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Knot theory for spatial graphs 

 
[Lecture 1]   
Topology for spatial graphs without 
degree one vertices 



Let Γ = a finite graph with only vertices of  

degree ≧2.  

 

 

A finite graph with a degree one vertex:  



 

 
 

 

                            

Definition.  A spatial graph of Γ is  the image G 
of an embedding Γ → R3 which is sent to  
a polygonal graph in R3  by a homeomorphism  
R3 → R3.    



 
 
 
 
 

Definition. 
A diagram  D=DG of a spatial graph G in R3 is an  
orthogonal  projection image of G into a plane 
P with only double point singularities together 
with the upper-lower crossing information. 
                 



When Γis a loop,  G is called a knot , and it is  

trivial  if it is the boundary of a disk. 

 

A trivial knot A non-trivial knot  
      (Trefoil knot) 



When Γ is the disjoint union of finitely many  

loops, G is called a link, and it is trivial if it is  

the boundary of mutually disjoint disks. 

 

A non-trivial link  
    (Hopf link) 

A trivial link 



Definition. 

A spatial graph G is equivalent  to a spatial graph  

G’   if  ∃an orientation-preserving  

homeomorphism  h: R3 → R3 such that h(G)=G'. 

 

Let [G] be the class of spatial graphs G’ which  

are equivalent to G. 

 

Let v(G) be the set of vertices with degree ≧3 in  

G.  

 

 

 

In a spatial graph G, ignore the degree 2 vertices.  



Fundamental topological problem on  

spatial graphs : 

 

(1) Study what kinds of spatial graphs there   

      are. List them up to equivalences. 

 

(2) Determine  whether two given spatial 

      graphs of a graph Γ are equivalent or not.  

 

 

 

 

 

 

 

 



This problem is a natural generalization of  the  

fundamental  problem of knot theory.  

 

Fundamental problem on knot theory : 

(1) Study what kinds of knots or links there  are.    

      List them up to equivalences. 

(2) Determine  whether two given knots or links  

      are equivalent or not.  

 

 

 

 

 

 

 

 



THEOREM 1.1 (Equivalence Theorem).   

Explained in: [Kauffman,1989]   

L. H. Kauffman, Invariants of graphs in three space,  

Trans. Amer. Math. Soc. 311(1989), 697-710.  

 

G and G' are equivalent if and only if any diagram  

D=DG of G is deformed into any diagram D’=DG’ of  

G’ by a finite sequence of the generalized  

Reidemeister moves.     



Generalized Reidemeister moves 
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Idea of the proof:  

Let G and G’ be equivalent spatial graphs. 

Regard G and G’ as polygonal graphs.  

After some generalized Reidemeister moves on  

DG and DG’ , we can assume that  

∃ a homeomorphism h:R3→R3  such that  

h(G)=G’ and h|B=the identity for a 3-ball B  

containing v(G). 



Thus, ∃a one-parameter family of piecewise- 

linear homeomorphisms ht:R
3→R3 (0≦ｔ≦1)  

such that  h0=1,  h1(G)=G’ , v(G)=v(G’) and  

             ht|v(G) =the identity (0≦ｔ≦1) . 

Then, for example,  by  
[Kamada-Kawauchi-Matumoto, 2001]  
S. Kamada, A. Kawauchi and T. Matumoto, Combinatorial moves on ambient  

isotopic submanifolds in a manifold, J. Math. Soc. Japan 53(2001),321-331 

we see that G’ is obtained from G by a finite  

number of cellular moves, that is, a combination  

of a finite number of 2-simplex moves.  

 



A cellular move 



2-simples moves on I, II, III 

⇔ 

⇔ 

⇔ 

⇔ 



2-simples moves on IV, V 



By a slight leaning of the plane P used for the  

orthogonal projection pa：R3 → P, any diagram D  

of G is deformed into any diagram D’ of G’ by a  

finite sequence of the generalized Reidemeister  

moves.  

 

This completes the proof of  Theorem 1.1  

(Equivalence Theorem).// 

 



 

Let [DG] be the class of  diagrams obtained  

from a diagram D of G by the generalized  

Reidemeister moves. 

     

     Then               [G]       ⇔     [DG]    



One basic problem on spatial graph  

theory is to ask a relationship to knot  

theory. 

 

Definition.  

 A constituent knot (or  a constituent  link,  

resp.) of a spatial graph G is a knot (or link,  

resp.) contained in G. 

 



 

Proposition.   

If  two spatial graphs G* and G are equivalent,  

then there is a graph-isomorphism f : G*→G  

such that every constituent knot or link L* of G*  

is equivalent to the corresponding constituent  

knot or link  f(L*) of  G.  

 

 

 

 

 

 

 

 

 

 

 



⇒ 

⇒ 

Trivial θ-curve The constituent knots 

A knotted θ-curve The constituent knots 

(A non-trivial  knot) 

Examples on θ-curves: 

≠ 



Kinoshita’s θ-curve is known to be non-equivalent  

to a trivial θ-curve, but it has only trivial  

constituent knots :  

⇒ 

Kinoshita’s θ-curve The constituent knots are 
all trivial. 



Conway-Gordon Theorem.   
J. H. Conway and C. McA. Gordon, Knots and links in  
spatial graphs, J. Graph Theory7(1983), 445-453. 

 
Every spatial 6-complete graph K6  contains a 
non-trivial constituent link. 
Every spatial 7-complete graph K7  contains a  
non-trivial constituent knot. 
 
