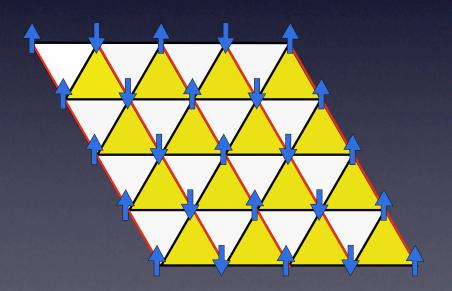
- Characterize frustration by number of ground states

$$ullet$$
 Ising models $H=J\sum_{\langle ij
angle}\sigma_i\sigma_j$ $\sigma_i=\pm 1$

$$\sigma_i = \pm 1$$

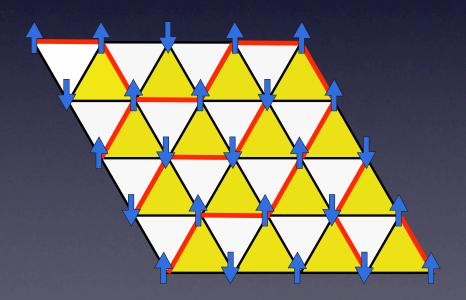


- Characterize frustration by number of ground states
- Ising models



I frustrated bond per triangle

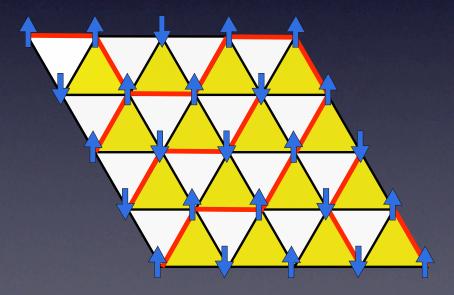
- Characterize frustration by number of ground states
- Ising models



I frustrated bond per triangle

exponentially many ground states

- Characterize frustration by number of ground states
- Ising models



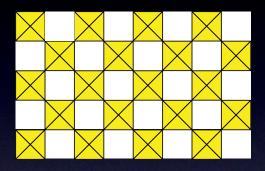
I frustrated bond per triangle

Wannier (1950):

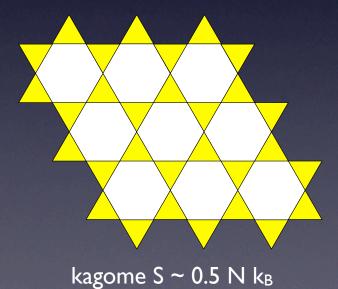
$$\Omega = e^{S/k_B}$$

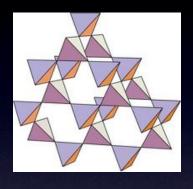
 $S \approx 0.34Nk_B$

Other lattices

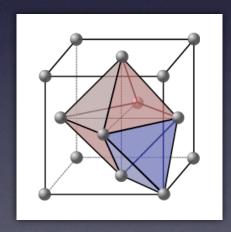


checkerboard S ~ 0.216 N k_B





pyrochlore S ~ 0.203 N k_B



FCC: $S \sim c N^{1/3} k_B$

But...

- Such an Ising model is very special
 - Not so common to find simple Ising spins
 - Generally there are more interactions
 - This degeneracy is very finely tuned
- In practice, we will usually need to think about more subtle models
 - How do we look for frustration if we are not sure of the model?

Looking for Frustration

- We are looking to see that, instead of ordering, the system fluctuates amongst the many degenerate states even when $k_BT << J$
- To determine this empirically, we need to have an experimental estimate of "J" and also put an upper bound on the ordering/ freezing temperature

Curie-Weiss Law

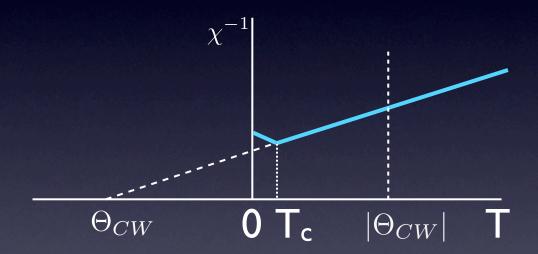
- Antiferromagnetic exchange leads to suppression of susceptibility
- mean field theory/high temperature expansion
- Curie-Weiss temperature

$$\chi \sim \frac{A}{T - \Theta_{CW}}$$

$$ullet$$
 $\Theta_{CW} = -ig(\sum_{j} J_{ij}ig)rac{S(S+1)}{3k_B}$ (<0 in AFs)

