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Talk Synopsis

Mini-course synopsis

@ Day |

e Stochastic Filtering (SF) in discrete time/Probabilistic formulation of data
assimilation (DA)

@ Algorithms: a common language for SF and DA

o Particle Filters

@ Day Il

@ The Framework in detail
@ The Recurrence formula for m;
e Convergence of approximations to ;

o Day I

o Particle Filters

e Why are the high-dimensional problem hard ?

@ Application to the observed Navier-Stokes equation
o Future work
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(X,Y)={(X, Yy),t > 0}
@ X the signal process - “hidden component”
@ Y the observation process - “the data” - Y; = f(X;, “noise").

The Stochastic Filtering/Data Assimilation problem: Find the conditional
distribution of the signal X; given Yy = o(Ys,s € [0, 1]), i.e
Tt (A) = P(Xt S A|yt), t>0.
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The filtering problem in discrete time
Probabilistic formulation of DA

The signal process: X = {X;; t € N}, Markov chain with state space R%,
Xo ~ mo (dxp), P(X: €A Xi—1 = Xxi—1) = Ki (Xi-1, A).
Example (dy = 1):
X = b(Xi—1) + B, B; ~ N(0,1) i.i.d.

K (x¢i—1,A) = /A % exp (—W) ax;

The observation process: Y associated stochastic process with state space
R% such that

Pr (Y[ S B‘]:tx) = PI'( Y[ c B| Xt = X[) = / Ot (yt,Xt) dyf
B
Example (d, = 1):
Yi = h(X)+ Vi, Vi ~ N(0,1) i.id.

9t (Y, %) = \/127 exp <_(yf_g(xf))>
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The filtering problem consists in computing:

¢ - the conditional distribution of X; given { Yo 4 = ¥j0.q}
where Yo 4 = (Yo, Y1), Yo.g = (Yo, -, Y1) -
Bayes’ recursion.

Prediction Step pr =1 K:
Updating Step o =Cilgr
where

o Ct = fRdX gt (YTaX)pt (dX)

o If nis a measure and K is a kernel, then

1K (A) 2 /u(dx)K(x,A).
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Data assimilation (DA) is the process by which observations are incorporated
into a computer model of a real system. Applications of data assimilation arise
in many fields of geosciences, perhaps most importantly in weather
forecasting and hydrology.

DA proceeds by alternating between forecast and analysis cycles:

@ In each analysis cycle, observations of the current (and possibly past)
state of a system are combined with the results from a prediction model
(the forecast) to produce an analysis. The analysis step is typically
performed either in form of a ’best estimate’ or in terms of approximating
conditional distributions.

@ The model is then advanced in time and its result becomes the forecast
in the next analysis cycle.
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@ Both DA and stochastic filtering are dealing with the same problem of
merging models with partial observations

@ DA has stronger focus on algorithms for large scale problems and large
data sets

@ Stochastic filtering stronger focus on asymptotic behavior and
consistency

@ Both fields are moving towards each other
@ Situation is similar to that of machine learning versus statistics
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Particle Filters/Sequential Monte Carlo methods

@ Algorithms to approximate 7; using discrete measures of the form !
> cidy,
i

i.e., empirical distributions associated with a set of (random) particles
with masses a1, as, ..., and positions V;, Vs, ..., respectively, in the state
space of X.

@ Recursive algorithms: The approximation for 7; and Y;,¢ are the only
information used in order to obtain the approximation for 7;, 1. In other
words, the information gained from Yj, ..., Y; is embedded in the current
approximation.

@ Quite often:

1
n_ _
=2y

k=1

Consequently E [n;] = n, with many of the existing algorithms keeping the
number of particles constant: n; = n.
15x is the Dirac delta distribution concentrated at x: §x(A) = 14(x).
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@ The generic SMC method involves sampling from the prior distribution of
the signal and then using a weighted bootstrap technique (or equivalent)
with weights defined by the likelihood of the most recent observation data.

- N. J. Gordon, D. J. Salmond, and A. F. M. Smith, Novel approach to
nonlinear/non-gaussian bayesian state estimation, |IEE Proceedings on Radar
and Signal Processing, vol. 140, pp. 107—-113, 1993.

- A. Doucet, N. de Freitas, N. Gordon, Sequential Monte Carlo methods in
practice, Stat. Eng. Inf. Sci., Springer, New York, 2001.

- A. Bain, D. Crisan, Chapter 10, Fundamentals of stochastic filtering.
Stochastic Modelling and Applied Probability, 60. Springer, New York, 2009.
- D. Crisan, B. Rozovskii, The Oxford handbook of nonlinear filtering, Oxford
Univ. Press, Oxford, 2011.

- D. Crisan and S. Ortiz-Latorre, A Kusuoka-Lyons-Victoir particle filter, 2013,
Proceedings of the Royal Society A, 2013.

- A. Beskos, D. Crisan, A Jasra., N. Whiteley, Error Bounds and Normalizing
Constants for Sequential Monte Carlo in High Dimensions, 2013.

- A. Beskos, D. Crisan, A Jasra., On the Stability of Sequential Monte Carlo
Methods in High Dimensions, 2013.
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A common language

Ensemble-based algorithms in both areas fit into the following framework:

particle approximations

Gaussian approximations

mutatlon
NS
e AP

selection

=
model {Ys}sept tra]

N

Tys

forecast assimilation
N /" N ~ N

™ p —
t t+6 46
model {Ys}se[t,r+5]

The approximations appear to be different:

particle approximations

Gaussian approximations

(a/ (t)7 Vj1 (t) [ V/d (t))j,i‘l
M~ —————

weight position

(a (1),
~——

Vv,

T (@] (1) e

J )

(D)L

weight

mean covariance matrix

N
T~ Ty = 21 8 (1) Sy

m =N g ()N (v (1), w (1)

but the stored information can modelled by N stochastic processes

{pi(t),t >0} i=1,..,
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@ We think of the processes p; as the trajectories of N (generalized)
particles/ensemble members.

