Importance Sampling

Elaine Spiller

Marquette University

ICTS Workshop on Nonlinear Filtering & Data Assimilation

January 9, 2014

This talk

- Basic overview of MC simulations & importance sampling
- From simulation/implementation/algorithmic point of view
- References:
 - Simulations, Ross
 - Monte Carlo Statistical Methods, Robert and Casella
 - Introduction to Rare Event Simulation, Bucklew
- Basic overview of particle filtering algorithm and use of importance sampling
- Apologies for abuses of probability notation (notation from engineering/stat methods lit)
- References:
 - Lui and Chen, JASA 1998 (and references there in)
 - A. Doucet, N. de Freitas, and N. Gordon, Sequential Monte Carlo Methods in Practice 2001
- Application(s) from Lagrangian Data Assimilation

Monte Carlo Methods

Suppose $X_1, X_2, ...$ are iid random variables taken from a distribution f(x). Given a function g(x), define

$$G = \frac{1}{N} \sum_{n=1}^{N} g(X_n)$$

$$E[G] = E[\frac{1}{N} \sum_{n=1}^{N} g(X_n)] = \frac{1}{N} \sum_{n=1}^{N} E[g(X)] = E[g(X)]$$

And

$$var\{G\} = \sum_{n=1}^{N} \frac{1}{N^2} var\{g(X)\} = \frac{1}{N} var\{g(X)\}$$

So, as $N \to \infty$, $var\{G\} \to 0$.

Monte Carlo Integration

Recall,
$$E_f[g(x)] = \int_{-\infty}^{\infty} g(x)f(x)dx$$

And, we just saw E[G] = E[g], so we have the basis for Monte Carlo integration

$$\int_{-\infty}^{\infty} g(x)f(x)dx \approx \frac{1}{N}\sum_{n=1}^{N}g(X_n) \qquad \text{where } X_n \sim f.$$

Another common case: g(x) = 1

$$P[X > a] = \int_a^\infty f(x) dx \approx \frac{1}{N} \sum_{n=1}^N I(X_n > a)$$

How to justify this

Law of Large Numbers:

If
$$\bar{X}_N = \frac{1}{N} \sum_{n=1}^N X_n$$
, then $P\{\lim_{N \to \infty} \bar{X}_N = E[X]\} = 1$
So, $G \xrightarrow[n \to \infty]{} \int_{-\infty}^{\infty} g(x) f(x) dx$

If we take enough samples, Monte Carlo (MC) integration will always converge.

Question: How much is enough?

Error Analysis: Chebyshev Inequality

$$P\Big\{|G - E[G]| \ge \Big[\frac{var\{G\}}{\delta}\Big]^{1/2}\Big\} \le \delta$$

This could be called the Fundamental Theorem of Monte Carlo methods because it estimates the probably of a large deviation of an MC calculation.

Rewriting, we have

$$P\Big\{\Big(\frac{1}{N}\sum_{n=1}^{N}g(X_n)-\int_{-\infty}^{\infty}g(x)f(x)dx\Big)^2\geq \frac{var\{g(X)\}}{\delta N}\Big\}\leq \delta.$$

In words, this says that the probability that a sample calculation & the exact solution differ by $\sqrt{\frac{1}{\delta N} var\{g(x)\}}$ is no more than δ .

Some consequences of Chebyshev's Inequality

For a specified "certainty", δ , there are only two ways to manipulate the magnitude of the error

$$error^2 = \frac{var\{g(X)\}}{\delta N}$$

- increase the number of MC samples, N
- decrease var{g(X)}

If you think about MC as a method to calculate an integral

$$\int_a^b h(x)dx,$$

you get to choose how to "break up" h into h(x) = g(x)f(x).

Monte Carlo example

How many samples, N, must we take to have a 0.99 probability of calculating the integral

$$\int_0^2 x^3 dx$$

withing an error of 0.1?

Note, probability (certainty) of 0.99 means $\delta = 0.01$.

To do this, we need to write $x^3 = g(x)f(x)$ where $\int_0^2 f(x)dx = 1$.