Frustration "fingerprint"

Experimental plot of inverse susceptibility:



• Frustration/fluctuation parameter

$$f = rac{|\Theta_{CW}|}{T_{c}}$$
 >>1 indicates suppressed ordering

Some older examples

A.P. Ramirez review, 1994

	<u> </u>					
Compound	Magnetic lattice	$-\theta_{cw}$ (K)	T _c (K)	f	Ordered state	Electronic configuration
wo-dimensional magnets						
VCl ₂	triangular	437	36	12	AF	$3d^3$
NaTiO ₂	triangular	1000	<2	>500		3d¹
LiCrO ₂	triangular	490	15	33	AF	$3d^3$
Gd _{0.8} La _{0.2} CuO ₂	triangular	12.5	0.7	16	SG	4f ⁷
SrCr ₈ Ga ₄ O ₁₉	kagome	515	3.5	150	SG	$3d^3$
$KCr_3(OH)_6(SO_4)_2$	kagome	70	1.8	39	AF	3d ³
'hree-dimensional magnets						
ZnCr ₂ O ₄	B-spinel	390	16	24	AF	$3d^3$
K ₂ IrCl ₆	FCC	321	3.1	10	AF	5d⁵
FeF ₃	B-spinel	240	15	16	AF	3d ⁵
CsNiFeF ₅	B-spinel	210	4.4	48	SG	3d ⁸ , 3d ⁵
$MnIn_2Te_4$	zinc blende	100	4	25	SG	3d5
$Gd_3Ga_5O_{12}$	garnet	2.3	< 0.03	>100	_	4f ⁷
Sr ₂ NbFeO ₆	perovskite	840	28	30	SG	3d⁴
Ba ₂ NbVO ₆	perovskite	450	15	30	SG	3d3
	-					

Questions

- What is the nature of the "spin liquid" regime where $T_c < T < |\Theta_{CW}|$?
 - Here spins are correlated but fluctuating
- What is the nature of the ground state, or low temperature phase if $T_c>0$?
- What are the elementary excitations of the system?

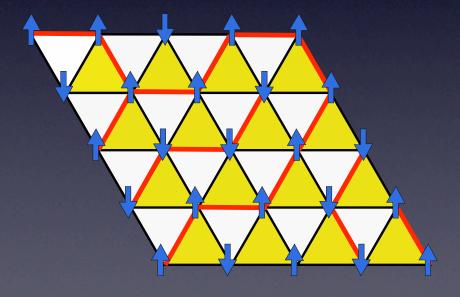
Questions

- What is the nature of the "spin liquid" regime where $T_c < T < |\Theta_{CW}|$?
 - Here spins are correlated but fluctuating
 - Do these correlations have any longdistance consequences?

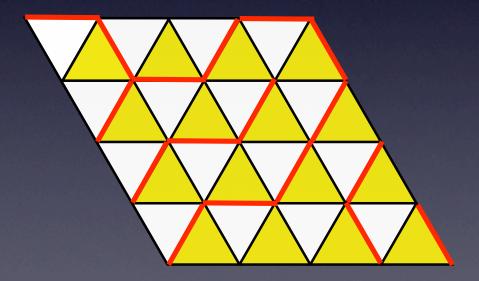
For AF NN Ising Models

Lattice	Transition	Correlations (T << Θ _{CW})	
FCC	Yes! $T_c = 1.8J$	LRO	
triangular	no	power law	
checkerboard	no	power law	
pyrochlore	no	power law	
kagome	no	very short range	

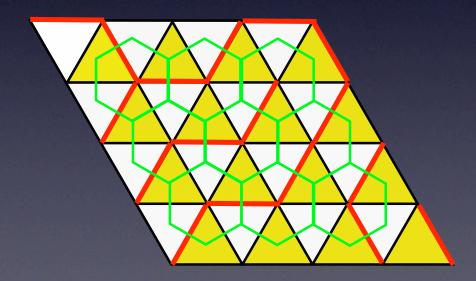
- Correlations: we know that for T<<J, there
 are "no" triangles with 3 aligned spins
 - How does this induce long-distance correlations?