@ Typically M > dy, where dy is the dimension of the state space.

N = AN(pi(t),t >0 i=1,..,N).

@ Generalized particle filters:

classical particle filters
Gaussian approximations
wavelets

grid methods

© ©6 6 ©

@ The measure of the approximating error is important:

sup  E[|nle) - m(e)|] . m-#, et = mllr.
{0€Cs, llell<1}
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Consider the 1-dimensional Benes filter:

axX;

po tanh ( ) dt + odV;
o
(M X + h2)dt + dU,

aY;
Then

pr = WIN(A]/(2B),1/(2By)) + w™N(A; /(2B), 1/(2By)),

H,
(>

exp ((A7)?/(4By)) /(exp ((AF)?/(4B1)) +exp (A7 )?/(4B)))
ho + hy X ho
Tsinh (o) ~ o Ot (o).

>
“H
>

—:I:E+h1\|’t—|-
ag

Ly
(1>

hy
2 coth (hyot),

Esinh(hyos)
A
wf‘/o sinh(hyat) dWs,
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The framework in details

Let the signal X = {X;, t € N} be a stochastic process with values in R%. Let
F¥ be the o-algebra generated by the process, i.e.,

FX20(Xs, s€(0,1).
We assume that X is a Markov chain. That is, for all t € N and A € B(R%),
]P(X,GA|]-}{1):]P’(X,GA|XT_1). (1)
The transition kernel of the Markov chain X is the function K;(-, -) defined for
allt € Nand x € R%,
Ki(x,A) =P(X; € A| Xi—1 = X). )

The transition kernel K; is required to have the following properties:

@ Ki(x,-) is a probability measure for all t € N and x € R%.
@ K;i(-,A) is a measurable function for all t € N and A Borel set.

The distribution of X is uniquely determined by its initial distribution and its
transition kernel. Let us denote by g; the distribution of the random variable X;,

A
qi(A) 2 P(X; € A).
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Then, from (2), it follows that g; satisfies the recurrence formula
gt = KiQi—1, t > 0,

Hence, by induction it follows that q; = K;_1 ... KiKoQo, t > 0.
Example (dy = 1):

X; = b(Xi_1) + B, B ~ N(0,1) iid.

t

L . 2
P(Xt S dXt7 .. Xo S dX() = H 12 ( (leéXIm) dX,'ﬂ’()(dXO)
i=1 7T

/// /H exp( Xl_béXM))Z) dxjmo(dxo)

/A/R Ne &P (_Xt_éXtO)> gr—1(dxi—1)ax;
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Exercise 1. For arbitrary ¢ € B(R?) and t > 0, define Ky as

Keg) = [ on)Kx. ),

i. Prove that K;pis a measurable function for any t > 0.

ii. Prove that K;q;_1 is a probability measure for any t > 0.

iii. Prove that, for any ¢ € B(R?) and t > 0, we have
KiGi-1(0) = qi—1(Kip),

hence in general
qt(@) = qO(QDt)a t> 07

where Yt = KOK1 . Kt,1g0.

Dan Crisan (ICL) Convergence of PF and relation to DA 8 January 2014

15/65



Let the observation process Y = {Y;, t € N} be an R%-valued stochastic
process defined as follows

Y: S h(Xt) + Wi, t>0, (3)

and Yy = 0. In (3), h: R% — R% is a Borel-measurable function and for all
t € N, W; are mutually independent random vectors with laws absolutely
continuous with respect to the Lebesgue measure A on R™. We denote by
g(t,-) the density of W; with respect to A and we further assume that
g(t,-) € B(RY) and is a strictly positive function.

Example (dy = dy, = 1):
X = b(Xi—1) + B, B; ~ N(0,1) i.i.d.
Yi=h(Xp) + Wi, Vi ~N(0,1) i.i.d.
P(Y: € dyt, ..., Yo € dyy, Xi € dxq, ..., Xo € dXp)

I _ W= )N 4,
_Hmexp< > )dy,

X ,1} \/127 exp (—(X’_béxm))z) dx;mo(dxo)
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The filtering problem consists of computing the conditional distribution of the
signal given the observation data from time 0 up to the current time i.e.
computing the probability measure 7;, where

T(A) £ P(X; € A| Yot = Your). (4)
mf = E[f(Xt) | Yot = Yol ,

where Yo is the random vector Yo.r £ (Yo, Y4, ..., Y;)? and

Yo = Vo, ¥1,-- -, y1) € (R™)H,

We also introduce py, t > 0 the predicted conditional probability measures
defined by

pi(A) =P (X € Al Yoir—1 = You—1) s
pif = E[f(Xi) | Yo:t—1 = Yo:t—1] -

In the statistics and engineering literature the probability g; is commonly
called the prior distribution of the signal X;, whilst =; is called the (Bayesian)
posterior distribution.

2{Yy.,t € N} is the path process associated to the observation process

Y ={Y;, t € N}. Thatis, { Yp.1, t € N} records the entire history of Y up to time t, not
just its current value.
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The Recurrence Formula for =,

The following lemma gives the density of the random vector Ys.; = (Yi,..., Y?)
for arbitrary s, t € N, s < t.