Let's do two cases

I
$$f(x)$$
 Uniform, so $f(x) = \frac{1}{2}$ 0 < x < 2 and $g(x) = 2x^3$

2
$$f(x) = \frac{3}{8}x^2$$
 and $g(x) = \frac{8}{3}x$

MC example continued

Really what we are asking for is

$$\frac{1}{\delta N} var\{g(x)\} < error^2 < \left(\frac{1}{10}\right)^2.$$

So, we need to calculate $var\{g(x)\}$ and solve for N.

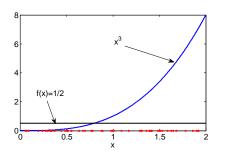
For our two cases, we'll see

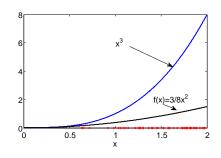
- $N \approx 20 \times 10^4$
- 2 $N \approx 1 \times 10^4$

Question:

Why is this happening?

What's going on in MC example





Moral of the story:

We want to sample the domain where the integrand is big.

The magnitude of the variance of g(X) in some sense tells us "how well" we're accomplishing that goal.

Pros and cons of MC

$$error^2 = \frac{var\{g(X)\}}{\delta N}$$

Cons:

- quite inefficient compared to grid-based methods, $O(1/\sqrt{N}) = O(\sqrt{\Delta x})$
- f(x) can be hard to sample

Pros:

- error is independent of dimension
- we have some freedom to reduce $var\{g(X)\}$
- natural framework for inherently stochastic problems

Importance sampling: why?

Recall, the key to efficient Monte Carlo algorithms is a reduction in the variance of the estimator,

$$G = \frac{1}{N} \sum_{n=1}^{N} g(X_n)$$

The greater the variance, the more sample points, *N*, needed to (accurately) estimate the quantity of interest.

Suppose we wish to integrate

$$E_f[g] = \int_{-\infty}^{\infty} g(x)f(x)dx,$$

we could estimate this with samples from *any* probability distribution we like.

Importance sampling: idea

Let's consider $\tilde{f}(x) > 0$ and rewrite our integral as

$$E_f[g] = \int_{-\infty}^{\infty} \frac{g(x)f(x)}{\tilde{f}(x)} \tilde{f}(x) dx.$$

At this point, we could sample from f(x) or $\tilde{f}(x)$, but if we sample $\tilde{f}(x)$, then

$$\tilde{g}(x) = \frac{g(x)f(x)}{\tilde{f}(x)}$$

and the MC error is determined by

$$var\{\tilde{g}\} = \int_{-\infty}^{\infty} \left[\frac{g^2(x)f^2(x)}{\tilde{f}^2(x)}\right] \tilde{f}(x) dx - E_{\tilde{f}}^2[\tilde{g}].$$

Note, $E_{\tilde{f}}[\tilde{g}] = E_f[g] = \text{some (unknown) constant.}$ And recall, we'd like to minimize $var\{\tilde{g}\}$.

Importance sampling: how to choose f?

To minimize $var\{\tilde{g}\}$, we want an \tilde{f} such that

$$\int_{-\infty}^{\infty} \Big[\frac{g^2(x) f^2(x)}{\tilde{f}^2(x)} \Big] \tilde{f}(x) dx \quad \text{is minimized, subject to} \quad \int_{-\infty}^{\infty} \tilde{f}(x) dx = 1.$$

This can be solved via Lagrange multipliers, resulting in an optimal $\tilde{\it f}$ of

$$\tilde{f}(x) \propto g(x)f(x)$$

- Does this result seem reasonable?
- Is it useful???

Optimal biasing distribution, \hat{f}

Is $\tilde{f} \propto g(x)f(x)$ reasonable ?