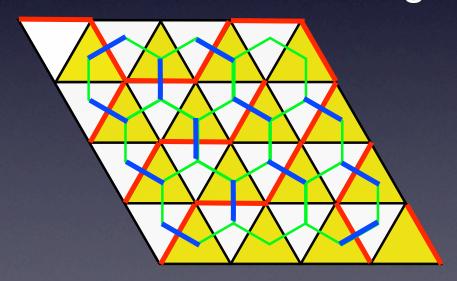
- Dual representation
 - honeycomb lattice



- Dual representation
 - focus on the frustrated bonds

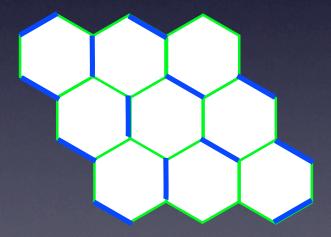


- Dual representation
 - color "dimers" corresponding to frustrated bonds
 - "hard core" dimer covering



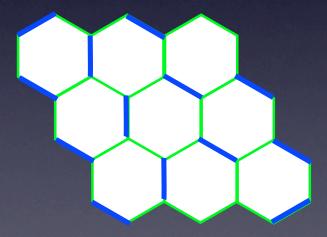
Back to the Ising model

- Dual representation
 - A 2:1 mapping from Ising ground states to dimer coverings

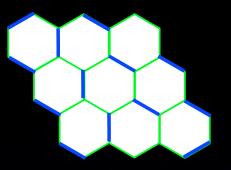


Dimer states

- First exercise: can we understand Wannier's result?
 - count the dimer coverings



Dimer states



- Consider the "Y" dual sites
 - each has 3 configurations

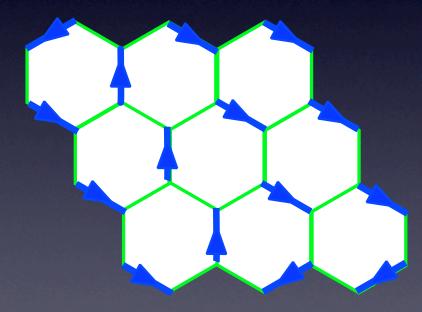
- this choice fully determines the dimer covering
- But we have to make sure the Y⁻¹ sites are singly covered. Make a crude approximation:
 - Prob(dimer) = I- Prob(no dimer)= 1/3
 - $Prob(good Y^{-1}) = 2/3 * 2/3 * 1/3 * 3 = 4/9$
- Hence

$$\Omega pprox 3^N \left(rac{4}{9}
ight)^N = e^{N \ln(4/3)} \quad {\rm S} pprox {\rm 0.29 \ N \ k_B}$$
 Wannier $S pprox 0.34Nk_B$

- Define a dimer number n_{ij}=0, I on bond (ij)
- Turn this into a lattice "magnetic field" Bij

$$B_{ij} = \begin{cases} n_{ij} & i \in Y \\ -n_{ij} & i \in Y^{-1} \end{cases}$$

$$(\text{div B})_i = \sum_j B_{ij} = \epsilon_i = \pm I$$



Some magnetostatic representation exists for all the cases with power-law correlations!

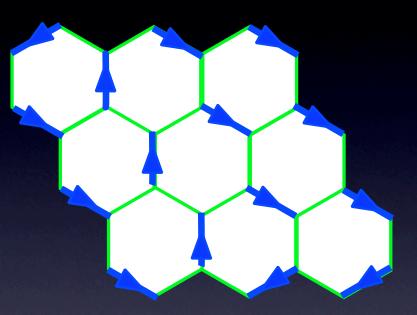
$$(div B)_i = \sum_j B_{ij} = \epsilon_i = \pm I$$

