Nonlinearity in Lagrangian data assimilation and hybrid particle Kalman filter

Amit Apte

Joint work with Chris Jones, Laura Slivinski, Bjorn Sandstede, Elaine Spiller

Nonlinear filtering and data assimilation discussion meeting, 11 Jan 2014

(Hybrid filter) Amit Apte apte@cicts.res.in 1 / 16

Skew-product structure of the LaDA problem

- Recalling notation from Elaine's talk: combine
 - ullet the prognostic variables (collectively denoted by x_v) and
 - the positions of the drifters (denoted by x_d)

into the state vector:

$$x = (x_v, x_d)^T$$

gives the following skew-product structure of the dynamical model:

$$\frac{dx_v}{dt} = m_v(x_v), \qquad \frac{dx_d}{dt} = m_d(x_v, x_d) = V(x_d, x_v),$$

where V is the velocity of the fluid flow at the point x_d .

 If the only observations are drifter locations, then the observations at time t can be written as

$$y(t) = Hx(t) + \eta$$

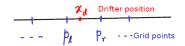
where $x = (x_v, x_d)$, and $H = \begin{bmatrix} 0 & I \end{bmatrix}$ is just a projection;

Drifter model m_d is always nonlinear

Two main cases are the following:

• When using discretized velocity field, $x_v = (\dots, v_l, v_r, \dots)$; So velocity V at the position of drifter $x_d \in [p_l, p_r]$ is obtained by some interpolation \implies at least quadratic non-linearity:

$$V(x_d, x_v) \propto (p_r - x_d)v_l + (x_d - p_l)v_r$$



• When using spectral methods, $x_v = (\dots, v_1, v_2, \dots)$ containing the Fourier modes of velocity \implies

$$V(x_d, x_v) \propto v_1 e^{ik_1x_d} + v_2 e^{ik_2x_d} + \dots$$

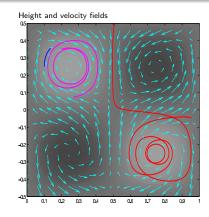
(Hybrid filter) Amit Apte

Linear shallow water equations with Lagrangian data

For two dimensional velocity (u,v) and height h fields:

$$\begin{split} \frac{\partial u}{\partial t} &= v - \frac{\partial h}{\partial s_1}, \\ \frac{\partial v}{\partial t} &= -u - \frac{\partial h}{\partial s_2}, \\ \frac{\partial h}{\partial t} &= -\frac{\partial u}{\partial s_1} - \frac{\partial v}{\partial s_2}, \end{split}$$

We seek periodic solutions on \mathbb{R}^2 in u, h, specifically, the following Fourier modes:



4 / 16

$$\begin{split} u(s_1,s_2,t) &= -2\pi l \sin(2\pi k s_1) \cos(2\pi l s_2) u_0 + \cos(2\pi m s_2) u_1(t) \\ v(s_1,s_2,t) &= 2\pi k \cos(2\pi k s_1) \sin(2\pi l s_2) u_0 + \cos(2\pi m s_2) v_1(t) \\ h(s_1,s_2,t) &= \sin(2\pi k s_1) \sin(2\pi l s_2) u_0 + \sin(2\pi m s_2) h_1(t) \end{split}$$

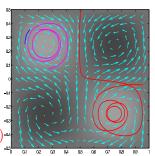
Linear shallow water equations with Lagrangian data

The amplitudes satisfy the following:

$$\dot{u_0} = 0,$$
 $\dot{u_1} = v_1,$
 $\dot{v_1} = -u_1 - 2\pi m h_1,$ $\dot{h_1} = 2\pi m v_1$

The observations are the positions of the drifters that satisfy:

$$\dot{s_1}(t) = u(s_1(t), s_2(t), t), \quad \dot{s_2}(t) = v(s_1(t), s_2(t), t)$$



- Observations of drifter positions alone: Lagrangian data assimilation
- Main points of interest: this flow has
 - Nonlinear centre with shear (differential rotation) around it and
 - The unstable fixed points have chaotic regions near the separatrices
 - Velocity field is coupled to an additional variable (height)

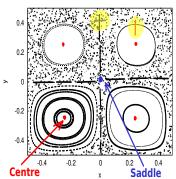
5 / 16

(Hybrid filter) Amit Apte apte@icts.res.in

Linear shallow water equations with Lagrangian data

A few more properties of the drifter dynamics:

- No attractor (the unperturbed flow is Hamiltonian)
- Some regions with regular trajectories (periodic / quasi-periodic)
- Some regions with chaotic trajectories



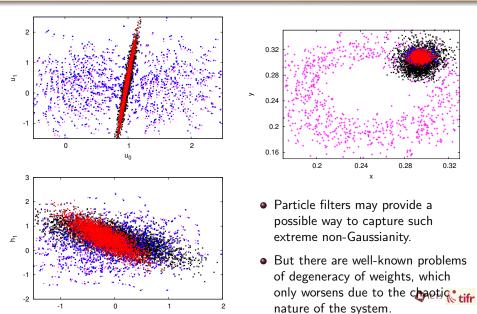
Poincaré plot of drifter trajectories

In the case of the model above, the velocity flow itself:

- has no attractor or chaotic dynamics
- is purely periodic

Thus, the nonlinearity is entirely in the drifter dynamics, which are the observed variables.