Lemma 1. Let Py, € P((R%)!=S*") be the probability distribution of Y. and A
be the Lebesgue measure on ((R%)!=5+1 B((R%)!=5+1)). Then, for all

0 < s <t < o0, Py, is absolutely continuous with respect to A and its
Radon-Nikodym derlvat|ve is

dPy,
dstr (Vet) = T(Vs:it) 2 /Rdx)[ » gg, h(x;) IP)XS,(dXs t), (5)

where Py_, € P((RY)!=s+1) is the probability distribution of the random vector
Xs:t = ()(s7 e 7X[‘)

Remark 2. Note that
P(Y; € dyi | Xe = xt) = gi(ye — h(t, 1)) dyz,
which explains why the function g/*: R% — R defined by
9t'(x) = gi(yt — h(t, x)), x € R* (6)

is commonly referred to as the likelihood function.
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Since gj for i = s, ..., t are strictly positive, the density of the random vector
(Ys, ..., Y:) is also strictly positive. This condition can be relaxed (i.e. g;
required to be non-negative), however the relaxation requires a more involved
theoretical treatment of the particle filter.

The recurrence formula for m; involves two operations defined on P(R%) —a
transformation via the transition kernel K; and a projective product associated
with the likelihood function g!* defined as follows:

Definition 3 . Let p € P(R%) be a probability measure, and let ¢ € B(R%) be

a non-negative function such that p(¢) > 0. The projective product ¢ * p is the
(set) function ¢ * p: B(RY) — R defined by

/ H(x)p(0x)

* A JA
@ * p(A) ()

for any Borel set A.

Exercise 2. Prove that ¢  p is a probability measure on B(RY).
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The projective product ¢ = p is a probability measure which is absolutely
continuous with respect to p, whose Radon-Nikodym derivative with respect
to p is proportional to ¢ viz:

d(¢ *p)

dp = cv

where c is the normalizing constant, ¢ = 1/p().
The following result gives the recurrence formula for the conditional probability
of the signal. The prior and the posterior distributions coincide at time 0,

T = Qo,

since Yy = 0 i.e. no observations are available at time 0.

Dan Crisan (ICL) Convergence of PF and relation to DA 8 January 2014 20/65



Talk Synopsis

Proposition 4. For any fixed path (yo, y1,.-., ¥4, - - .) the sequence of
(non-random) probability measures (7;):>o satisfy the following recurrence
relation

Wt:g%/[*KtTl'[,h t>0. (7)

The recurrence formula (7) can be re-written in the following expanded way:
71'[—1Hpt:KtT"t—1’_>7rt:gth*pt; t>0. (8)

The first step is called the prediction step: it occurs at time t before the arrival
of the new observation Y;. The second step is the updating step as it takes
into account the new observation Y;.

The simplicity of the recurrence formula (8) is misleading. A closed formula for
the posterior distribution exists only in exceptional cases (the linear/Gaussian
filter). The main difficulty resides in the updating step — the projective product
is a non-linear transformation involving the computation of the normalizing
constant pt(gty’) which requires an integration over a (possibly)
high-dimensional space.
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Convergence of Approximations to 7;

As stated above, (8) requires the computation of the predicted probability
measure py:
Tt—1 — Pt — Tt.

Therefore it is natural to study algorithms which provide recursive
approximations for 7; using intermediate approximations for p;. Denote by
(w224 and (pf)s2 the approximating sequence for ; and respectively p;,
which will be assumed to satisfy the following three conditions:

e 7 and p{ are random measures, not necessarily probability measures.

@ pf # 0, n # 0 (i.e. no approximation should be trivial).

e plgl'>0foralln>0,0<t<T.
Let 7/ be defined as a (random) probability measure absolutely continuous
with respect to pf for t € N.and n > 1 such that

T =g/ = py, 9)
thus (1)
- pi g
T = . 10
Y plon (10
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The following theorem gives necessary and sufficient conditions for the
convergence of pf to p; and 7{ to ;.

Theorem 5. For all measurable functions f and all ¢ € [0, T] the convergence

a0. limp_ oo E[|nff — mf]] = 0.
b0. limy o E[|pff — pif|] = O.

hold true if and only if for all measurable functions f and all t € [0, T] we have

al. limp_o E[|ngf — mof|] = 0.
b1. limp_ E prf - K;_17Tt”_1f|] = im0 E[|n{f — 7]f|]] = 0.

Dan Crisan (ICL) Convergence of PF and relation to DA 8 January 2014
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Proof. The necessity of conditions a0. and b0. is proved by induction. The
limit a0. follows in the starting case of t = 0 from a1. We need to show that if
m{_4 converges in expectation to m;_4 and p; converges in expectation to p;
then ={' converges in expectation to ;. Since p; = Kim:—1 by the triangle
inequality

|p?f_pff‘ < ‘p;’f— Kt71';L1f| + ‘Kt’ﬂ'?fﬂc— Kt71'[,1f|. (11)

The expected value of the first term on the right hand side of (11) converges
to zero from b1. Also using Exercise 1, K;_{f € B(RY) and
K[,17T?_1 f= 7T?_1(Kt,1 f) and Kt,171'[,1 f= Tt—1 (Kt,1 f) hence

lim E [|Ki—1mf1f — Ki—ym—1f|] = 0.
By taking expectation of both sides of (11)
lim E[|pff — pef|] = 0, (12)
n—oo

which establishes condition a0.
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From (10)
n
#0f — mif = PLUGY _ PilGe)
Pt 9t P19t
_ pi(fgr) 1 (pt”(fgr)_pt(fgt))
R Y

and as |p(fgr)| < ||fllcoPfgt,

2 Il |I<>o
f—mf] < + f f 13
mef—md| <5 g WPige— pigil + oo 1P (in) = p(ign)l (13)

Therefore

_ flloo
E[|7f — m:f]] < ||71["] gy —
(|71 mif]] < ) PP 9t — Pig:l]

4 éuznpt(fgf) plfan)]- (14)

From (12) both terms on the right hand side of (14) converge to zero. Finally,

|mf'f — mif| < |7ff — 77| + |7]7f — mif]. (15)
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As the expected value of the first term on the right hand side of (15)
converges to zero using b1. and the expected value of the second term
converges to zero using (14), lim,_, o E [|7]f — 7:f|] = 0.