Focus on fluctuations

$$B_{ij} = \overline{B}_{ij} + b_{ij}$$

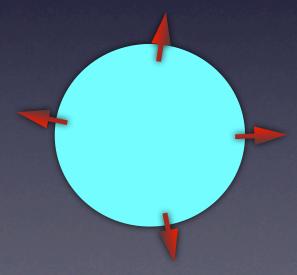
$$div(\overline{B}_{ij}) = \epsilon_i$$

$$div(b_{ij}) = 0$$



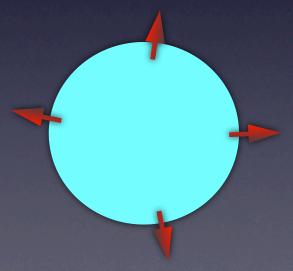
Fluctuating component b_{ij} is divergenceless

- Divergenceless condition, div b = 0, implies long-distance correlations in the fluctuations by Gauss' law
- no monopole fluctuations



- Divergenceless condition, div b = 0, implies long-distance correlations in the fluctuations by Gauss' law
- no monopole fluctuations

$$\frac{\partial}{\partial x_i} \langle b_i(x)b_j(x') \rangle = 0$$



Long distances

- For long distance correlations, we can consider a coarse-grained $b_i(x)$ field
 - Either there are no significant b fluctuations, in which case some specific ordered state is picked out
 - or the fluctuations are large, and hence coarse-grained b field can be regarded as a continuous variable
- The latter is true in many cases

Effective theory

Effective free energy

$$\beta F = \int d^2x \, \frac{c}{2} |\vec{b}(x)|^2 + \text{h.o.t.s}$$

• Solve divergence constraint $b_{\mu} = \epsilon_{\mu\nu}\partial_{\nu}\phi$

$$\beta F = \int d^2x \, \frac{c}{2} |\nabla \phi|^2$$

Effective theory

Solve divergence constraint $b_{\mu} = \epsilon_{\mu\nu}\partial_{\nu}\phi$

$$b_{\mu} = \epsilon_{\mu\nu} \partial_{\nu} \phi$$

$$\beta F = \int d^2x \, \frac{c}{2} |\nabla \phi|^2$$

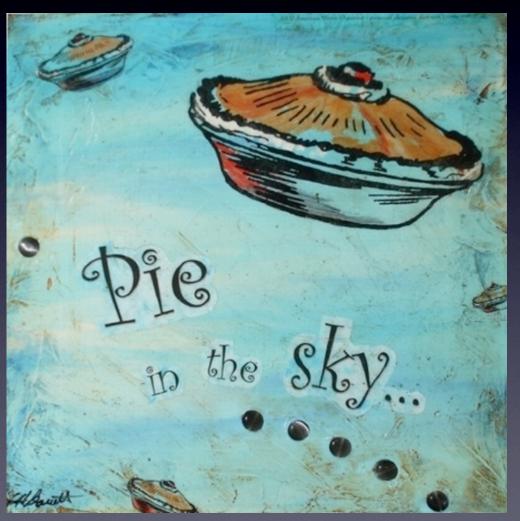
Gaussian correlation

$$\langle b_{\mu}(r)b_{\nu}(r')\rangle \sim \epsilon_{\mu\lambda}\epsilon_{\nu\gamma}\frac{\partial}{\partial x_{\lambda}}\frac{\partial}{\partial x'_{\gamma}}\left(c^{-1}\ln|r-r'|\right)$$

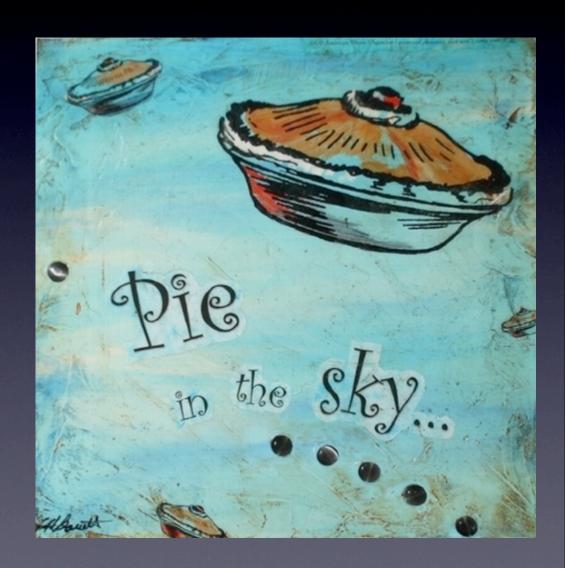
2d power-law "dipolar" form

$$\langle b_{\mu}(r)b_{\nu}(0)\rangle \sim -c^{-1}\epsilon_{\mu\lambda}\epsilon_{\nu\gamma}\frac{\hat{r}_{\lambda}\hat{r}_{\gamma}}{r^{2}}$$

?