An extreme, but not uncommon, effect of nonlinearity



(Hybrid filter)

0.32

Chaotic trajectories also affect the particle filter

- The particles that have low likelihood have
 - "poor" drifter trajectory, which is in turn because
 - the velocity flow itself is far from the true flow.
- Thus a "importance sampling" step will be to sample the flow itself using the observations.
- But the flow is usually high dimensional: thus we use the ensemble Kalman filter for the flow alone.
- The nonlinearity can be captured using the weights of the drifters.

(Hybrid filter) Amit Apte apte@icts.res.in 8 / 16

Hybrid Grid-Particle Filter

H. Salman, Q. J. R. Meteorol. Soc., vol. 134, pp. 1539-1550, 2008

Decompose the joint distribution for flow x^F, x^D and approximate by using particles for the flow variables:

$$p(x^F, x^D) = p(x^D | x^F) p(x^F)$$

$$\approx \frac{1}{N_e} \sum_{i=1}^{N_e} \delta(x^F - x_i^F) \phi_i(x^D)$$

where $\phi_i(x^D) = p(x^D|x_i^F)$.

9 / 16

(Hybrid filter) Amit Apte apte@icts.res.in

Hybrid Grid-Particle Filter

- Particle filter on flow variables x^F
- Exact probability density function on drifter variables x^D
- When observation is available, drifter pdf is updated via Bayes' Rule: $\phi_i(x^D)^a = \phi_i(x^D)^f p(y|x_D^f)$
- PF weights are defined in terms of $\phi_i(x^D)$, so they are updated implicitly when drifter pdf is updated: $w_i = \int \phi_i(x^D) dx^D$

(Hybrid filter) Amit Apte

Hybrid Grid-Particle Filter

Main disadvantage of grid-particle filter:

• Solving exact drifter pdf evolutions can be computationally intensive

Our contribution: make a further approximation

$$p(x^{F}, x^{D}) = p(x^{D} | x^{F}) p(x^{F})$$

$$\approx \frac{1}{N_{e}} \sum_{i=1}^{N_{e}} \sum_{j=1}^{M} w_{i,j} \delta(x^{D} - x_{i,j}^{D}) \delta(x^{F} - x_{i}^{F})$$

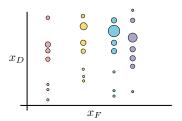
ie, replace exact drifter distribution on previous slide with weighted ensemble.

(Hybrid filter) Amit Apte apte@icts.res.in 11 / 16

Hybrid PF-EnKF

- ullet EnKF on high-dimensional flow state x^F
- ullet PF on low-dimensional, highly nonlinear Lagrangian coordinates x^D

Ensemble: $\{x_i^F, x_{i,j}^D, w_{i,j}\}_{i=1...N_e, j=1...M}$



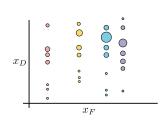
Update weights via standard particle filter update, and at resampling times, update x^F according to EnKF analysis.

Hybrid PF-Kalman filter update

• Update the flow particles (high dimensional, less nonlinear) using EnKF update step, but keep the same weights:

$$x_i^{F,a} = x_i^{F,f} + K(y - \bar{x}_i^{D,f})$$

where $\bar{x}_i^{D,f}$ is the average of $x_{i,j}^{D,f}$. This gives $\{x_i^{F,a}, w_i^{F,f}\}.$



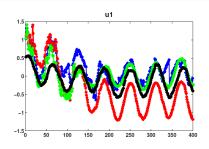
- Resample (only the flow part) from the above distribution.
- Update the weights of the drifter particles:

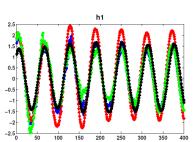
$$w_{i,j}^{D,a} = w_{i,j}^{D,f} p(y|w_{i,j}^{D,f})$$

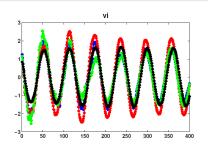
This gives $\{x_{i,j}^{D,f}, w_{i,j}^{D,a}\}.$

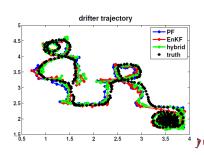
• Resample (only the drifter part) from the above distribution. others (ctifre

Long trajectory, frequent observations



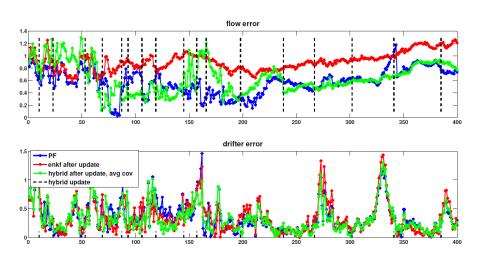






14 / 16

Long trajectory, frequent observations - errors



Summary

- Lagrangian data assimilation provides a unique system in which to test assimilation algorithms
- The skew-product nature of the dynamics, and the highly nonlinear nature of the Lagrangian drifters suggests different treatment of the velocity flow and the drifter position.
- The hybrid particle Kalman filter is an attempt to capture nonlinearity and to overcome the problem is degeneracy of weights.

(Hybrid filter) Amit Apte apte@icts.res.in 16 / 16