- Yes, choosing this \tilde{f} , we get $var{\tilde{g}} = 0$. This is the best we can do!
- lacksquare No, to make \tilde{f} a distribution, we need to normalize it by

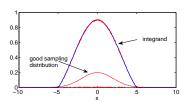
$$\tilde{f}(x) = \frac{f(x)g(x)}{\int_{-\infty}^{\infty} f(x)g(x)dx}.$$

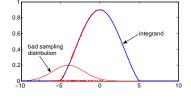
But that normalization factor is exactly the integral we'd like to approximate!

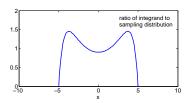
Is $\tilde{f} \propto g(x)f(x)$ useful?

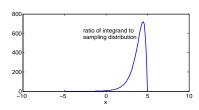
• Yes, the general goal is to make the importance distribution \tilde{f} "look like" the integrand, f(x)g(x)

Good vs.bad importance distribution









Importance sampling example

Consider the integral

$$E[g(x)] = \int_0^1 \cos(\frac{\pi}{2}x) dx$$

If we pick \tilde{f} to be U(0,1), the we get a variance of

$$\int_0^1 \cos^2(\frac{\pi}{2}x) dx - E^2[g] \approx 0.09472$$

Recall, we want $\tilde{f}(x) \approx \cos(\frac{\pi}{2}x)$, we could choose a \tilde{f} by expanding

$$\cos(\frac{\pi}{2}x) = 1 - \frac{\pi^2}{8}x^2 + \frac{\pi^4}{2^4A^4}x^4 + \dots$$

This suggests

$$\tilde{f}(x) = \alpha (1 - \frac{\pi}{8}x^2)$$
 with α chosen so $\int_0^1 (1 - \frac{\pi}{8}x^2) dx = 1/\alpha$

IS example continued

Problem, $\tilde{f}(x) = \alpha(1 - \frac{\pi}{8}x^2) < 0 \text{ on } 0 < x < 1.$

So let's try

$$\tilde{f}(x) = \alpha(1 - x^2)$$
 with $\alpha = 3/2$.

Computing the variance for the resulting \tilde{g} , we get

$$\int_0^1 \frac{\cos^2(\frac{\pi}{2}x)}{\frac{3}{2}(1-x^2)} dx - \frac{4}{\pi^2} \approx 0.000990$$

So by choosing a better \tilde{t} , we have succeeded in reducing that variance of our estimator by a factor of 100.

How to implement IS in practice

Recall, we are looking to estimate

$$E_f[g] = \int_{-\infty}^{\infty} g(x)f(x)dx$$

In practice, we sample X_n from \tilde{f} and we have an estimate to the mean of g,

$$E_f[g] = E_{\tilde{f}}[\tilde{g}] \approx \frac{1}{N} \sum_{n=1}^N g(X_n) \frac{f(X_n)}{\tilde{f}(X_n)}.$$

$$\frac{f(X_n)}{\tilde{f}(X_n)}$$
 is called the likelihood ratio.

In some sense it tells us how likely each realization of X_n would have been if it had come from f instead of \tilde{f} .

Note on IS in multiple dimensions

Suppose g is a function of many random variables, say $\mathbf{Y} = (X_1, \dots, X_k)$ and the $X_k's$ are independent. In this case

$$f(\mathbf{Y}) = \prod_{i=1}^{k} f_i(X_i)$$
 and similarly for $\tilde{f}(\mathbf{Y})$, so

$$\frac{f(\mathbf{Y})}{\tilde{f}(\mathbf{Y})} = \prod_{i=1}^{K} \frac{f_i(X_i)}{\tilde{f}_i(X_i)}$$

So in words, the likelihood ratio is the product of individual likelihood ratios.

(Note, in practice products of "small things" are often numerically unstable.)

Another motivation for importance sampling: Rare Events

Recall MC for our second "type" of problem

$$P(X > a) = \int_{a}^{\infty} f(x) dx \approx \frac{1}{N} \sum_{n=1}^{N} I(X_n > a) \quad X_n \sim f$$

- Guaranteed to converge by the Law of Large Numbers.
- In practice if $a >> \mu$, it will **not** converge.
- A rare event is lousy defined to have $P \le 10^{-6}$

Using importance sampling, we have

$$P(X > a) = \int_{a}^{\infty} f(x) dx \approx \frac{1}{N} \sum_{n=1}^{N} I(X_n > a) \frac{f(X_n)}{\tilde{f}(X_n)}$$

with $X_n \sim \tilde{f}$.