- The degeneracy is probably removed by any weak perturbation
 - power-laws are not "universal" the way that those at critical points are
- It is hard to get any simple NN Ising system without substantial corrections



Magnetic Anisotropy

- Microscopically, SU(2) symmetry is broken by spin-orbit coupling $\lambda L \cdot S$
 - need to consider atomic physics
- Several effects
 - $H = H_0 + H_{e-e} + H_{crystal field} + H_{SOI}$
 - Relative magnitudes different for transition metals (d) and rare earth (f) ions

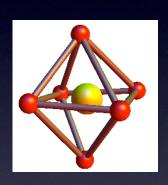
Transition Metals

- Typically, H_{e-e} (responsible for Hund's rules I and II) and H_{cf} are up to of order a few eV in magnitude
- Spin-orbit is a relatively small
 - Varies as Z⁴, from of order tens of meV for 3d TMs to of order 0.5-1eV in late 5d TMs
 - Except for heaviest 5d ions, it is a weak perturbation compared to crystal fields

Transition Metals

Crystal fields split orbital degeneracy

e.g. cubic symmetry



- There is always at least this much splitting
- The crystal field splitting reduces orbital degeneracy
 - When this results in a half-filled shell, effects of SOIs are second order $\sim \lambda^2/\Delta_{cf}$

Ising TMs?

- To get an Ising spin, you need a low symmetry environment (with a singled out axis)
 - in this case, all the orbital degeneracy is usually split
 - must have a situation with some "accidental" degeneracy to allow SOIs to work, or else weak exchange J $<< \lambda^2/\Delta_{cf}$
- This happens, e.g. in Co²⁺,Co³⁺ ions which show "spin state transitions"

Rare Earths

- In Ln (4f) rare earths, electrons are relatively close to the nucleus and screened from crystal fields, so typically SOIs are larger than crystal fields
- Since SOIs just result in a partial splitting of L+S degeneracies to a J degeneracy, the crystal fields then select anisotropic states at $O(\Delta_{cf})$
- Also, exchange interactions are weak for rare earths (typically only a few K)

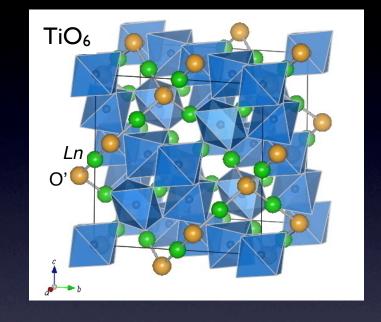
Rare Earths

- Rare earth Lns tend to exhibit anisotropic magnetism
- But...
 - dipolar forces can be comparable to exchange
 - anisotropy does not need to be so simple as an Ising model
 - usually with respect to some local axes,
 which can be different for different spins

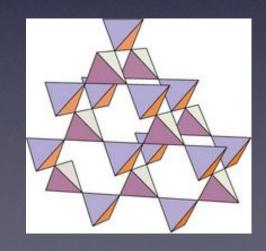
Spin Ice

Materials

- Rare earth pyrochlores
 - Ln₂Ti₂O₇, Ln=Dy,Ho



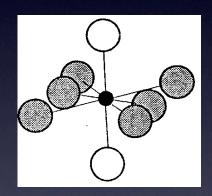
- The Ln's occupy a magnetic pyrochlore lattice
 - Strong easy-axis anisotropy
 oriented along < I I I > axes
 connecting tetrahedra centers



Anisotropy

 Crystal fields create a potential that depends on the spin state

$$H_{cf} \approx -D \sum_{i} \left(\mathbf{S}_{i} \cdot \hat{\mathbf{n}}_{i} \right)^{2}$$



