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(X ,Y ) = {(Xt ,Yt), t ≥ 0}
X the signal process - “hidden component”
Y the observation process - “the data” - Yt = f (Xt , “noise”).

The Stochastic Filtering/Data Assimilation problem: Find the conditional
distribution of the signal Xt given Yt = σ(Ys, s ∈ [0, t ]), i.e.,

πt (A) = P(Xt ∈ A|Yt), t ≥ 0.
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The filtering problem in discrete time
Probabilistic formulation of DA

The signal process: X = {Xt ; t ∈ N}, Markov chain with state space Rdx ,

X0 ∼ π0 (dx0) , P (Xt ∈ A|Xt−1 = xt−1) = Kt (xt−1,A) .

Example (dx = 1):

Xt = b (Xt−1) + Bt , Bt ∼ N (0, 1) i.i.d.

K (xt−1,A) =
∫

A

1√
2π

exp
(
− (xt − b(xt−1))

2

2

)
dxt

The observation process: Y associated stochastic process with state space
Rdy such that

Pr
(

Yt ∈ B|FX
t

)
= Pr (Yt ∈ B|Xt = xt) =

∫
B

gt (yt , xt)dyt .

Example (dy = 1):

Yt = h (Xt) + Vt , Vt ∼ N (0, 1) i.i.d.

gt (yt , xt) =
1√
2π

exp
(
− (yt − h(xt))

2

2

)
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The filtering problem consists in computing:

πt - the conditional distribution of Xt given
{

Y[0,t] = y[0,t]
}

where Y[0,t] , (Y0, ...,Yt) , y[0,t] , (y0, ..., yt) .

Bayes’ recursion.

Prediction Step pt = πt−1Kt

Updating Step dπt
dpt

= C−1
t gt

,

where
Ct ,

∫
Rdx gt (yt , x) pt (dx).

If µ is a measure and K is a kernel, then

µK (A) ,
∫
µ (dx)K (x ,A) .

Dan Crisan (ICL) Convergence of PF and relation to DA 8 January 2014 5 / 65



. . . . . .

Talk Synopsis

Data assimilation (DA) is the process by which observations are incorporated
into a computer model of a real system. Applications of data assimilation arise
in many fields of geosciences, perhaps most importantly in weather
forecasting and hydrology.

DA proceeds by alternating between forecast and analysis cycles:

In each analysis cycle, observations of the current (and possibly past)
state of a system are combined with the results from a prediction model
(the forecast) to produce an analysis. The analysis step is typically
performed either in form of a ’best estimate’ or in terms of approximating
conditional distributions.
The model is then advanced in time and its result becomes the forecast
in the next analysis cycle.
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Both DA and stochastic filtering are dealing with the same problem of
merging models with partial observations
DA has stronger focus on algorithms for large scale problems and large
data sets
Stochastic filtering stronger focus on asymptotic behavior and
consistency
Both fields are moving towards each other
Situation is similar to that of machine learning versus statistics
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Particle Filters/Sequential Monte Carlo methods

Algorithms to approximate πt using discrete measures of the form 1∑
i

αiδVi ,

i.e., empirical distributions associated with a set of (random) particles
with masses α1, α2, ..., and positions V1,V2, ..., respectively, in the state
space of X .
Recursive algorithms: The approximation for πt and Yt+1 are the only
information used in order to obtain the approximation for πt+1. In other
words, the information gained from Y1, ...,Yt is embedded in the current
approximation.
Quite often:

πn
t =

1
n

nt∑
k=1

δV t
k

Consequently E [nt ] = n, with many of the existing algorithms keeping the
number of particles constant: nt ≡ n.

1δx is the Dirac delta distribution concentrated at x : δx (A) = 1A (x).
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The generic SMC method involves sampling from the prior distribution of
the signal and then using a weighted bootstrap technique (or equivalent)
with weights defined by the likelihood of the most recent observation data.

- N. J. Gordon, D. J. Salmond, and A. F. M. Smith, Novel approach to
nonlinear/non-gaussian bayesian state estimation, IEE Proceedings on Radar
and Signal Processing, vol. 140, pp. 107–113, 1993.
- A. Doucet, N. de Freitas, N. Gordon, Sequential Monte Carlo methods in
practice, Stat. Eng. Inf. Sci., Springer, New York, 2001.
- A. Bain, D. Crisan, Chapter 10, Fundamentals of stochastic filtering.
Stochastic Modelling and Applied Probability, 60. Springer, New York, 2009.
- D. Crisan, B. Rozovskii, The Oxford handbook of nonlinear filtering, Oxford
Univ. Press, Oxford, 2011.
- D. Crisan and S. Ortiz-Latorre, A Kusuoka-Lyons-Victoir particle filter, 2013,
Proceedings of the Royal Society A, 2013.
- A. Beskos, D. Crisan, A Jasra., N. Whiteley, Error Bounds and Normalizing
Constants for Sequential Monte Carlo in High Dimensions, 2013.
- A. Beskos, D. Crisan, A Jasra., On the Stability of Sequential Monte Carlo
Methods in High Dimensions, 2013.
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A common language
Ensemble-based algorithms in both areas fit into the following framework:

particle approximations Gaussian approximations

πN
t

mutation︷︸︸︷−→
model

pN
t+δ

selection︷︸︸︷−→
{Ys}s∈[t,t+δ]

πN
t+δ πN

t

forecast︷︸︸︷−→
model

pN
t+δ

assimilation︷︸︸︷−→
{Ys}s∈[t,t+δ]

πN
t+δ

The approximations appear to be different:

particle approximations Gaussian approximations
(aj (t)︸ ︷︷ ︸
weight

, v1
j (t) , . . . , vd

j (t)︸ ︷︷ ︸
position

)N
j=1 (aj (t)︸ ︷︷ ︸

weight

, v1
j (t) , . . . , vd

j (t)︸ ︷︷ ︸
mean

, ω11
j (t) , . . . , ωdd

j (t)︸ ︷︷ ︸
covariance matrix

)N
j=1

πt  πN
t =

∑N
j=1 aj (t) δvj (t) πt  πN

t =
∑N

j=1 aj (t)N
(
vj (t) , ωj (t)

)
but the stored information can modelled by N stochastic processes

{pi(t), t > 0} i = 1, ...,N, pi(t) ∈ RM .
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We think of the processes pi as the trajectories of N (generalized)
particles/ensemble members.
Typically M > dx , where dx is the dimension of the state space.