Simplest example: 100 coin flips

question: What is P(70 or more heads)?

answer: $2.4x10^{-13}$

importance sampling: Use weighted coin

$$\tilde{p} = 0.7$$
 for heads $\tilde{p} = 0.3$ for tails

likelihood ratios for flipping weighted coin:

$$rac{m{p}}{m{ ilde{p}}} = \left\{ egin{array}{ll} 0.5/0.7 & ext{for heads} \\ 0.5/0.3 & ext{for tails} \end{array}
ight.$$

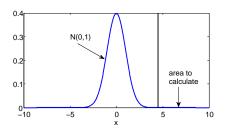
<u>key</u>: correcting with likelihood ratio gives statistics for fair coin <u>efficiency</u>: over 10 orders of magnitude speed-up

Another rare event example

Say $Z \sim N(0,1)$ and we are interested in P(Z > 4.5). Approximating this with MC gives us

$$P(Z > 4.5) \approx \frac{1}{N} \sum_{n=1}^{N} I(Z_n > 4.5).$$
 $Z_n \sim \tilde{f} = N(0,1)$

Typically N = 10,000 samples produces *all zeros* of the indicator function.

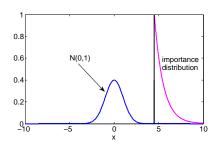


Instead use a shifted Exponential distribution.

Example continued

A good shifted exponential would be

$$\tilde{f}(x) = \frac{e^{-(x-4.5)}}{\int_{4.5}^{\infty} e^{-(x-4.5)} dx}$$
 for $x > 4.5$



Now if $X \sim \tilde{f}$

$$P(Z > 4.5) \approx \frac{1}{N} \sum_{n=1}^{N} \frac{f(X_n)}{\tilde{f}(X_n)} = 0.000003377$$

Particle filters – pieces

We're given:

background distribution of initial conditions: $p^{f}(x_0)$

dynamic model: $x_j = M(x_{j-1})$

associated transition density: $m(x_j|x_{j-1})$

an observation operator: y = h(x)

observations: y_{1:n}

observation noise model: g

Note,
$$p^f(x_1) = \int m(x_1|x_0)p^f(x_0)dx_0$$

Particle filter – Bayes Theorem

Prior/forecast

$$p^{f}(x_{0:n}) = p^{f}(x_{0}) \prod_{j=1}^{n} m(x_{j}|x_{j-1})$$

Likelihood

$$p(y_{1:n}|x_{1:n}) = \prod_{i=1}^{n} g(y_i = h(x_i)|x_i)$$

Posterior/analysis, obtained by Bayes' rule

$$p^{a}(x_{1:n}|y_{1:n}) = \frac{p(y_{1:n}|x_{1:n})p^{f}(x_{0:n})}{p(y_{1:n})}$$

recall,
$$p(y_{1:n}) = \int p(y_{1:n}|x_{1:n})p^f(x_{0:n})dx_{1:n}$$

Particle filter – One step

Prior/forecast

$$p^{f}(x_{0:1}) = p^{f}(x_{0})m(x_{1}|x_{0})$$
$$p^{f}(x_{1}) = \int m(x_{1}|x_{0})p^{f}(x_{0})dx_{0}$$

Posterior/analysis, obtained by Bayes' rule

$$p^{a}(x_{1}|y_{1}) = \frac{p(y_{1}|x_{1})p^{f}(x_{1})}{\int p(y_{1}|x_{1})p^{f}(x_{1})dx_{1}}$$

Particle filter – one step algorithm

Think of a "particle" as a state variable w/a weight attached, $\{x^i, w^i\}$ $i = 1, ..., N_{part}$ which approximates a pdf