• This leads to two Ising ground states with $S_i^z=\pm S$

Magnetic moment

- Basically the Ising anisotropy means that there are two ground states forming a doublet, such that we can define a S=1/2 "spin" from it, and associated Pauli matrices, such that
- The magnetic moment is nearly uniaxial

$$\vec{\mu}_i = m_0 \hat{n}_i (\hat{n}_i \cdot \vec{\sigma})$$

• Here m_0 is a large intrinsic magnetic moment of the Ln spin, $m_0 \approx 10 \mu_B$

Dipolar Interactions

 Because m₀ is so large, the dipolar interactions are relatively strong

$$H_{dip} = \sum_{i>i} \left[\frac{\vec{\mu}_i \cdot \vec{\mu}_j - 3(\vec{\mu}_i \cdot \hat{r}_{ij})(\vec{\mu}_j \cdot \hat{r}_{ij})}{|r_{ij}|^3} \right]$$

- Note that only σ enters this interaction!
 - Hence it is effectively classical
 - It is also "ferromagnetic" in the sense that the 2nd term is larger than the first

NN model

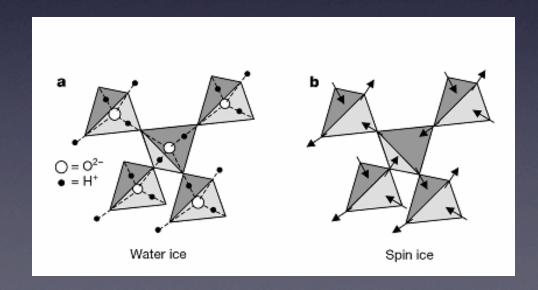
 Taking just the NN term of the dipolar interaction, one obtains an effective model

$$H_{eff} = J_{eff} \sum_{\langle ij \rangle} \sigma_i \sigma_j$$

- with J_{eff}>0, i.e. like an AF Ising model.
- It is believed that this is partially compensated by some weaker exchange (not dipolar) of the opposite sign, but the net J_{eff} remains positive.

Spin ice ground states

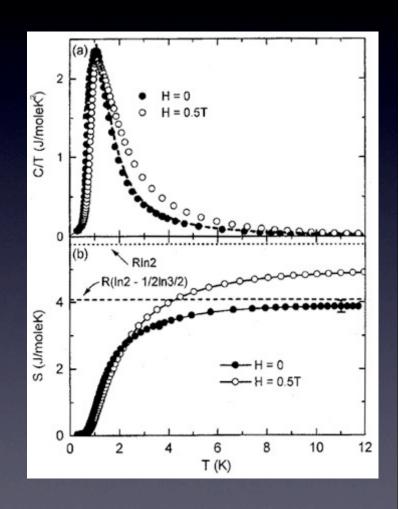
- The NN energy is minimized by making the σ_i add to 0 on each tetrahedron, so the spins point "two in/two out": the "ice rule"
- This is the origin of the name "spin ice"



M.J. Harris et al, 1997

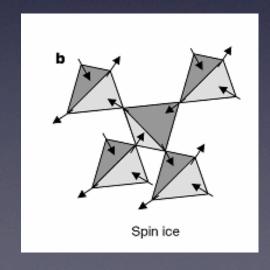
Entropy

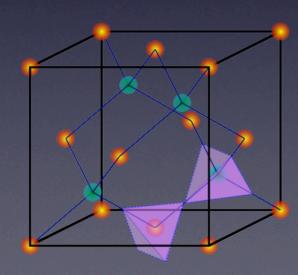
- The integrated specific heat of Dy₂Ti₂O₇ showed explicitly the low temperature entropy in spin ice as a "missing" part of R In(2)
 - quantitative agreement with Pauling's 1935 estimate



A.P. Ramirez et al, 1999

 It is clear from the picture that we can directly define a divergenceless "magnetic field" b_{ij} from the direction of the spin connecting the centers of tetrahedra i and j, which reside on a diamond lattice





Power law correlations

Effective theory

$$H_{eff} = \int d^3r \, \frac{c}{2} |\vec{b}|^2$$

• Using vector potential $b = \nabla \times a$

$$\langle b_{\mu}(r)b_{\nu}(0)\rangle \sim 1/c \left(\frac{\delta_{\mu\nu} - 3\hat{r}_{\mu}\hat{r}_{\nu}}{r^3}\right)$$