 

 
 
 
 
 

    A spatial graph of K6       A spatial graph of K7   



Definition.  A spatial graph G without degree one 

vertices  is prime  if G is not equivalent to any  

spatial graph G’ in the following cases (0)-(2): 

 

(0) There is a plane which separates G’ into  two 
spatial graphs. 

 

 

 

 

 

 

 

 



(1) There is a plane meeting G’ in one point  

which separates G’ into two spatial graphs.  

 



(2) There is a plane meeting G’ in two points  

x1, x2 which separates G’ into two spatial  

graphs G   , G      such that none of G  ∪[x1, x2]   

(i=1,2)  is a trivial knot. 

 

x2 

x1 
x1 

x2 

’  
2 

’ 
1 
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i  



The following shows that Spatial Graph Theory is  

much harder than  Knot Theory: 
 
 

THEOREM 1.2.  

For every spatial graph G except knots and links ,  

∃ an infinite family of prime spatial graphs G*   

(up to equivalences)  with a graph-isomorphism  

f : G*→G such that every constituent knot or link  

L* of G* is equivalent to the corresponding  

constituent knot or link  f(L*) of  G.  
 



To explain Theorem 1.2, we introduce topological  

imitation theory. 
 

Definition.  Let  S3 = R3∪{∞}.  I=[-1,1]. 

A map q: (S3, G*)→(S3, G) is a normal imitation  

if:   

    q: (S3, G*) → Fix(α)⊂ (S3, G)×I  →  (S3, G)  

for an involution α on (S3, G)×I=(S3×I, G×I)  

such that  

     α(x,t)=(x,-t) for ∀(x,t)∈S3×∂I∪N(G)×I,  

where N(G) is a regular neighborhood of G in S3. 
 

～  
＝ 
 proj 



Properties.  

Let q: (S3, G*)→(S3, G) be a  normal imitation,  

and N(G) a normal regular neighborhood.  

Then: 

 

(0) N(G*)=q-1N(G) is a regular neighborhood of G* 

with  q|N(G*) : N(G*)→N(G) a homeomorphism 

and q(E(G*))= E(G) for the exteriors  

   E(G*)=cl(S3-N(G*)) and E(G) =cl(S3-N(G)). 

 



 

(1) The map q1 : (S3, G1
*)→(S3, G1) defined for  

∀graph G1 in N(G) and G1
* =q-1(G1) is a normal  

imitation. 

 

(2) LinkS3(L*)=LinkS3(L) for ∀oriented  

2-component link L in N(G) and L*=q-1(L). 

 

 



(3) The homomorphism  

      q#: π1(S3-G*)→ π1 (S
3-G) 

is an epimorphism whose kernel is a perfect  

group: Ker q# = [Ker q#,Ker q#] . 

 

(4) For normal imitations  

q: (S3, G*)→(S3, G) and q*: (S3, G**)→(S3, G*),  

∃ a normal imitation  

                q**: (S3, G**)→(S3, G).  



Example of an imitation of a trivial knot: 

 

       q: （S３,            )  →   (S３,           )  

 

・ Kinoshita-Terasaka knot (discovered in 1957): 

 

    

 
 

 



t=0 

t=0.25 

t=0.6 

t=0.5 

t=0.75 

t=1 

t=-1 

t=-0.75 

t=-0.6 

t=-0.5 

t=-0.25 

 h   ～ ＝  in  S3×I 

 α =h-1
 α0h 

α0(x,t)=(x,-t) 

α0 α 



Definition.  A normal imitation q: (S3, G*)→(S3, G)  

is homotopy-trivial if ∃a 1-parameter family  

{qs} 0≦s≦1 of normal imitations  qs:(S
3,G*)→ (S3,G)  

such that q0=q and q1 is a homeomorphism. 

 

Definition. A normal imitation q: (S3, G*)→(S3, G)  

is an AID imitation if q|(S3,G*- α*):(S
3,G*-α*)→(S3,G-α)  

is homotopy-trivial for ∀edges α, α* of G, G*with  

q(α*)= α. 

 



Existence Theorem (of an AID imtation). 
A. Kawauchi, Almost identical imitations of (3,1)-dimensional  

manifold pairs, Osaka J. Math. 26(1989),743-758. 
 

For∀spatial graph G,∃ an infinite family of  

prime spatial graphs G*  (up to equivalences)   

with an AID imitation q: (S3,G*)→(S3,G). 

 

Theorem 1.2 is a direct consequence of this  

theorem (Imitation Existence Theorem). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Corollary to Existence Theorem.  
A. Kawauchi, Almost identical link imitations and the skein  

polynomial, Knots 90, Walter de Gruyter, 1992, 465-476. 

For∀spatial graph G,∃ an infinite family of  

prime spatial graphs G*  (up to equivalences)   

with an AID imitation q: (S3,G*)→(S3,G) such that  

G is obtained from G* by one crossing change.  

 
 

 

 

Here, one crossing change: 



Proof of Corollary to Existence Theorem. 
Assume  that G has the left part  of (1) where a 
crossing change gives a spatial graph equivalent 
to G. 
Let G’ be the spatial graph obtained from G by 
replacing the the left part of (1) with the right 
part of (1).  
  
(1) 

(2) 



By Existence Theorem, ∃ an infinite family of 
prime spatial graphs G’*  (up to equivalences)  
with an AID imitation 
                    q’: (S3,G’*)→(S3,G’).  
and then replace the left parts of G’ of (2) with 
the right parts of (2). If |m| and |m*| with  
m+m*=0 are taken  sufficiently large, ∃desired 
AID imitations q: (S3,G*)→(S3,G) are obtained. 
  (1) 

(2) 

// 