- sample $X_0^i \sim p^f(x_0)$, $i = 1, ..., N_{part}$
- set $x_0^i = X_0^i$
- push forward $x_1^i = M(x_0^i)$

Now $\{x_1^i, 1/N_{part}\} \approx p^f(x_1)$

$$p^{a}(x_{1}|y_{1}) = \frac{p(y_{1}|x_{1})p^{t}(x_{1})}{\int p(y_{1}|x_{1})p^{t}(x_{1})dx_{1}}$$

• find
$$w_1^i = p(y_1|x_1^i)/\sum_i^{N_{part}} p(y_1|x_1^i)$$

So, $\{x_1^i, w_1^i\} \approx p^a(x_1|y_1)$

Particle filter – Sequential Monte Carlo

A Monte Carlo simulation or really sampling $p^a(x_{1:n}|y_{1:n})$ or $p^a(x_n|y_{1:n})$

- \blacksquare takes a discrete set of samples from $X_0^i \sim p(x_0)$, let $x_0^i = X_0^i$
- moves them forward accord to the model, e.g. samples $x_1^i = M(x_0^i)$
- evaluates likelihood between samples and observations

Note, after a few (say k=2 or 3 observations) you will have samples from $X_{0:k} \sim p^a(x_{0:k}|y_{1:k})$. Or, marginalized, $X_k \sim p^a(x_k|y_{1:k})$ namely $\{x_3^i, w_3^i\}$ but they will not be useful.

Sequential Monte Carlo with Importance Sampling (SIS)

Idea — normalize at every step, treat that posterior distribution as an *importance* prior distribution for the next step. That is,

- Start with $X_0 \sim p(x_0)$, each particle $x_0^i = X_0^i$ has weight $w_0^i = 1/N_{part}$
- **2** Transition each x_0^i forward, this gives $x_1^i = M(x_0^i) \& \{x_1^i, w_0^i\}$
- Evaluate the likelihood function of each sample ("particle") x_1^i against y_1 , $p(y_1|x_1^i)$
- Weight each particle by

$$w_1^i = \frac{p(y_1|x_1^i)w_0^i}{\sum_{i=1}^{N_{part}} p(y_1|x_1^i)w_0^i}$$

S Repeat, $x_2^i = M(x_1^i)$, $\{x_2^i, w_1^i\} \approx p^f(x_2^i|y_1)$ and

$$w_2^i = \frac{p(y_2|x_2^i)w_1^i}{\sum_{i=1}^{N_{part}} p(y_2|x_2^i)w_1^i}, \text{ and } \{x_2^i, w_2^i\} \approx p^a(x_2|y_{1:2})$$

6 Repeat,...

Problem with SIS and Solution: Resampling

With a large number of samples, SIS works pretty well on moderate (small) dimensional deterministic (perfect model) problems.

Problem:

A significant problem, though, is that most (or all) of the weight can be taken over by one particle

Solution:

Resampling, e.g., bootstrapping

Sequential Importance Recampling

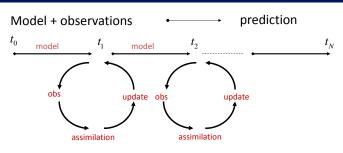
Strategy:

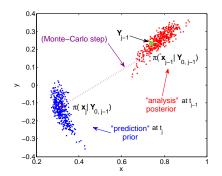
- Monitor weights, if problematic
- Resample or "bootstrap" by treating $\{x_k^i, w_k^i\} \approx p^a(x_k|y_{1:k})$ as an *importance* empirical distribution
- Set all weights to $w_k^i = 1/N_{part}$
- \blacksquare Transition k+1 step, repeating resampling as necessary

The strategy is referred to an *SIR* (sequential importance resampling) filter and also goes by the names particle filter, bootstrap filter, and sequential Monte Carlo.