Power law correlations

Effective theory

$$H_{eff} = \int d^3r \, \frac{c}{2} |\vec{b}|^2$$

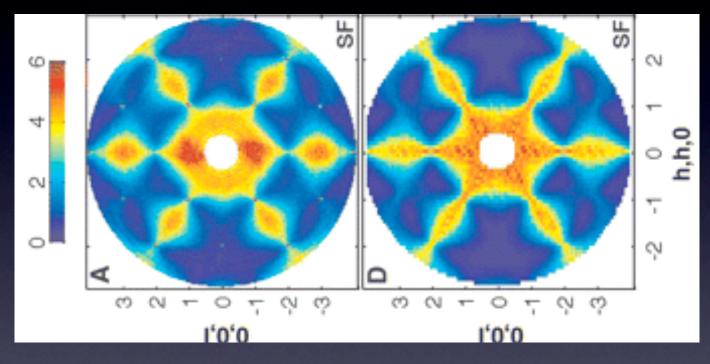
• Using vector potential $b = \nabla \times a$

$$\langle b_{\mu}(-k)b_{\nu}(k)\rangle = 1/c\left(\delta_{\mu\nu} - \frac{k_{\mu}k_{\nu}}{k^2}\right)$$

 This is directly proportional to the static magnetic structure factor measured in a neutron experiment

$$ullet$$
 e.g. $S(\mathbf{K}_{200}+\mathbf{k})\sim rac{k_y^2+k_z^2}{k^2}$

pinch points in Ho₂Ti₂O₇



T. Fennell et al, 2009

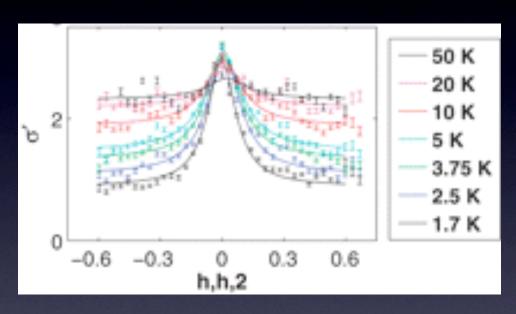
experiment

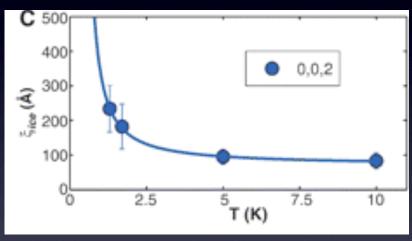
theory

$$S(\mathbf{K}_{200} + \mathbf{k}) \sim \frac{k_y^2 + k_z^2}{k^2}$$

vanishes along lines

Quality of singularity





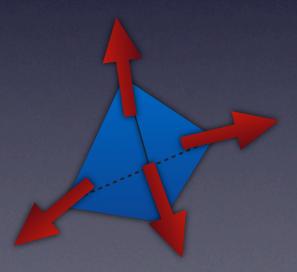
pinch point sharpens with lower T

"Correlation length" for rounding of pinch point

Roughly $\xi \sim e^{1.8K/T}$

Defects

- The ice rules constraint is not perfectly enforced at T>0
- Primitive defect is a "charged" tetrahedron with $\sum_i \sigma_i = \pm I$.



costs energy 2Jeff

What to call it?

Consider Ising "spin"

$$S_{\text{TOT}}^z = \sum_i \sigma_i = \frac{1}{2} \sum_t S_t^z$$

- Single flipped tetrahedron has Sztot=±1/2
 - "spinon"? (M. Hermele et al, 2004)
 - But Sz is not very meaningful in spin ice
- Use magnetic analogy: magnetic monopole

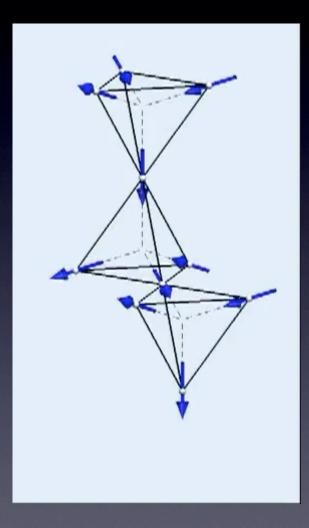
Magnetic monopoles

Castelnovo et al, 2008

 Defect tetrahedra are sources and sinks of "magnetic" flux

- It is a somewhat non-local object
 - Must flip a semi-infinite string of spins to create a single monopole

