Knot theory for spatial graphs

Akio KAWAUCHI

Osaka City University Advanced Mathematical Institute

Content

[Lecture 1] Topology for spatial graphs without degree one vertices

[Lecture 2] Unknotting notions on the spatial graphs

[Lecture 3] Spatial graphs with degree one vertices attaching to a surface Knot theory for spatial graphs

[Lecture 1] Topology for spatial graphs without degree one vertices

Let Γ = a finite graph with only vertices of degree ≥ 2 .

A finite graph with a degree one vertex:

<u>Definition.</u> A <u>spatial graph</u> of Γ is the image G of an embedding $\Gamma \rightarrow R^3$ which is sent to a polygonal graph in R^3 by a homeomorphism $R^3 \rightarrow R^3$.

Definition.

A <u>diagram</u> $D=D_G$ of a spatial graph G in R^3 is an orthogonal projection image of G into a plane P with only double point singularities together with the upper-lower crossing information. When Γ is a loop, G is called a <u>knot</u>, and it is <u>trivial</u> if it is the boundary of a disk.

A trivial knot

A non-trivial knot (Trefoil knot) When Γ is the disjoint union of finitely many loops, G is called a <u>link</u>, and it is <u>trivial</u> if it is the boundary of mutually disjoint disks.

A trivial link

A non-trivial link (Hopf link)

Definition.

A spatial graph G is <u>equivalent</u> to a spatial graph G' if \exists an orientation-preserving homeomorphism h: $\mathbb{R}^3 \rightarrow \mathbb{R}^3$ such that h(G)=G'.

Let [G] be the class of spatial graphs G' which are equivalent to G.
In a spatial graph G, ignore the degree 2 vertices.
Let v(G) be the set of vertices with degree ≥3 in
G.

<u>Fundamental topological problem on</u> <u>spatial graphs :</u>

(1) Study what kinds of spatial graphs there are. List them up to equivalences.

(2) Determine whether two given spatial graphs of a graph Γ are equivalent or not.

This problem is a natural generalization of the fundamental problem of knot theory.

Fundamental problem on knot theory :

- (1) Study what kinds of knots or links there are. List them up to equivalences.
- (2) Determine whether two given knots or links are equivalent or not.

THEOREM 1.1 (Equivalence Theorem).

Explained in: [Kauffman,1989]

L. H. Kauffman, Invariants of graphs in three space,

Trans. Amer. Math. Soc. 311(1989), 697-710.

G and G' are equivalent if and only if any diagram $D=D_G$ of G is deformed into any diagram $D'=D_{G'}$ of G' by a finite sequence of the <u>generalized</u> <u>Reidemeister moves</u>.

Generalized Reidemeister moves

Idea of the proof:

- Let G and G' be equivalent spatial graphs.
- Regard G and G' as polygonal graphs.
- After some generalized Reidemeister moves on
- $D_{\rm G}$ and $D_{\rm G^\prime}$, we can assume that
- ∃ a homeomorphism h: $R^3 \rightarrow R^3$ such that h(G)=G' and h|B=the identity for a 3-ball B containing v(G).

Thus, \exists a one-parameter family of piecewiselinear homeomorphisms $h_t: \mathbb{R}^3 \rightarrow \mathbb{R}^3$ ($0 \leq t \leq 1$) such that $h_0=1$, $h_1(G)=G'$, v(G)=v(G') and $h_t|v(G)$ = the identity ($0 \leq t \leq 1$). Then, for example, by

[Kamada-Kawauchi-Matumoto, 2001]

S. Kamada, A. Kawauchi and T. Matumoto, Combinatorial moves on ambient isotopic submanifolds in a manifold, J. Math. Soc. Japan 53(2001),321-331

we see that G' is obtained from G by a finite number of <u>cellular moves</u>, that is, a combination of a finite number of 2-simplex moves.

<u>A cellular move</u>

2-simples moves on I, II, III

2-simples moves on IV, V

By a slight leaning of the plane P used for the orthogonal projection $p_a : R^3 \rightarrow P$, any diagram D of G is deformed into any diagram D' of G' by a finite sequence of the generalized Reidemeister moves.

This completes the proof of Theorem 1.1 (Equivalence Theorem).//

Let [D_G] be the class of diagrams obtained from a diagram D of G by the generalized Reidemeister moves.

Then $[G] \Leftrightarrow [D_G]$

One basic problem on spatial graph theory is to ask a relationship to knot theory.

Definition.

A <u>constituent knot</u> (or a <u>constituent link</u>, resp.) of a spatial graph G is a knot (or link, resp.) contained in G.

Proposition.

If two spatial graphs G* and G are equivalent, then there is a graph-isomorphism $f: G^* \rightarrow G$ such that every constituent knot or link L* of G* is equivalent to the corresponding constituent knot or link f(L*) of G.

The constituent knots

A knotted θ-curve

The constituent knots

<u>Kinoshita's θ-curve</u> is known to be non-equivalent to a trivial θ-curve, but it has only trivial constituent knots :

Kinoshita's θ-curve

The constituent knots are all trivial.

Conway-Gordon Theorem.

J. H. Conway and C. McA. Gordon, Knots and links in spatial graphs, J. Graph Theory7(1983), 445-453.

Every spatial 6-complete graph K₆ contains a non-trivial constituent link.

Every spatial 7-complete graph K₇ contains a non-trivial constituent knot.