πN
t = ΛN

t (pi(t), t > 0 i = 1, ...,N).

Generalized particle filters:
classical particle filters
Gaussian approximations
wavelets
grid methods

The measure of the approximating error is important:

sup
{φ∈Cb, ∥φ∥≤1}

E
[∣∣∣πN

t (φ)− πt(φ)
∣∣∣] , π̂t − π̂N

t , ∥πN
t − πt∥TV .
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Consider the 1-dimensional Benes filter:

dXt = µσ tanh
(
µXt

σ

)
dt + σdVt

dYt = (h1Xt + h2)dt + dUt ,

Then

ρt ≃ w+N (A+
t /(2Bt), 1/(2Bt)) + w−N (A−

t /(2Bt),1/(2Bt)),

where

w±
t , exp

(
(A±

t )2/(4Bt)
)
/(exp

(
(A+

t )
2/(4Bt)

)
+ exp

(
(A−

t )2/(4Bt)
)
)

A±
t , ±µ

σ
+ h1Ψt +

h2 + h1x0

σ sinh (h1σt)
− h2

σ
coth (h1σt) ,

Bt ,
h1

2σ
coth (h1σt) ,

Ψt ,
∫ t

0

sinh(h1σs)
sinh(h1σt)

dWs,
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The framework in details

Let the signal X = {Xt , t ∈ N} be a stochastic process with values in Rdx . Let
FX

t be the σ-algebra generated by the process, i.e.,

FX
t , σ(Xs, s ∈ [0, t ]).

We assume that X is a Markov chain. That is, for all t ∈ N and A ∈ B(Rdx ),

P
(

Xt ∈ A | FX
t−1

)
= P (Xt ∈ A | Xt−1) . (1)

The transition kernel of the Markov chain X is the function Kt(·, ·) defined for
all t ∈ N and x ∈ Rdx ,

Kt(x ,A) = P(Xt ∈ A | Xt−1 = x). (2)

The transition kernel Kt is required to have the following properties:
Kt(x , ·) is a probability measure for all t ∈ N and x ∈ Rdx .
Kt(·,A) is a measurable function for all t ∈ N and A Borel set.

The distribution of X is uniquely determined by its initial distribution and its
transition kernel. Let us denote by qt the distribution of the random variable Xt ,

qt(A) , P(Xt ∈ A).
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Then, from (2), it follows that qt satisfies the recurrence formula

qt = Ktqt−1, t ≥ 0,

Hence, by induction it follows that qt = Kt−1 . . .K1K0q0, t > 0.

Example (dx = 1):

Xt = b (Xt−1) + Bt , Bt ∼ N (0, 1) i.i.d.

P(Xt ∈ dxt , ...,X0 ∈ dx0) =
t∏

i=1

1√
2π

exp
(
− (xi − b(xi−1))

2

2

)
dxiπ0(dx0)

qt(A) =

∫
A

∫
R

∫
R
...

∫
R

t∏
i=1

1√
2π

exp
(
− (xi − b(xi−1))

2

2

)
dxiπ0(dx0)

=

∫
A

∫
R

1√
2π

exp
(
− (xt − b(xt−1))

2

2

)
qt−1(dxt−1)dxt
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Exercise 1. For arbitrary φ ∈ B(Rd ) and t ≥ 0, define Ktφ as

Ktφ(x) =
∫
Rd
φ(y)Kt(x , dy).

i. Prove that Ktφ is a measurable function for any t ≥ 0.
ii. Prove that Ktqt−1 is a probability measure for any t ≥ 0.
iii. Prove that, for any φ ∈ B(Rd ) and t > 0, we have

Ktqt−1(φ) = qt−1(Ktφ),

hence in general
qt(φ) = q0(φt), t > 0,

where φt = K0K1 . . .Kt−1φ.
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Let the observation process Y = {Yt , t ∈ N} be an Rdy -valued stochastic
process defined as follows

Yt , h(Xt) + Wt , t > 0, (3)

and Y0 = 0. In (3), h : Rdx → Rdy is a Borel-measurable function and for all
t ∈ N, Wt are mutually independent random vectors with laws absolutely
continuous with respect to the Lebesgue measure λ on Rm. We denote by
g(t , ·) the density of Wt with respect to λ and we further assume that
g(t , ·) ∈ B(Rd ) and is a strictly positive function.

Example (dx = dy = 1):

Xt = b (Xt−1) + Bt , Bt ∼ N (0, 1) i.i.d.

Yt = h (Xt) + Vt , Vt ∼ N (0, 1) i.i.d.

P(Yt ∈ dyt , ...,Y0 ∈ dy1,Xt ∈ dxt , ...,X0 ∈ dx0)

=
t∏

i=1

1√
2π

exp
(
− (yi − h(xi−1))

2

2

)
dyi

×
t∏

i=1

1√
2π

exp
(
− (xi − b(xi−1))

2

2

)
dxiπ0(dx0)
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The filtering problem consists of computing the conditional distribution of the
signal given the observation data from time 0 up to the current time i.e.
computing the probability measure πt , where

πt(A) , P(Xt ∈ A | Y0:t = y0:t), (4)
πt f = E [f (Xt) | Y0:t = y0:t ] ,

where Y0:t is the random vector Y0:t , (Y0,Y1, . . . ,Yt)
2 and

y0:t , (y0, y1, . . . , yt) ∈ (Rm)t+1.
We also introduce pt , t > 0 the predicted conditional probability measures
defined by

pt(A) , P (Xt ∈ A | Y0:t−1 = y0:t−1) ,

pt f = E [f (Xt) | Y0:t−1 = y0:t−1] .

In the statistics and engineering literature the probability qt is commonly
called the prior distribution of the signal Xt , whilst πt is called the (Bayesian)
posterior distribution.