(Note, if model is deterministic, need some strategy to sample "around" each x_k^i)

Particle filters: from t_{j-1} to t_j





discrete approx:

Particles are the support of the discrete approximations to these distributions

Each particle is associated with a weight, $w_j(x_j)$

Particle filters: update/analysis at $t=t_j$

Know (discrete approximation):

$$\pi(x_j|Y_{0,j-1})$$
 (from last page)

Bayes:

$$\pi(\mathbf{x}_j|\mathbf{Y}_{0,j}) \propto g(\mathbf{Y}_j|\mathbf{x}_j)\pi(\mathbf{x}_j|\mathbf{Y}_{0,j-1})$$

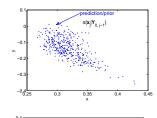
Likelihood:

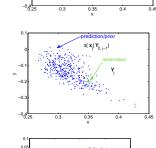
$$g(Y|x) = \exp\left[\frac{H(x) \cdot Y}{\theta^2} - \frac{|H(x)|^2}{2\theta^2}\right]$$

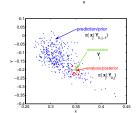
Update (discrete Bayes):

$$w_j(x_j) \propto g(Y_j|x_j)w_j^p(x_j)$$

$$\pi(x_i|Y_{0,j}) = \{x_i, w_j(x_i)\}$$







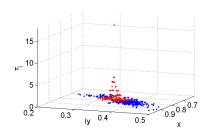
Resampling

problem: degeneracy

- all the weight gets centered on a few particles
- well known and studied

idea:

- pick subset of "best" particles k = 1, ..., M
- make m_k copies of each particle where $m_k \propto w_j(x_j^{(k)})$ where $\sum m_k = N_{part}$
- prior weight of resampled cloud is 1/N_{part}



reasonable:

- doesn't add sampling error
- \blacksquare stochastic evolution to t_{i+1} "spreads out" cloud

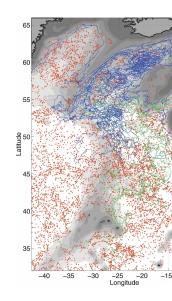
Lagrangian data assimilation (LaDA)

We have available with us the following

- Observations from floats or drifters
 - positions of the drifters
 - prognostic variables such as temperature and salinity of ocean at the location of the drifter
- A model for the velocity field and the other coupled dynamical variables (temperature, salinity, etc.)
- A model for the drifters (typically Lagrangian)

We are mainly interested in

- estimate of the prognostic variables
- positions of the drifters



from Lankhorst, Zenk (2006) JPO,36

Skew-product structure of the LaDA problem

An approach to assimilating the information about the observations of positions of drifters is to combine

- the prognostic variables (collectively denoted by x^F) and
- the positions of the drifters (denoted by x^D)

into the state vector: $\mathbf{x} = (\mathbf{x}^F, \mathbf{x}^D)^T$ The model has a skew-product structure, $\dot{\mathbf{x}} = \mathbf{M}(\mathbf{x}) = (\mathbf{M}_{\mathbf{v}}(\mathbf{x}), \mathbf{M}_{\mathbf{d}}(\mathbf{x}))^T$, in the case of passive drifters (which is what we will assume):

$$\frac{dx^F}{dt} = M_{\nu}(x^F), \qquad \frac{dx_d}{dt} = M_d(x^F, x^D) = V(x^F, x^D),$$

where V is the velocity of the fluid flow at the point x^D .

Originated and studied extensively in the work of Ide, Jones, Kuznetsov, Salman, ...

Observation operator is the projection on \mathbf{x}^{D} variables

If only the drifter locations are observed with noise, then the observations at time t can be written as

$$y(t) = Hx(t) + \eta$$

where $x = (x^F, x^D)$, and thus $H = [0 \ I]$ is just a projection.

- Observation operator is linear in this case
- These observations contain information about the velocity flow as well.

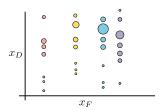
Note: EnKF performance on LaDA degrades as observation period grows

Hybrid PF-EnKF

- EnKF on high-dimensional flow state x^F
- PF on low-dimensional, highly nonlinear Lagrangian coordinates *x*^D

Ensemble:

$$\{x_i^F, x_{i,j}^D, w_{i,j}\}_{i=1...N_e, j=1...M}$$



Update weights via standard particle filter update, and at resampling times, update x^F according to EnKF analysis.