String



- Note that the string is tensionless because the energy depends only on Σ_i σ_i on each tetrahedra
 - this should be spoiled at low temperature by corrections to H
- Once created, the monopole can move by single spin flips

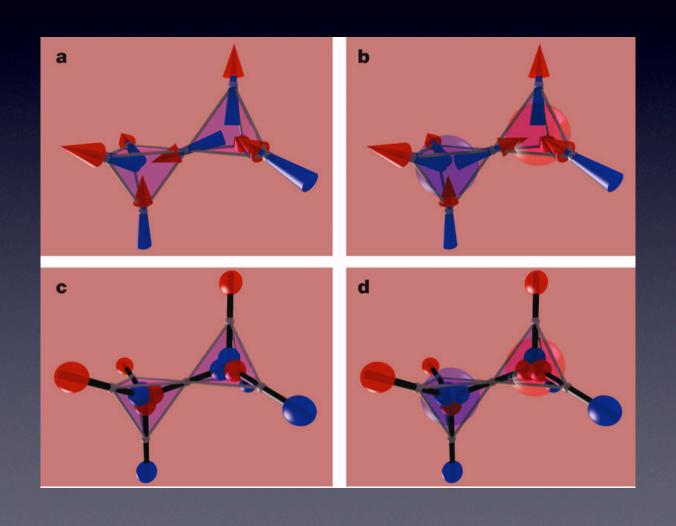
stolen (by somebody else on youtube) from Steve Bramwell

Monopoles are "real"

Castelnovo et al, 2008

- Monopoles actually are sources for (internal) magnetic field
 - Magnetization $M \propto b$
 - hence div M ~ div H ~ q $\delta(r)$
- Actual magnetic charge is small
 - Coulomb interaction constant is approximately 14000 times smaller than for electrons, but still 1/r² forces are present and measurable at low temperature

Monopoles for dumbbells



Experimental evidence for monopoles

- Careful study of quasi-activation behavior of magnetization relaxation rate (Jaubert +Holdsworth, 2009)
 - measures the energy of a monopole
- Magnetic "Wien" effect (Bramwell et al, 2009)
 - measures a monopole's magnetic charge
- Several neutron measurements see "strings" in applied fields
- Hopefully Peter Holdsworth will discuss all these!

Kivelson's argument

"Dear Leon,

I now have evidence direct from Hollywood that you were wrong in assessing the relative importance of topological insulators vs spin ice..."

More on Ising models?

Quantum dynamics can be introduced by transverse exchange or field

$$H = \frac{1}{2} \sum_{ij} J_{ij} \left[\sigma_i^z \sigma_j^z + \alpha (\sigma_i^x \sigma_j^x + \sigma_i^y \sigma_j^y) \right] - h \sum_i \sigma_i^x$$

- transverse field: rather hard to find in experiment, but see talk by Ribhu Kaul
- XY exchange: more easily realized
 - with lattice bosons (e.g. cold atoms in optical lattice)
 - Heisenberg systems in strong magnetic fields often have collinear states for which one can use such an expansion (example later?)

2d Results

- In 2d, these problems have been heavily studied
 - In a transverse field by Moessner et al
 - With XY exchange more recently by several groups
- Generally, the result is that Ising order develops with an infinitesimal quantum perturbation whenever the classical system has power-law correlations
 - This is related to a classic result in QFT by Polyakov that a compact U(I) gauge theory is confining in 2d due to proliferation of instantons (monopoles*)

*these are not anything like the spin ice monopoles

3d Results

- By contrast, in the 3d pyrochlore lattice, quantum perturbations lead to the emergence of a true quantum spin liquid state
 M. Hermele et al, 2004
 A. Banerjee et al, 2008
- This you can think of as analogous to the Coulomb phase of spin ice but with quantum dynamics added instead of just magnetostatics
- This is all possible because compact U(I) gauge theory is stable in 3 dimensions