2{Y0:t , t ∈ N} is the path process associated to the observation process
Y = {Yt , t ∈ N}. That is, {Y0:t , t ∈ N} records the entire history of Y up to time t , not
just its current value.
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The Recurrence Formula for πt

The following lemma gives the density of the random vector Ys:t = (Y1, . . . ,Yt)
for arbitrary s, t ∈ N, s ≤ t .
Lemma 1. Let PYs:t ∈ P((Rdy )t−s+1) be the probability distribution of Ys:t and λ
be the Lebesgue measure on ((Rdy )t−s+1,B((Rdy )t−s+1)). Then, for all
0 < s ≤ t <∞, PYs:t is absolutely continuous with respect to λ and its
Radon-Nikodym derivative is

dPYs:t

dλ
(ys:t) = Υ(ys:t) ,

∫
(Rdx )t−s+1

t∏
i=s

gi(yi − h(xi))PXs:t (dxs:t), (5)

where PXs:t ∈ P((Rd )t−s+1) is the probability distribution of the random vector
Xs:t = (Xs, . . . ,Xt).

Remark 2. Note that

P (Yt ∈ dyt | Xt = xt) = gt(yt − h(t , xt))dyt ,

which explains why the function gyt
t : Rdx → R defined by

gyt
t (x) = gt(yt − h(t , x)), x ∈ Rdx (6)

is commonly referred to as the likelihood function.
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Since gi for i = s, . . . , t are strictly positive, the density of the random vector
(Ys, . . . ,Yt) is also strictly positive. This condition can be relaxed (i.e. gi
required to be non-negative), however the relaxation requires a more involved
theoretical treatment of the particle filter.
The recurrence formula for πt involves two operations defined on P(Rdx ) – a
transformation via the transition kernel Kt and a projective product associated
with the likelihood function gyt

t defined as follows:

Definition 3 . Let p ∈ P(Rdx ) be a probability measure, and let φ ∈ B(Rdx ) be
a non-negative function such that p(φ) > 0. The projective product φ ∗ p is the
(set) function φ ∗ p : B(Rd ) → R defined by

φ ∗ p(A) ,

∫
A
φ(x)p(dx)

p(φ)

for any Borel set A.

Exercise 2. Prove that φ ∗ p is a probability measure on B(Rd ).
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The projective product φ ∗ p is a probability measure which is absolutely
continuous with respect to p, whose Radon-Nikodym derivative with respect
to p is proportional to φ viz:

d(φ ∗ p)
dp

= cφ,

where c is the normalizing constant, c = 1/p(φ).
The following result gives the recurrence formula for the conditional probability
of the signal. The prior and the posterior distributions coincide at time 0,

π0 = q0,

since Y0 = 0 i.e. no observations are available at time 0.
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Proposition 4. For any fixed path (y0, y1, . . . , yt , . . .) the sequence of
(non-random) probability measures (πt)t≥0 satisfy the following recurrence
relation

πt = gyt
t ∗ Ktπt−1, t > 0. (7)

The recurrence formula (7) can be re-written in the following expanded way:

πt−1 7→ pt = Ktπt−1 7→ πt = gYt
t ∗ pt , t > 0. (8)

The first step is called the prediction step: it occurs at time t before the arrival
of the new observation Yt . The second step is the updating step as it takes
into account the new observation Yt .
The simplicity of the recurrence formula (8) is misleading. A closed formula for
the posterior distribution exists only in exceptional cases (the linear/Gaussian
filter). The main difficulty resides in the updating step – the projective product
is a non-linear transformation involving the computation of the normalizing
constant pt(gYt

t ) which requires an integration over a (possibly)
high-dimensional space.
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Convergence of Approximations to πt

As stated above, (8) requires the computation of the predicted probability
measure pt :

πt−1 −→ pt −→ πt .

Therefore it is natural to study algorithms which provide recursive
approximations for πt using intermediate approximations for pt . Denote by
(πn

t )
∞
n=1 and (pn

t )
∞
n=1 the approximating sequence for πt and respectively pt ,

which will be assumed to satisfy the following three conditions:
πn

t and pn
t are random measures, not necessarily probability measures.

pn
t ̸= 0, πn

t ̸= 0 (i.e. no approximation should be trivial).
pn

t gyt
t > 0 for all n > 0, 0 ≤ t ≤ T .

Let π̄n
t be defined as a (random) probability measure absolutely continuous

with respect to pn
t for t ∈ N and n ≥ 1 such that

π̄n
t = gyt

t ∗ pn
t , (9)

thus
π̄n

t f =
pn

t (fg
yt )

pn
t gyt

. (10)

Dan Crisan (ICL) Convergence of PF and relation to DA 8 January 2014 22 / 65



. . . . . .

Talk Synopsis

The following theorem gives necessary and sufficient conditions for the
convergence of pn

t to pt and πn
t to πt .

Theorem 5. For all measurable functions f and all t ∈ [0,T ] the convergence
a0. limn→∞ E [|πn

t f − πt f |] = 0.
b0. limn→∞ E [|pn

t f − pt f |] = 0.
hold true if and only if for all measurable functions f and all t ∈ [0,T ] we have

a1. limn→∞ E [|πn
0 f − π0f |] = 0.

b1. limn→∞ E
[∣∣pn

t f − Kt−1π
n
t−1f

∣∣] = limn→∞ E [|πn
t f − π̄n

t f |] = 0.
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Proof. The necessity of conditions a0. and b0. is proved by induction. The
limit a0. follows in the starting case of t = 0 from a1. We need to show that if
πn

t−1 converges in expectation to πt−1 and pn
t converges in expectation to pt

then πn
t converges in expectation to πt . Since pt = Ktπt−1 by the triangle

inequality

|pn
t f − pt f | ≤ |pn

t f − Ktπ
n
t−1f |+ |Ktπ

n
t−1f − Ktπt−1f |. (11)

The expected value of the first term on the right hand side of (11) converges
to zero from b1. Also using Exercise 1, Kt−1f ∈ B(Rd ) and
Kt−1π

n
t−1f = πn

t−1(Kt−1f ) and Kt−1πt−1f = πt−1(Kt−1f ) hence

lim
n→∞

E
[∣∣Kt−1π

n
t−1f − Kt−1πt−1f

∣∣] = 0.

By taking expectation of both sides of (11)

lim
n→∞

E [|pn
t f − pt f |] = 0, (12)

which establishes condition a0.

Dan Crisan (ICL) Convergence of PF and relation to DA 8 January 2014 24 / 65



. . . . . .