Hybrid PF-EnKF

 Update step (no resampling): Treat as typical particle filter and update weights using observation (no updates on particles or ensemble members):

$$w_{i,j}^{new} \propto w_{i,j}^{old} p(y|x_{i,j}^D)$$

- Update/resampling step: prior $\{x_i^{F,f}, x^{D,f}i, w_{i,j}^{old}\}$
 - Update weights as above. Resample drifter particles from conditional distribution $p(x^D|x^F, y)$.
 - "Resample" flow members from EnKF distribution: perform EnKF update on flow members, using weighted prior covariances. $x^{F,a}$. So, flow "particles" are given by $\{x^{F,a}, w_i^{old}\} \approx p^a(x^F|y)$. Resample this distribution.

Results: Drifter crossing between cells

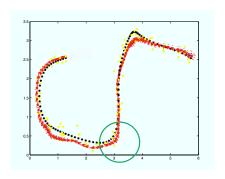


Figure: Ensemble Kalman filter

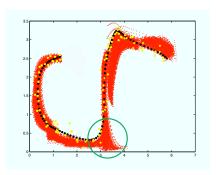
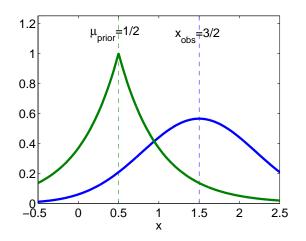
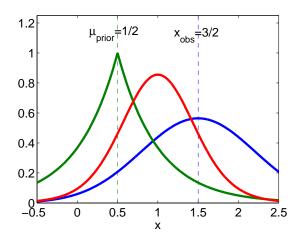


Figure: Hybrid filter

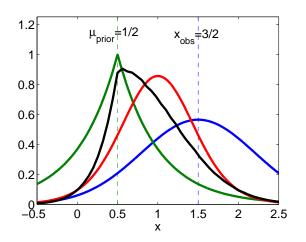
Updating w/nonlinear prior: toy example



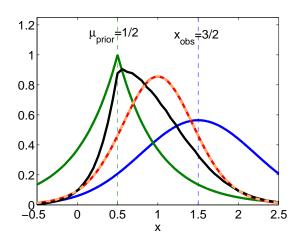
- weighted samples from prior $\{w_i, x_i\}$
- prior and noise model same variance



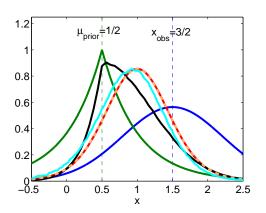
 Kalman filter analysis would give us the convolution of the prior and noise model



■ posterior from Bayes Rule

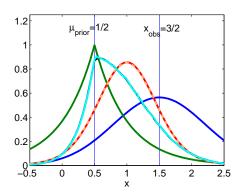


- translate x to x^a using observation via Kalman Filter
- posterior samples $\{w_i^{old}, x_i^a\}$, mean μ_a and variance σ_a^2



■ reweight samples to get $\{w_i^{new}, x_i^a\}$ that would give you first to moments of non-Gaussian posterior, μ_{pos} , σ_{pos}^2

$$w_i^{new} = w_i^{old} \cdot \frac{\exp\left(-(x_i^a - \mu_{pos})^2/2\sigma_{pos}^2\right)}{\exp\left(-(x_i^a - \mu_a)^2/2\sigma_a^2\right)}$$



■ reweight samples to get $\{w_i^{new}, x_i^f\}$ that would give you first to moments Kalman (Gaussian) posterior, μ_a , σ_a^2

$$w_i^{new} = w_i^{old} \cdot rac{\exp\left(-(x_i^f - \mu_a)^2/2\sigma_a^2
ight)}{\exp\left(-(x_i^f - \mu_f)^2/2\sigma_f^2
ight)}$$