For the sufficiency part, assume that conditions a0. and b0. hold. Thus for all
t > 0 and for all f € B(RY),

lim E[jxff —mf[] = lim E[|pff - pifl] = 0.
Clearly condition a1l. follows as a special case of a0. with t = 0. Since
pt = Ki_1m_1, we have for all f € B(RY),
E [|pff — Kioamf 4[] <E[|pff — pif]]
+E[|7T1_1(K[_1f)7’/T{’_1(K1_1f)|] s (16)
which implies the first limit in b1. From (14),
nILmOOE [|mef —7{f]] =0

and by the triangle inequality

Ef|nff — 7ffl]] < E[|nff — mf[] + E[|mf — 77 ] (17)

from which the second limit in b1. follows. [
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Proposition 6. If there exists a positive constant p > 1 such that

C
E ||x7f — mf|?P| < =

< (18)

where ¢; is a positive constant depending on the test function f, but

independent of n, then, for any ¢ € (0,1/2 — 1/(2p)) there exists a positive
random variable ¢; . almost surely finite such that

C
|l f — ] < —2E
nE

In particular ='f converges to m;f almost surely.

Proof. Since
E {Z nPPe |l f — 7T;f‘2p:| < ZHZpEIE [|7r,”f— 7th|2p] < Z ﬁ < 00,
asn(1—-2¢)>1<1/2—1/(2p) > ¢ it follows that
cre 2 PP |l — mf|? < .

hence the claim.
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Moreover if (18) holds for any f € M where M is a countable convergence
determining set, then, almost surely, =] converges to 7; in the weak topology.
This means that there exists a set Q € F such that P(Q) = 1 and for any

w € Q the corresponding sequence of probability measures m;“ satisfies

. n,w _
n||_>moo7rt (f) = m(f),

for any f € Cp(RY). This cannot be extended to the convergence for any
f € B(RY) (that is to the stronger, so-called convergence in total variation).

Exercise 4. Let i be the uniform measure on the interval [0, 1] and (in)n>1 be
the sequence of probability measures i, = 2 "7, 6/p.

i. Show that (un)n>1 converges to u in the weak topology.

ii. Let f = 1gno,1] be the indicator set of all the rational numbers in [0, 1].
Show that u,(f) 4 wp(f), hence u, does not converge to p in total variation.

Remark 7. Theorem 5 is very natural. It says that we obtain approximations

of p; and =; for all t € [0, T] if and only if we start from an approximation of g
and then “follow closely’ the recurrence formula (9) for p; and .
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Particle Filters

@ In this section we present examples of approximations to the posterior
distribution which satisfy the conditions stated in Theorem 5. The
algorithms used to produce these approximations are called particle
filters or sequential Monte Carlo methods.

@ The algorithms presented below involve the use of a system of n particles
which evolve (mutate) according to the law of X.

@ After each mutation the system is corrected — each particle is replaced by
a random number of particles whose mean is proportional to the
likelihood of the position of the particle.

@ After imposing some weak restrictions on the offspring distribution of the
particles, the empirical measure associated to the particle systems is
proven to converge (as ntends to oo) to the conditional distribution of the
signal given the observation.

Denote by ={ the approximation to 7; and by p{ the approximation to p;. The
particle filter has the following description:

Dan Crisan (ICL) Convergence of PF and relation to DA 8 January 2014 29/65



Talk Synopsis

A typical Particle Filter

@ Initialization [t = 0].

Fori=1,...,n, sample xéi) from .
Q Iteratlon [t —1tot.
Let x; )1, i=1,...,nbe the positions of the particles at time t — 1.
Q@ Fori=1,.. nsamplex fromK, 1(,)1,-).

@ Compute the (normalized) welght w!) = gt(x(f))/(zl” L9t (x)).
© Replace each particle by 5, offsprings such that Z, ’ ft’ n.
@ Denote the positions of the offspring particles by xt Ji=1,...,n

Dan Crisan (ICL) Convergence of PF and relation to DA 8 January 2014
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It follows from the above that the particle filter starts from = — the empirical
measure associated to a set of nrandom particles of mass 1/n whose
positions x(()’) fori=1,...,nform a sample of size n from mg

1 n
DT
i=1

(1>

0

In general, define =] to be
1 n
na b .
7Tf == n 21: (5Xr(/),
=

where xf(’) fori=1,..., nare the positions of the particles of mass 1/n
obtained after the second step of the iteration. Let 7/ be the weighted

measure N
-n A (1)
T = W, O g
t E 1 t Xr”
=
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We introduce the following o-algebras

Fi=o(x{ 30 s<t i=1,...n)

Fi=ox{ 30 s<t, " i=1,. n).
Obviously F; C F; and the (random) probability measures p? and 77 are
Fi-measurable whilst 7} is F;-measurable for any t > 0. The random
variables )?,(’) fori=1,..., nare chosen to be mutually independent
conditional upon F;_4.
The iteration uses 7, to obtain 77, but not any of the previous
approximations. Following part (a) of the iteration, each particle changes its
position according to the transition kernel of the signal. Let p{ be the empirical
distribution associated with the cloud of particles of mass 1/n after part (a) of

the iteration .
1
n_ _ .
pt - n ;5)—([(1).
This step of the algorithm is known under the name of importance sampling

step (popular in the statistics literature) or mutation step (inherited from the
genetic algorithms literature).
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Exercise 5. Prove that E [pf | F;—1] = K[ y7]_4.