Talk Synopsis

From (10)

π̄n
t f − πt f =

pn
t (fgt)

pn
t gt

− pt(fgt)

ptgt

= −pn
t (fgt)

pn
t gt

1
ptgt

(pn
t gt − ptgt) +

(
pn

t (fgt)

ptgt
− pt(fgt)

ptgt

)
,

and as |pn
t (fgt)| ≤ ∥f∥∞pn

t gt ,

|π̄n
t f − πt f | ≤

∥f∥∞
ptgt

|pn
t gt − ptgt |+

1
ptgt

|pn
t (fgt)− pt(fgt)| . (13)

Therefore

E [|π̄n
t f − πt f |] ≤

∥f∥∞
ptgt

E [|pn
t gt − ptgt |]

+
1

ptgt
E [|pn

t (fgt)− pt(fgt)|] . (14)

From (12) both terms on the right hand side of (14) converge to zero. Finally,

|πn
t f − πt f | ≤ |πn

t f − π̄n
t f |+ |π̄n

t f − πt f | . (15)
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As the expected value of the first term on the right hand side of (15)
converges to zero using b1. and the expected value of the second term
converges to zero using (14), limn→∞ E [|πn

t f − πt f |] = 0.
For the sufficiency part, assume that conditions a0. and b0. hold. Thus for all
t ≥ 0 and for all f ∈ B(Rd ),

lim
n→∞

E [|πn
t f − πt f |] = lim

n→∞
E [|pn

t f − pt f |] = 0.

Clearly condition a1. follows as a special case of a0. with t = 0. Since
pt = Kt−1πt−1, we have for all f ∈ B(Rd ),

E
[∣∣pn

t f − Kt−1π
n
t−1f

∣∣] ≤ E [|pn
t f − pt f |]

+ E
[∣∣πt−1(Kt−1f )− πn

t−1(Kt−1f )
∣∣] , (16)

which implies the first limit in b1. From (14),

lim
n→∞

E [|πt f − π̄n
t f |] = 0

and by the triangle inequality

E [|πn
t f − π̄n

t f |] ≤ E [|πn
t f − πt f |] + E [|πt f − π̄n

t f |] (17)

from which the second limit in b1. follows.
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Proposition 6. If there exists a positive constant p > 1 such that

E
[
|πn

t f − πt f |
2p
]
≤ cf

np , (18)

where cf is a positive constant depending on the test function f , but
independent of n, then, for any ε ∈ (0,1/2 − 1/(2p)) there exists a positive
random variable cf ,ε almost surely finite such that

|πn
t f − πt f | ≤

cf ,ε

nε
.

In particular πn
t f converges to πt f almost surely.

Proof. Since

E
[∑

n2pε |πn
t f − πt f |

2p
]
≤
∑

n2pεE
[
|πn

t f − πt f |
2p
]
≤
∑ cf

np(1−2ε) <∞,

as n(1 − 2ε) > 1 ⇔ 1/2 − 1/(2p) > ε it follows that

cf ,ε
∆
=
∑

n2pε |πn
t f − πt f |

2p
<∞.

hence the claim.
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Moreover if (18) holds for any f ∈ M where M is a countable convergence
determining set, then, almost surely, πn

t converges to πt in the weak topology.
This means that there exists a set Ω̄ ∈ F such that P(Ω̄) = 1 and for any
ω ∈ Ω̄ the corresponding sequence of probability measures πn,ω

t satisfies

lim
n→∞

πn,ω
t (f ) = πt(f ),

for any f ∈ Cb(Rd ). This cannot be extended to the convergence for any
f ∈ B(Rd ) (that is to the stronger, so-called convergence in total variation).

Exercise 4. Let µ be the uniform measure on the interval [0, 1] and (µn)n≥1 be
the sequence of probability measures µn = 1

n

∑n
i=1 δi/n.

i. Show that (µn)n≥1 converges to µ in the weak topology.
ii. Let f = 1Q∩[0,1] be the indicator set of all the rational numbers in [0,1].
Show that µn(f ) ̸→ µ(f ), hence µn does not converge to µ in total variation.

Remark 7. Theorem 5 is very natural. It says that we obtain approximations
of pt and πt for all t ∈ [0,T ] if and only if we start from an approximation of π0
and then ‘follow closely’ the recurrence formula (9) for pt and πt .
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Particle Filters

In this section we present examples of approximations to the posterior
distribution which satisfy the conditions stated in Theorem 5. The
algorithms used to produce these approximations are called particle
filters or sequential Monte Carlo methods.
The algorithms presented below involve the use of a system of n particles
which evolve (mutate) according to the law of X .
After each mutation the system is corrected – each particle is replaced by
a random number of particles whose mean is proportional to the
likelihood of the position of the particle.
After imposing some weak restrictions on the offspring distribution of the
particles, the empirical measure associated to the particle systems is
proven to converge (as n tends to ∞) to the conditional distribution of the
signal given the observation.

Denote by πn
t the approximation to πt and by pn

t the approximation to pt . The
particle filter has the following description:
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A typical Particle Filter

...1 Initialization [t = 0].
For i = 1, . . . ,n, sample x (i)

0 from π0.
...2 Iteration [t − 1 to t ].

Let x (i)
t−1, i = 1, . . . ,n be the positions of the particles at time t − 1.

...1 For i = 1, . . . , n, sample x̄ (i)
t from Kt−1(x

(i)
t−1, ·).

...2 Compute the (normalized) weight w (i)
t = gt(x̄

(i)
t )/(

∑n
j=1 gt(x̄

(j)
t )).

...3 Replace each particle by ξ
(i)
t offsprings such that

∑n
i=1 ξ

(i)
t = n.

...4 Denote the positions of the offspring particles by x (i)
t , i = 1, . . . , n.
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It follows from the above that the particle filter starts from πn
0 – the empirical

measure associated to a set of n random particles of mass 1/n whose
positions x (i)

0 for i = 1, . . . , n form a sample of size n from π0

πn
0 ,

1
n

n∑
i=1

δx (i)
0
.

In general, define πn
t to be

πn
t ,

1
n

n∑
i=1

δx (i)
t
,

where x (i)
t for i = 1, . . . ,n are the positions of the particles of mass 1/n

obtained after the second step of the iteration. Let π̄n
t be the weighted

measure

π̄n
t ,

n∑
i=1

w (i)
t δx̄ (i)

t
.
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We introduce the following σ-algebras

Ft = σ(x (i)
s , x̄ (i)

s , s ≤ t , i = 1, . . . , n)

F̄t = σ(x (i)
s , x̄ (i)

s , s < t , x̄ (i)
t , i = 1, . . . , n).