A spatial graph of K₆

A spatial graph of K₇

<u>Definition</u>. A spatial graph G without degree one vertices is <u>prime</u> if G is not equivalent to any spatial graph G' in the following cases (0)-(2):

(0) There is a plane which separates G' into two spatial graphs.

(1) There is a plane meeting G' in one point which separates G' into two spatial graphs.

(2) There is a plane meeting G' in two points x_1, x_2 which separates G' into two spatial graphs G'_1, G'_2 such that none of $G'_i \cup [x_1, x_2]$ (i=1,2) is a trivial knot.

The following shows that Spatial Graph Theory is much harder than Knot Theory:

THEOREM 1.2.

For every spatial graph G except knots and links , \exists an infinite family of prime spatial graphs G* (up to equivalences) with a graph-isomorphism $f: G^* \rightarrow G$ such that every constituent knot or link L* of G* is equivalent to the corresponding constituent knot or link $f(L^*)$ of G. To explain Theorem 1.2, we introduce <u>topological</u> <u>imitation theory</u>.

q: $(S^3, G^*) \xrightarrow{-} Fix(\alpha) \subset (S^3, G) \times I \xrightarrow{proj} (S^3, G)$ for an involution α on $(S^3, G) \times I = (S^3 \times I, G \times I)$ such that

 $\alpha(x,t)=(x,-t)$ for $\forall (x,t) \in S^3 \times \partial I \cup N(G) \times I$, where N(G) is a regular neighborhood of G in S³.

Properties.

Let q: $(S^3, G^*) \rightarrow (S^3, G)$ be a normal imitation, and N(G) a normal regular neighborhood. Then:

(0) N(G^{*})=q⁻¹N(G) is a regular neighborhood of G^{*} with q|_{N(G^{*})} : N(G^{*})→N(G) a homeomorphism and q(E(G^{*}))= E(G) for the exteriors E(G^{*})=cl(S³-N(G^{*})) and E(G) =cl(S³-N(G)). (1) The map $q_1 : (S^3, G_1^*) \rightarrow (S^3, G_1)$ defined for \forall graph G_1 in N(G) and $G_1^* = q^{-1}(G_1)$ is a normal imitation.

(2) Link_{s³}(L^{*})=Link_{s³}(L) for ∀ oriented
 2-component link L in N(G) and L^{*}=q⁻¹(L).

(3) The homomorphism
q_#: π₁(S³-G^{*}) → π₁(S³-G)
is an epimorphism whose kernel is a perfect
group: Ker q_# = [Ker q_#, Ker q_#].

- (4) For normal imitations q: $(S^3, G^*) \rightarrow (S^3, G)$ and q^{*}: $(S^3, G^{**}) \rightarrow (S^3, G^*)$, \exists a normal imitation
 - q^{**} : (S³, G^{**}) \rightarrow (S³, G).

Example of an imitation of a trivial knot:

Kinoshita-Terasaka knot (discovered in 1957):

in $S^3 \times I$ $\alpha_0(x,t)=(x,-t)$ $\alpha = h^{-1} \alpha_0 h$

<u>Definition</u>. A normal imitation q: $(S^3, G^*) \rightarrow (S^3, G)$ is <u>homotopy-trivial</u> if \exists a 1-parameter family $\{q_s\}_{0 \le s \le 1}$ of normal imitations $q_s:(S^3, G^*) \rightarrow (S^3, G)$ such that $q_0 = q$ and q_1 is a homeomorphism.

<u>Definition.</u> A normal imitation q: $(S^3, G^*) \rightarrow (S^3, G)$ is an <u>AID imitation</u> if $q|_{(S^3, G^{*-\alpha^*})}: (S^3, G^*-\alpha^*) \rightarrow (S^3, G-\alpha)$ is homotopy-trivial for \forall edges α , α^* of G, G*with $q(\alpha^*) = \alpha$.

Existence Theorem (of an AID imtation).

A. Kawauchi, Almost identical imitations of (3,1)-dimensional manifold pairs, Osaka J. Math. 26(1989),743-758.

For \forall spatial graph G, \exists an infinite family of prime spatial graphs G* (up to equivalences) with an AID imitation q: $(S^3, G^*) \rightarrow (S^3, G)$.

Theorem 1.2 is a direct consequence of this theorem (Imitation Existence Theorem).

Corollary to Existence Theorem.

A. Kawauchi, Almost identical link imitations and the skein polynomial, Knots 90, Walter de Gruyter, 1992, 465-476.

For \forall spatial graph G, \exists an infinite family of prime spatial graphs G^{*} (up to equivalences) with an AID imitation q: (S³,G^{*}) \rightarrow (S³,G) such that G is obtained from G^{*} by one crossing change.

Here, one crossing change: $\checkmark \leftrightarrow \checkmark$

<u>Proof of Corollary to Existence Theorem.</u> Assume that G has the left part of (1) where a crossing change gives a spatial graph equivalent to G.

Let G' be the spatial graph obtained from G by replacing the the left part of (1) with the right part of (1).

By Existence Theorem, \exists an infinite family of prime spatial graphs G'^{*} (up to equivalences) with an AID imitation

q': (S³,G'^{*})→(S³,G').

and then replace the left parts of G' of (2) with the right parts of (2). If |m| and $|m^*|$ with m+m*=0 are taken sufficiently large, \exists desired AID imitations q: $(S^3,G^*) \rightarrow (S^3,G)$ are obtained. //