Remark 8. An alternative way to obtain p{ from =", is to sample n times from
the measure K;_yn{_; and define p{ to be the empirical measure associated
with this sample Let Af be the conditional covariance matrix of the random

vector & £ (5, [y

AP 2 E (6 — nw)T (& — nwe) | 7]

with entries (A7); = E {(fﬁ") - nw(’)> (5}") - nw(j)) ‘ ]?",} where
wy = (w ,(’)) !, is the vector of weights. We assume that the offspring vector

&= ( §’)), , satisfies the following two conditions:

@ The conditional mean number of offspring is proportional to W, More
precisely
E (¢ 7] = nw". (19)
@ There exists a constant ¢;, such that
q"Aq < nc; (20)

for any vector q = (gt ’)) € R”, such that |g()| < 1 fori =1,
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Exercise 6. Prove that the following identity holds

1= (i
T = n 2551)57}”7
i=1
and that E[x} | F{] = 7}

Step (b) of the iteration is called the selection step. The particles obtained
after the first step of the recursion are multiplied or discarded according to the
magnitude of the likelihood weights. In turn the likelihood weights are
proportional to the likelihood of the new observation given the corresponding
position of the particle. Hence if nwt(') is small, fewer offspring are expected
than if nw” is large. Since
=\
0 a (%)

e (WY

nw,(i) is small when the corresponding value of the likelihood function g,()'(t(i))
is smaller than the likelihood function averaged over the positions of all the
particles.
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In conclusion, the effect of part (b) of the iteration is that it discards particles in
unlikely positions and multiplies those in more likely ones. Following Exercise
6, this is done in an unbiased manner — the conditional expectation of the
approximation after applying the step is equal to the weighted sample
obtained after the first step of the recursion. That is, the average of the mass
«5}’)/n associated with particle i is equal to Wt(’), the weight of the particle
before applying the step.
Exercise 7 Prove that, for all f measurable functions, we have

a3

]E[(ﬁff—ﬁff)z < SR

Exercise 7 implies that the randomness introduced in part (b) of the iteration,
as measured by the second moment of #{f — 7{'f tends to zero with rate given
by 1/n, where n is the number of particles in the system.

Remark 9 Condition (20) is equivalent to
q' A7q < néy (21)

for any vector g = (q("))7:1 € [0,1]", where &; is a fixed constant.
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Offspring Distributions

In order to have a complete description of the particle filter we need to specify
the offspring distribution. The most popular offspring distribution is the
multinomial distribution

&; = Multinomial (n W,m, e Wt("))

that is é .
0 o B n! (1) "
P& =ni=1....n) = Hm“'H(W)

The multinomial distribution is the empirical distribution of an n-sample from
the distribution 77

Multinomial Sampling

forj:= 1 ton
Pick x by sampling with replacement from the set of particle
positions (x§ ), (2) ceey 5 )) according to the probability vector of

normalized we/ghts (W,(”, Wt(z), e Wt(”)).
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In other words, if we sample (with replacement) n-times from the population of
particles with positions )'(t('), i=1,...,naccording to the probability
distribution given by the corresponding weights w,(’), i=1,...,nand denote
by §§i) the number of times that the particle with position )‘(,(i) is chosen, then
&= ( §'))” has the above multinomial distribution.

i=1

Lemma 10 If & has a multinomial distribution then it satisfies the
unbiasedness condition, that is

E [5;’) | ]:}} =,
forany i=1,...,n. Also & satisfies condition (20).

Proof. The unbiasedness condition follows immediately from the properties of
the multinomial distribution. Also

E [(5,’) - nwt("))2 | ]:}} = " (1 — Wt(i))
E {(ft’) - nw,(i)) (gt(j) - nwt(j)) | ]3,} = —nw,(i) W,(j), i #j.
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Thenforall g = ()7, € [-1,1]",

qTA,”q:i”Wf” (1-w") (a ”) -2 Y mwwlqqV

i=1 1<i<j<n
n . N2 n N 2
oS (0 (S ot
i=1 i=1
<”Z w(
> t
i=

and since 7, w!” = 1, (20) holds with ¢; = 1. m

The particle filter with this choice of offspring distribution is called the
Bootstrap Filter or the Sampling Importance Resampling algorithm (SIR
algorithm). It was introduced by Gordon Salmond and Smith. Within the
context of the Bootstrap Filter, the second step is called the resampling step.
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Properties of the Bootstrap Filter

@ quick and easy to implement
@ amenable to parallelization

@ suboptimal — the resampllng step replaces the (normalized) weights w; 0
by the random masses gt /n where§ is the number of offsprings of the

ith particle. Since & has a multinomial distribution, 5;') can take any value
between 0 and n.

@ even when w, is high (the position of the ith particle is very likely), the
ith particle may have very few offspring or even none at all (albeit with
small probability).
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If & is obtained by residual sampling, rather than by independent sampling

with replacement, then the above disadvantage can be avoided. In this case

= [nwy] + &.