Obviously F̄t ⊂ Ft and the (random) probability measures pn
t and π̄n

t are
F̄t -measurable whilst πn

t is Ft -measurable for any t ≥ 0. The random
variables x̄ (i)

t for i = 1, . . . , n are chosen to be mutually independent
conditional upon Ft−1.
The iteration uses πn

t−1 to obtain πn
t , but not any of the previous

approximations. Following part (a) of the iteration, each particle changes its
position according to the transition kernel of the signal. Let pn

t be the empirical
distribution associated with the cloud of particles of mass 1/n after part (a) of
the iteration

pn
t =

1
n

n∑
i=1

δx̄ (i)
t
.

This step of the algorithm is known under the name of importance sampling
step (popular in the statistics literature) or mutation step (inherited from the
genetic algorithms literature).
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Exercise 5. Prove that E [pn
t | Ft−1] = K n

t−1π
n
t−1.

Remark 8. An alternative way to obtain pn
t from πn

t−1 is to sample n times from
the measure Kt−1π

n
t−1 and define pn

t to be the empirical measure associated
with this sample. Let An

t be the conditional covariance matrix of the random
vector ξt , (ξ

(i)
t )n

i=1,

An
t , E

[
(ξt − nwt)

⊤ (ξt − nwt) | F̄t

]
with entries (An

t )ij = E
[(
ξ
(i)
t − nw (i)

t

)(
ξ
(j)
t − nw (j)

t

) ∣∣∣ F̄t

]
, where

wt , (w (i)
t )n

i=1 is the vector of weights. We assume that the offspring vector
ξt = (ξ

(i)
t )n

i=1 satisfies the following two conditions:
...1 The conditional mean number of offspring is proportional to w (i)

t . More
precisely

E
[
ξ
(i)
t | F̄t

]
= nw (i)

t . (19)

...2 There exists a constant ct , such that

q⊤An
t q ≤ nct (20)

for any vector q =
(
q(i)
)n

i=1 ∈ Rn, such that |q(i)| ≤ 1 for i = 1, . . . , n.
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Exercise 6. Prove that the following identity holds

πn
t =

1
n

n∑
i=1

ξ
(i)
t δx̄ (i)

t
,

and that E[πn
t | F̄t ] = π̄n

t .

Step (b) of the iteration is called the selection step. The particles obtained
after the first step of the recursion are multiplied or discarded according to the
magnitude of the likelihood weights. In turn the likelihood weights are
proportional to the likelihood of the new observation given the corresponding
position of the particle. Hence if nw (i)

t is small, fewer offspring are expected
than if nw (i)

t is large. Since

w (i)
t =

gt

(
x̄ (i)

t

)
1
n

∑n
j=1 gt

(
x̄ (j)

t

) ,
nw (i)

t is small when the corresponding value of the likelihood function gt(x̄
(i)
t )

is smaller than the likelihood function averaged over the positions of all the
particles.
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In conclusion, the effect of part (b) of the iteration is that it discards particles in
unlikely positions and multiplies those in more likely ones. Following Exercise
6, this is done in an unbiased manner – the conditional expectation of the
approximation after applying the step is equal to the weighted sample
obtained after the first step of the recursion. That is, the average of the mass
ξ
(i)
t /n associated with particle i is equal to w (i)

t , the weight of the particle
before applying the step.
Exercise 7 Prove that, for all f measurable functions, we have

E
[
(πn

t f − π̄n
t f )2

]
≤ ct∥f∥2

∞
n

.

Exercise 7 implies that the randomness introduced in part (b) of the iteration,
as measured by the second moment of πn

t f − π̄n
t f tends to zero with rate given

by 1/n, where n is the number of particles in the system.

Remark 9 Condition (20) is equivalent to

q⊤An
t q ≤ nc̄t (21)

for any vector q =
(
q(i)
)n

i=1 ∈ [0, 1]n, where c̄t is a fixed constant.
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Offspring Distributions

In order to have a complete description of the particle filter we need to specify
the offspring distribution. The most popular offspring distribution is the
multinomial distribution

ξt = Multinomial
(

n,w (1)
t , . . . ,w (n)

t

)
that is

P
(
ξ
(i)
t = n(i), i = 1, . . . , n

)
=

n!∏n
i=1 n(i)!

n∏
i=1

(
w (i)

t

)n(i)

.

The multinomial distribution is the empirical distribution of an n-sample from
the distribution π̄n

t .

Multinomial Sampling

for j := 1 to n
Pick x (j)

t by sampling with replacement from the set of particle
positions (x (1)

t , x (2)
t , . . . , x (n)

t ) according to the probability vector of
normalized weights (w (1)

t ,w (2)
t , . . . ,w (n)

t ).
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In other words, if we sample (with replacement) n-times from the population of
particles with positions x̄ (i)

t , i = 1, . . . , n according to the probability
distribution given by the corresponding weights w (i)

t , i = 1, . . . ,n and denote
by ξ(i)t the number of times that the particle with position x̄ (i)

t is chosen, then
ξt = (ξ

(i)
t )n

i=1 has the above multinomial distribution.

Lemma 10 If ξt has a multinomial distribution then it satisfies the
unbiasedness condition, that is

E
[
ξ
(i)
t | F̄t

]
= nw (i)

t ,

for any i = 1, . . . , n. Also ξt satisfies condition (20).

Proof. The unbiasedness condition follows immediately from the properties of
the multinomial distribution. Also

E
[(
ξ
(i)
t − nw (i)

t

)2
| F̄t

]
= nw (i)

t

(
1 − w (i)

t

)
E
[(
ξ
(i)
t − nw (i)

t

)(
ξ
(j)
t − nw (j)

t

)
| F̄t

]
= −nw (i)

t w (j)
t , i ̸= j .
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Then for all q =
(
q(i)
)n

i=1 ∈ [−1, 1]n,

q⊤An
t q =

n∑
i=1

nw (i)
t

(
1 − w (i)

t

)(
q(i)
)2

− 2
∑

1≤i<j≤n

nw (i)
t w (j)

t q(i)q(j)

= n
n∑

i=1

w (i)
t

(
q(i)
)2

− n

(
n∑

i=1

w (i)
t q(i)

)2

≤ n
n∑

i=1

w (i)
t ,

and since
∑n

i=1 w (i)
t = 1, (20) holds with ct = 1.