In (22), [nwy] is the (row) vector of integer parts of the quantities nW,

[nwy] = ([nw,( )} ey {nw,

and &; has multinomial distribution
& = Multinomial (f), W;
where the integer n is given by
n
n
i=1 i=1
and the weights W,(i) are given by

a0 2 {”Wf(i)}

Wi
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By using residual sampling to obtain &;, we ensure that the original weights
w,( ) are replaced by a random weight which is at least [nw; ’)]/n This is the

closest integer multiple of 1/n lower than the actual weight W, In this way,
eliminating particles with likely positions is no longer possible. As long as the
corresponding weight is larger than 1/n, the particle will have at least one
offspring.

Lemma 11. If & has distribution given by (22), it satisfies both the
unbiasedness condition (19) and condition (20).

Proof. The unbiasedness condition follows from the properties of the
multinomial distribution:

E [gﬁi) \ ]?',} = {nwt(")} +E [ |]T‘t}
= {nwt(/)} + W
+

- ] =
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Also

and
E[ (&) — ) (<0 — ) | 7] = ~na )
t t t t o
Then for all g = (¢)7_, € [-1,1]", we have

TA?q:iﬁW,(i)< (’))< ()) _9 Z A ) g gU)
i—1

1<i<j<n
n . N\ 2 n . , 2 n .
=Y (q)" -7 (Z v‘v,(’)q(”> <> nw”,
i=1 i=1 i=1
and since Y"1, nw, =y 1{nw, } < n, (20) holds with ¢; = 1. O

Dan Crisan (ICL) Convergence of PF and relation to DA 8 January 2014 42/65



Talk Synopsis

The residual sampling is still suboptimal — the correction step now replaces
the weight W,’) by the deterministic mass [nw,(’)]/n to which it adds a random
mass given by £ /n, where £ can take any value between 0 and . This

creates a problem for particles with small weights. Even when w. () is small
(the position of the ith-particle is very unlikely) it may have a Iarge number of
offspring — up to n offspring are possible (albeit with small probability). The
multinomial distribution also sufffers from this problem.

If ¢; is obtained by using the branching algorithm described below, then both

the above difficulties are eliminated. In this case, the number of offspring gﬁ")
for each individual particle, has the distribution

() [”Wr(i)] with probability 1 — {nw,(’)}

t [nwf')} +1  with probability {nw’ )}’

whilst 7, ¢\ remains equal to n.

Dan Crisan (ICL) Convergence of PF and relation to DA 8 January 2014 43/65



Talk Synopsis

If the particle has a weight w,(i) > 1/n, then the particle will have offspring.

Thus if the corresponding likelihood function Qt()_(r(i)) is larger than the
likelihood averaged over all the existing particles

1o -
—>alx),
j=1

then the ith site is selected and the higher the weight Wt(i) the more offspring
the ith particle will have. If th) is less than or equal to 1/n, the particle will

have at most one offspring. It will have no offspring with probability 1 — nwt('),
as in this case . ,
nw = {nw}.

Hence, if W,(’) < 1/n, no mass is likely to be assigned to site i. That is, the ith
particle is very unlikely and it is eliminated from the sample.

Dan Crisan (ICL) Convergence of PF and relation to DA 8 January 2014 44/65



Branching Algorithm

Letu;, j=1,...,n—1Dbe n— 1 mutually independent random variables,
uniformly distributed on [0, 1], which are independent of all other random
variables in the system. The following algorithm is then applied:

g:=n =
fori :==1ton —
{ ﬁ, } {g—nwn }<1men
ifup <1 — ({ ﬁl }/{g}) then
&) = [ml?]
else
&) o= [mf)] + (0~ 1o
end if
else
ifup <1 — (1 — {nw,(,/)}) / (1 — {g}) then
= 0]+
else
&) = [mf)] + (0~ 1o
end if
end if
gi=g— )
himh— e
end for
&M =
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We have now n particles with positions

00X X 3B %@ (24)

& &
Re-index the positions of the particles as

(2

xtm,x, (.

X

geeey

The positions of the particles with no offspring will no longer appear among
those described by the formula (24).
Some of the properties of the random variables

{fr('li)a i:1a---an}

are given by the following Proposition
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Proposition 12 The random variables {fff), i=1,...,n} have the following
properties:

a Y eV =n

b. Foranyi=1,..., nwe have E[g,(f)] = nw,(f).
c. Foranyi=1,...,n, ff,’) has minimal variance, specifically

E[(&) — nwi")?] = {nw}(1 = {nw}).

d. For1 <j < j < n,the random variables 5,(,’) and g,(f) are
negatively correlated. That is

B¢ — nw{)(€Y — nwd)] < o.
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Properties

@ If & is obtained as above, then it is optimal in the sense that, for any
i=1,...,n, gt') has the smallest possible variance amongst all
integer-valued random variables with the given mean nwt(’).

@ The algorithm ensures that minimal randomness, as measured by the

variance of the mass allocated to individual sites, is introduce to the
system.

@ The minimal variance property for the distribution produced by any tree
based branching algorithm holds true not only for individual sites but also
for all groups of sites corresponding to a node of the building binary tree.

@ A second optimality property of this distribution is that it has the minimal
relative entropy with respect to the measure 7; which it replaces in the
class of all empirical distribution of n particles of mass 1/n.

Lemma 13 If ¢; is produced by the algorithm described above, it satisfies both
unbiasedness condition (19) and condition (20).
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Proof. The unbiasedness condition immediately follows from Proposition 12

B[ 7] = [m®] (1= {ow®}) + ([wf?] + 1) {m} =t
Also
2 (61 7] = {1 (o)),

and from Proposition 12 part (d),
E[(¢" = nw®) (¢ — ) | 7] <0,

Then for all g = (g)7_, = [0, 1], we have
7 A= 3 ot} (1 {ml?)).
i=1

and since {nw,(')}(1 — {nwt(i)}) < 1/4, following Lemma ??, condition (20)
holds with ¢; = 1/4. O
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There exists another algorithm that satisfies the same minimal variance
property of the branching algorithm described above. It was introduced by
Carpenter, Clifford and Fearnhead in the context of particle approximations.
The method had appeared earlier in the field of genetic algorithms and it is
known under the name of stochastic universal sampling (see Baker and
Whitley). However the offspring distribution generated by this method does
not satisfy condition (20) and the convergence of the particle filter with this
method is still an open question.