The particle filter with this choice of offspring distribution is called the
Bootstrap Filter or the Sampling Importance Resampling algorithm (SIR
algorithm). It was introduced by Gordon Salmond and Smith. Within the
context of the Bootstrap Filter, the second step is called the resampling step.
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Properties of the Bootstrap Filter

quick and easy to implement
amenable to parallelization

suboptimal – the resampling step replaces the (normalized) weights w (i)
t

by the random masses ξ(i)t /n, where ξ(i)t is the number of offsprings of the
i th particle. Since ξt has a multinomial distribution, ξ(i)t can take any value
between 0 and n.
even when w (i)

t is high (the position of the i th particle is very likely), the
i th particle may have very few offspring or even none at all (albeit with
small probability).
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If ξt is obtained by residual sampling, rather than by independent sampling
with replacement, then the above disadvantage can be avoided. In this case

ξt = [nwt ] + ξ̄t . (22)

In (22), [nwt ] is the (row) vector of integer parts of the quantities nw (i)
t . That is

[nwt ] =
([

nw (1)
t

]
, . . . ,

[
nw (n)

t

])
,

and ξ̄t has multinomial distribution

ξ̄t = Multinomial
(

n̄, w̄ (1)
t , . . . , w̄ (n)

t

)
where the integer n̄ is given by

n̄ , n −
n∑

i=1

[
nw (i)

t

]
=

n∑
i=1

{
nw (i)

t

}
and the weights w̄ (i)

t are given by

w̄ (i)
t ,

{
nw (i)

t

}
∑n

i=1

{
nw (i)

t

} .
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By using residual sampling to obtain ξt , we ensure that the original weights
w (i)

t are replaced by a random weight which is at least [nw (i)
t ]/n. This is the

closest integer multiple of 1/n lower than the actual weight w (i)
t . In this way,

eliminating particles with likely positions is no longer possible. As long as the
corresponding weight is larger than 1/n, the particle will have at least one
offspring.

Lemma 11. If ξt has distribution given by (22), it satisfies both the
unbiasedness condition (19) and condition (20).

Proof. The unbiasedness condition follows from the properties of the
multinomial distribution:

E
[
ξ
(i)
t | F̄t

]
=
[
nw (i)

t

]
+ E

[
ξ̄
(i)
t | F̄t

]
=
[
nw (i)

t

]
+ n̄w̄ (i)

t

=
[
nw (i)

t

]
+
{

nw (i)
t

}
= nw (i)

t .
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Also

E
[(
ξ
(i)
t − nw (i)

t

)2
| F̄t

]
= E

[(
ξ̄
(i)
t − {nw (i)

t }
)2

| F̄t

]
= n̄w̄ (i)

t

(
1 − w̄ (i)

t

)
and

E
[(
ξ
(i)
t − nw (i)

t

)(
ξ
(j)
t − nw (j)

t

)
| F̄t

]
= −n̄w̄ (i)

t w̄ (j)
t .

Then for all q = (q(i))n
i=1 ∈ [−1, 1]n, we have

q⊤An
t q =

n∑
i=1

n̄w̄ (i)
t

(
1 − w̄ (i)

t

)(
q(i)
)2

− 2
∑

1≤i<j≤n

n̄w̄ (i)
t w̄ (j)

t q(i)q(j)

=
n∑

i=1

n̄w̄ (i)
t

(
q(i)
)2

− n̄

(
n∑

i=1

w̄ (i)
t q(i)

)2

≤
n∑

i=1

n̄w̄ (i)
t ,

and since
∑n

i=1 n̄w̄ (i)
t =

∑n
i=1{nw (i)

t } < n, (20) holds with ct = 1.
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The residual sampling is still suboptimal – the correction step now replaces
the weight w (i)

t by the deterministic mass [nw (i)
t ]/n to which it adds a random

mass given by ξ̄(i)t /n, where ξ̄(i)t can take any value between 0 and n̄. This
creates a problem for particles with small weights. Even when w (i)

t is small
(the position of the i th-particle is very unlikely) it may have a large number of
offspring – up to n̄ offspring are possible (albeit with small probability). The
multinomial distribution also sufffers from this problem.

If ξt is obtained by using the branching algorithm described below, then both
the above difficulties are eliminated. In this case, the number of offspring ξ(i)t
for each individual particle, has the distribution

ξ
(i)
t =


[
nw (i)

t

]
with probability 1 −

{
nw (i)

t

}
[
nw (i)

t

]
+ 1 with probability

{
nw (i)

t

}
,

(23)

whilst
∑n

i=1 ξ
(i)
t remains equal to n.
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If the particle has a weight w (i)
t > 1/n, then the particle will have offspring.

Thus if the corresponding likelihood function gt(x̄
(i)
t ) is larger than the

likelihood averaged over all the existing particles

1
n

n∑
j=1

gt(x̄
(j)
t ),

then the i th site is selected and the higher the weight w (i)
t the more offspring

the i th particle will have. If w (i)
t is less than or equal to 1/n, the particle will

have at most one offspring. It will have no offspring with probability 1 − nw (i)
t ,

as in this case
nw (i)

t = {nw (i)
t }.

Hence, if w (i)
t ≪ 1/n, no mass is likely to be assigned to site i . That is, the i th

particle is very unlikely and it is eliminated from the sample.
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Branching Algorithm

Let uj , j = 1, . . . ,n − 1 be n − 1 mutually independent random variables,
uniformly distributed on [0, 1], which are independent of all other random
variables in the system. The following algorithm is then applied:

g := n h := n
for i := 1 to n − 1

if
{

nw(i)
n

}
+

{
g − nw(i)

n

}
< 1 then

if ui < 1 −
({

nw(i)
n

}
/{g}

)
then

ξ
(i)
n :=

[
nw(i)

n

]
else

ξ
(i)
n :=

[
nw(i)

n

]
+ (h − [g])

end if
else

if ui < 1 −
(

1 −
{

nw(i)
n

})
/ (1 − {g}) then

ξ
(i)
n :=

[
nw(i)

n

]
+ 1

else

ξ
(i)
n :=

[
nw(i)

n

]
+ (h − [g])

end if
end if

g := g − nw(i)
n

h := h − ξ
(i)
n

end for

ξ
(n)
n := h

Dan Crisan (ICL) Convergence of PF and relation to DA 8 January 2014 45 / 65



. . . . . .

Talk Synopsis

We have now n particles with positions

(x (1)
t , x (1)

t , . . . , x (1)
t︸ ︷︷ ︸

ξ
(1)
n

, x (2)
t , x (2)

t , . . . , x (2)
t︸ ︷︷ ︸

ξ
(2)
n

, . . .) (24)

Re-index the positions of the particles as

x (1)
t , x (2)

t , . . . , x (n)
t .

The positions of the particles with no offspring will no longer appear among
those described by the formula (24).
Some of the properties of the random variables

{ξ(i)n , i = 1, . . . , n}

are given by the following Proposition
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Proposition 12 The random variables {ξ(i)n , i = 1, . . . , n} have the following
properties:

a.
∑n

i=1 ξ
(i)
n = n.

b. For any i = 1, . . . , n we have E[ξ(i)n ] = nw (i)
n .

c. For any i = 1, . . . , n, ξ(i)n has minimal variance, specifically

E[(ξ(i)n − nw (i)
n )2] = {nw (i)

n }(1 − {nw (i)
n }).

d. For 1 ≤ i < j ≤ n, the random variables ξ(i)n and ξ(j)n are
negatively correlated. That is

E[(ξ(i)n − nw (i)
n )(ξ

(j)
n − nw (j)

n )] ≤ 0.
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Properties

If ξt is obtained as above, then it is optimal in the sense that, for any
i = 1, . . . , n, ξ(i)t has the smallest possible variance amongst all
integer-valued random variables with the given mean nw (i)

t .
The algorithm ensures that minimal randomness, as measured by the
variance of the mass allocated to individual sites, is introduce to the
system.
The minimal variance property for the distribution produced by any tree
based branching algorithm holds true not only for individual sites but also
for all groups of sites corresponding to a node of the building binary tree.
A second optimality property of this distribution is that it has the minimal
relative entropy with respect to the measure π̄t which it replaces in the
class of all empirical distribution of n particles of mass 1/n.

Lemma 13 If ξt is produced by the algorithm described above, it satisfies both
unbiasedness condition (19) and condition (20).
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Proof. The unbiasedness condition immediately follows from Proposition 12

E
[
ξ
(i)
t | F̄t

]
=
[
nw (i)

t

] (
1 −

{
nw (i)

t

})
+
([

nw (i)
t

]
+ 1
){

nw (i)
t

}
= nw (i)

t .

Also

E
[(
ξ
(i)
t − nw (i)

t

)2
| F̄t

]
=
{

nw (i)
t

}(
1 −

{
nw (i)

t

})
,

and from Proposition 12 part (d),

E
[(
ξ
(i)
t − nw (i)

t

)(
ξ
(j)
t − nw (j)

t

)
| F̄t

]
≤ 0.

Then for all q = (q(i))n
i=1 = [0, 1]n, we have

q⊤An
t q ≤

n∑
i=1

{
nw (i)

t

}(
1 −

{
nw (i)

t

})
,

and since {nw (i)
t }(1 − {nw (i)

t }) < 1/4, following Lemma ??, condition (20)
holds with ct = 1/4.

Dan Crisan (ICL) Convergence of PF and relation to DA 8 January 2014 49 / 65



. . . . . .

Talk Synopsis

There exists another algorithm that satisfies the same minimal variance
property of the branching algorithm described above. It was introduced by
Carpenter, Clifford and Fearnhead in the context of particle approximations.
The method had appeared earlier in the field of genetic algorithms and it is
known under the name of stochastic universal sampling (see Baker and
Whitley). However the offspring distribution generated by this method does
not satisfy condition (20) and the convergence of the particle filter with this
method is still an open question.
All offspring distributions presented above leave the total number of particles
constant and satisfy (20). However, the condition that the total number of
particles does not change is not essential.
One can choose the individual offspring numbers ξ(i)t to be mutually
independent given F̄t . As alternatives for the distribution of the integer-valued
random variables ξ(i)t the following can be used:

...1 ξ
(i)
t = B(n,w (i)

t ), that is, ξ(i)t are binomially distributed with parameters
(n,w (i)

t ).
...2 ξ

(i)
t = P(nw (i)

t ), that is, ξ(i)t are Poisson distributed with parameters nw (i)
t .

...3 ξ
(i)
t are Bernoulli distributed with distribution given by (23).
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Exercise 8. Show that if the individual offspring numbers ξ(i)t are mutually
independent given F̄t and have any of the three distributions described above,
then ξt satisfies both unbiasedness condition and condition (20).
The Bernoulli distribution is the optimal choice for independent offspring
distributions. Since

∑n
i=1 ξ

(i)
t is no longer equal to n, the approximating

measure πn
t is no longer a probability measure. However, following the

unbiasedness condition (19) and condition (20), the total mass πn
t (1) of the

approximating measure is a martingale which satisfies, for any t ∈ [0,T ],

E
[
(πn

t (1)− 1)2
]
≤ c

n
,

where c = c(T ) is a constant independent of n. This implies that for large n
the mass oscillations becomes very small. Indeed, by Chebyshev’s inequality

P (|πn
t (1)− 1| ≥ ε) ≤ c

nε2 .

Dan Crisan (ICL) Convergence of PF and relation to DA 8 January 2014 51 / 65



. . . . . .

Talk Synopsis

Hence, having a non-constant number of particles does not necessarily
lead to instability.
The oscillations in the number of particles can in themselves constitute
an indicator of the convergence of the algorithm.
Such an offspring distribution with independent individual offspring
numbers is easy to implement and saves computational effort.
Theorem 5 can be used in order to prove the convergence of any
algorithm based on such offspring distributions.
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Convergence of SMC methods

Exercise 9. Prove that

lim
n→∞

E [|πn
0 f − π0f |] = 0.