All offspring distributions presented above leave the total number of particles
constant and satisfy (20). However, the condition that the total number of
particles does not change is not essential.

One can choose the individual offspring numbers fﬁ’) to be mutually
independent given F;. As alternatives for the distribution of the integer-valued
random variables gt” the following can be used:

(" ] g;i) = B(n, Wt(i)), that is, 5}’) are binomially distributed with parameters
(n.w").

Q 55') = P(nwt(')), that is, §§’) are Poisson distributed with parameters nwt(').

Q ¢ are Bernoulli distributed with distribution given by (23).
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Exercise 8. Show that if the individual offspring numbers fﬁ’) are mutually
independent given F; and have any of the three distributions described above,
then &; satisfies both unbiasedness condition and condition (20).

The Bernoulli distribution is the optimal choice for independent offspring
distributions. Since >_7 | 5,(’) is no longer equal to n, the approximating
measure 7] is no longer a probability measure. However, following the
unbiasedness condition (19) and condition (20), the total mass =7(1) of the
approximating measure is a martingale which satisfies, for any t € [0, T],

n 132 E
E[(=p(1) - 1] < =,
where ¢ = ¢(T) is a constant independent of n. This implies that for large n
the mass oscillations becomes very small. Indeed, by Chebyshev’s inequality
c

P(lxf(1) =1 >¢) < )
(Im7(1) =1 =€) < -5
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@ Hence, having a non-constant number of particles does not necessarily
lead to instability.

@ The oscillations in the number of particles can in themselves constitute
an indicator of the convergence of the algorithm.

@ Such an offspring distribution with independent individual offspring
numbers is easy to implement and saves computational effort.

@ Theorem 5 can be used in order to prove the convergence of any
algorithm based on such offspring distributions.
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Convergence of SMC methods
Exercise 9. Prove that
. n _
n||_>mOOE [|[7¢f — mof|]] = 0.

Theorem 14. Let (pf)>2, and (7])22, be the measure-valued sequences
produced by the class of algorithms described above. Then, forall0 < < T,
we have

lim E[|nff = mf|] = im E[|pff — pif[] =0,

for all f € B(RY).

Proof. We apply Theorem 5. Since a1. holds as a consequence of Exercise
9, it is only necessary to verify condition b1. From Exercise 5,

E[pff | Fi] = m[_{(Ki—1f) and using the independence of the sample {)‘(,(’)},f’=1
conditional on F;_1,
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Fi-

n 2
E [(P?f — 7y (Ki-1£))* | ]:t—1} = %E [(Z f ()‘(,(')) - K,_1f<xt(i)1))
i=
2 COUER
_,;i (E |:K[_1f (Xt(/_)_l) | ]:1—1:|)2
i=

]
= -l (K,_1f2 _ (K,_1f)2> :

Therefore E[(pl'f — 71 Ki—1f)?] < | f||2,/n and the first limit in b1. is satisfied.
The second limit in b1. follows from Exercise 7. O

Dan Crisan (ICL) Convergence of PF and relation to DA 8 January 2014 54 /65



Corollary 15. Forall 0 <t < T, there exists a constant k; such that

2
E [(7]f — mf)?] < M, (25)
t n

for all f € B(RY).
Proof. We proceed by induction. Since {x(’ ,i=1,...,n}isan
n-independent sample from g,

2

E [(m5f — mof)?] < 1=

hence by Jensen’s inequality (25) is true for t = 0 with ko = 1. Now assume
that (25) holds at time t — 1. Then

kil K1 fl13, _ keallfII3

E [(mf_1(Ki-1f) — w1 (Ki-1))?] < s (26)
Also from the proof of Theorem 14
f 2
[(pff—w,  Ki_1f) } ” JLDO. (27)

Dan Crisan (ICL) Convergence of PF and relation to DA 8 January 2014 55/65



Talk Synopsis

By using inequality (11) and the triangle inequality for the L,-norm

E [(pff - pif)f] < "f”;”ic (28)
where k = (v/ki_1 + 1)2. Inturn, (28) and (13) imply that

E [(ﬁff - w,f)ﬂ < % (29)
where k; = 4ki||9:||2./(p:g:)2. From Exercise 7.

E [(rff - 771)] < % (30)

where ¢; is the constant appearing in (20). Finally from (29), (30) and the
triangle inequality (15), (25) holds with k; = (\/¢; + JRT)? This completes the
induction step. O
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Condition (20) is essential in establishing the above rate of convergence. A
more general condition than (20) is possible, for example, that there exists
a > 0 such that

q'Alq < n"c (31)

for any q € [-1,1]". In this case, inequality (30) would become

2
Bl(eff — 7717 < S

Hence the overall rate of c:20nvergence would take the form
E [(nf — mf)?] < % for all f € B(RY). Hence if a > 1 we will see a
deterioration in the overall rate of convergence. On the other hand, if & < 1 no
improvement in the rate of convergence is obtained as the error in all the
other steps of the particle filter remains of order 1/n. So « = 1 is the most
suitable choice for condition (20).
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Concluding remarks

@ Theorem 5 provides an efficient technique for proving convergence of
particle algorithms. The necessary and sufficient conditions stated in the
theorem are natural and easy to verify.

@ They can be applied when the algorithms studied provide both = (the
approximation to ;) and also p{ (the intermediate approximation to p;).
Algorithms are possible where =} is obtained from 7", without using the
approximation for p;. In other words one can perform the mutation step
using a different transition from that of the signal. In the statistics
literature, the transition kernel K; is usually called the importance
distribution. Should a kernel (or importance distribution) K; be used
which is different from that of the signal K;, the form of the weights
appearing in the selection step of the particle filter must be changed. The
results presented above then apply for p; now given by K;_¢7;_1 and the

n

weighted measure 77" defined in (9) given by 77 = Wf’)é)_([(f),where w"

i=1
are the new weights.
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@ The randomness introduced in the system at each selection step must be
kept to a minimum as it affects the rate of convergence of the algorithm.
Therefore one should not apply the selection step after every new
observation arrives. Assume that the information received from the
observation is ‘bad’ (i.e. the signal to noise ratio is small). Because of
this, the likelihood function is close to being constant and the
corresponding weights are all (roughly) equal, v‘v,(’) ~ 1/n. In other words,
the observation is uninformative — it cannot distinguish between different
sites and all particles are equally likely. In this case no selection
procedure needs to be performed. The observation is stored in the
weights of the approximation 7/ and carried forward to the next step. If a
correction procedure is nevertheless performed and &; has a minimal
variance distribution, all particles will have a single offspring ‘most of the
time’. In other words the system remains largely unchanged with high
probability. However with small probability, the ith particle might have no
offspring (if W < 1/n) or two offspring (if #” > 1/n). Hence
randomness still enters the system and this can affect the convergence
rates. If & does not have a minimal variance distribution, the amount of
randomness is even higher. It remains an open question as to when and
how often one should use the selection procedure.
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High dimensional problems are harder than their low dimensional
counterparts. Example:

Consider
e My =N((0,...,0), ly) (mean (0,...,0) and covariance matrix Iy).
o M, =N((1,...,1),ly) (mean (1,...,1) and covariance matrix /y).

® d(MNy,MNz2)rv = 2P[[X] < d/2], X ~ N(0,1).
@ as d increases, the two measures get further and further apart, becoming
singular w.r.t. each other exponentially fast.
@ it becomes increasingly harder to construct a sample from I, by using a
proposal from Iy.
Solution: The problem of ‘moving’ from I to Ny is equivalent to that of
moving from a standard normal distribution A/(0, 1) to a normal distribution
N (d,1) (the total variation distance between A(0,1) and N (d, 1) is the same
as that between Iy and IM,). Rather than jumping from AN(0,1) to A/(d, 1) in
one step we get there in d steps: at each step moving from N'(k —1,1) to
N(k,1) forindex k =1,2,...,d. This algorithm can be immediately
transferred to the corresponding multidimensional set-up.
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2D Stochastic Navier-Stokes equation on the torus T2 = [0, L) x [0, L) with
periodic boundary conditions:

% —vAu+u-Vu+Vp="Ff+ W(t x) for all (x,t) € T2 x (0,00), (32)

V-u=0 for all (x,t) € T2 x (0, 0),
u(x,0) = up(x) for all x € T2.

@ u: T2 x [0,00) — R2 - the velocity
@ p: T2 x [0,00) — R2 - the pressure
@ f:T? — R? - the forcing

e W(t, x) - noise
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Application to the observed Navier-Stokes equation
u= Y uk(t)vk(x).
kez?\{0}
where

k+ (27rik - X

Y (x) & T & ] ) k= (ki k)T € 72\ {0} k' = (ko,—ki)".

The equations for the modes:

dUk(t) = (—V)\kuk — akj Z U/ Uj + fk) dt—l—é?detk.

I+j=k
We approximate the modes uk(t), with Ux(t) for each k € Z \ {0} with
|27k|? < AL2:
dﬂk(t) = (I/Akuk - Ozk] Z U/ U] + fk> at + €detk; (33)

where the set I 2 {(/,j)‘/ +j=kand |27/]2 < A2 and 272 < ALZ}.
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Application to the observed Navier-Stokes equation
Model parameters

e we use k1, k2 = —32,...,0,...32 (i.e. a 642 grid for the discrete fourier
components).
e Smoothing problem approximate p(xo|y1.5) where each y; is a 4x4 grid on
the torus and

yi() = u(x;, ;) + N(0,0.2).
¢ the dynamics are initialised by a random sample from the prior N(0, §A%)
e for the prior, 6 =5and a = 2.2.
e torus size is 27.
o forcing is Vcos(x - x) with k = (1, 1) for the stationary regime and x = (5,5)
for the chaotic regime
e v is 1/50 for chaotic and 1/10 for stationary

MCMC plot: computational cost involving 9 x 10° calls of the PDE solver, with
the slow mixing need more than 9 days for a decent but not super-reliable
answer.

SMC plots: parallel computing computation cost involving 14 x 10° calls of the
PDE solver N = 1000 particles need 7.4 hours.

Numerics done by N. Kantas (Imperial College London).
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Application to the observed Navier-Stokes equation
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Future work

Topics for future work:

@ systematic exploration of DA/stochastic filtering for multi-scale processes

@ mathematical theory for DA/stochastic filtering in an infinite-dimensional
state space

@ stochastic filtering/DA under systematic model and representation errors
(e.g. numerical approximation or parametrization errors)

@ combined state and parameter estimation
@ observation networks, quality of data, etc.
@ proposal steps and nonlinear ensemble transform filters
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