Theorem 14. Let (pn
t )

∞
n=1 and (πn

t )
∞
n=1 be the measure-valued sequences

produced by the class of algorithms described above. Then, for all 0 ≤ t ≤ T ,
we have

lim
n→∞

E [|πn
t f − πt f |] = lim

n→∞
E [|pn

t f − pt f |] = 0,

for all f ∈ B(Rd ).

Proof. We apply Theorem 5. Since a1. holds as a consequence of Exercise
9, it is only necessary to verify condition b1. From Exercise 5,
E [pn

t f | Ft ] = πn
t−1(Kt−1f ) and using the independence of the sample {x̄ (i)

t }n
i=1

conditional on Ft−1,
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E
[(

pn
t f − πn

t−1(Kt−1f )
)2 | Ft−1

]
=

1
n2E

( n∑
i=1

f
(

x̄ (i)
t

)
− Kt−1f

(
x (i)

t−1

))2
∣∣∣∣∣∣ Ft−1


=

1
n2

n∑
i=1

E
[(

f
(

x̄ (i)
t

))2
| Ft−1

]

− 1
n2

n∑
i=1

(
E
[
Kt−1f

(
x (i)

t−1

)
| Ft−1

])2

=
1
n
πn

t−1

(
Kt−1f 2 − (Kt−1f )2

)
.

Therefore E[(pn
t f − πn

t−1Kt−1f )2] ≤ ∥f∥2
∞/n and the first limit in b1. is satisfied.

The second limit in b1. follows from Exercise 7.
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Corollary 15. For all 0 ≤ t ≤ T , there exists a constant kt such that

E
[
(πn

t f − πt f )2] ≤ kt∥f∥2
∞

n
, (25)

for all f ∈ B(Rd ).

Proof. We proceed by induction. Since {x (i)
0 , i = 1, . . . , n} is an

n-independent sample from π0,

E
[
(πn

0 f − π0f )2] ≤ ∥f∥2
∞

n
,

hence by Jensen’s inequality (25) is true for t = 0 with k0 = 1. Now assume
that (25) holds at time t − 1. Then

E
[
(πn

t−1(Kt−1f )− πt−1(Kt−1f ))2] ≤ kt−1∥Kt−1f∥2
∞

n
≤ kt−1∥f∥2

∞
n

. (26)

Also from the proof of Theorem 14

E
[(

pn
t f − πn

t−1Kt−1f
)2
]
≤ ∥f∥2

∞
n

. (27)
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By using inequality (11) and the triangle inequality for the L2-norm

E
[
(pn

t f − pt f )
2
]
≤ k̂t∥f∥2

∞
n

. (28)

where k̂t = (
√

kt−1 + 1)2. In turn, (28) and (13) imply that

E
[
(π̄n

t f − πt f )
2
]
≤ k̄t∥f∥2

∞
n

. (29)

where k̄t = 4k̂t∥gt∥2
∞/(ptgt)

2. From Exercise 7.

E
[
(πn

t f − π̄n
t f )2

]
≤ ct∥f∥2

∞
n

, (30)

where ct is the constant appearing in (20). Finally from (29), (30) and the
triangle inequality (15), (25) holds with kt = (

√
ct +

√
k̄t)

2. This completes the
induction step.

Dan Crisan (ICL) Convergence of PF and relation to DA 8 January 2014 56 / 65



. . . . . .

Talk Synopsis

Condition (20) is essential in establishing the above rate of convergence. A
more general condition than (20) is possible, for example, that there exists
α > 0 such that

q⊤An
t q ≤ nαct (31)

for any q ∈ [−1, 1]n. In this case, inequality (30) would become

E[(πn
t f − π̄n

t f )2
] ≤ ct∥f∥2

∞
n2−α

.

Hence the overall rate of convergence would take the form

E
[
(πn

t f − πt f )2] ≤ kt∥f∥2
∞

nmax(2−α,1) for all f ∈ B(Rd ). Hence if α > 1 we will see a
deterioration in the overall rate of convergence. On the other hand, if α < 1 no
improvement in the rate of convergence is obtained as the error in all the
other steps of the particle filter remains of order 1/n. So α = 1 is the most
suitable choice for condition (20).
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Concluding remarks

Theorem 5 provides an efficient technique for proving convergence of
particle algorithms. The necessary and sufficient conditions stated in the
theorem are natural and easy to verify.
They can be applied when the algorithms studied provide both πn

t (the
approximation to πt ) and also pn

t (the intermediate approximation to pt ).
Algorithms are possible where πn

t is obtained from πn
t−1 without using the

approximation for pt . In other words one can perform the mutation step
using a different transition from that of the signal. In the statistics
literature, the transition kernel Kt is usually called the importance
distribution. Should a kernel (or importance distribution) K̄t be used
which is different from that of the signal Kt , the form of the weights
appearing in the selection step of the particle filter must be changed. The
results presented above then apply for pt now given by K̄t−1πt−1 and the

weighted measure π̄n
t defined in (9) given by π̄n

t =
n∑

i=1

w̄ (i)
t δx̄ (i)

t
,where w̄ (i)

t

are the new weights.
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The randomness introduced in the system at each selection step must be
kept to a minimum as it affects the rate of convergence of the algorithm.
Therefore one should not apply the selection step after every new
observation arrives. Assume that the information received from the
observation is ‘bad’ (i.e. the signal to noise ratio is small). Because of
this, the likelihood function is close to being constant and the
corresponding weights are all (roughly) equal, w̄ (i)

t ≃ 1/n. In other words,
the observation is uninformative – it cannot distinguish between different
sites and all particles are equally likely. In this case no selection
procedure needs to be performed. The observation is stored in the
weights of the approximation π̄n

t and carried forward to the next step. If a
correction procedure is nevertheless performed and ξt has a minimal
variance distribution, all particles will have a single offspring ‘most of the
time’. In other words the system remains largely unchanged with high
probability. However with small probability, the i th particle might have no
offspring (if w̄ (i)

t < 1/n) or two offspring (if w̄ (i)
t > 1/n). Hence

randomness still enters the system and this can affect the convergence
rates. If ξt does not have a minimal variance distribution, the amount of
randomness is even higher. It remains an open question as to when and
how often one should use the selection procedure.
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High dimensional problems are harder than their low dimensional
counterparts. Example:
Consider

Π1 = N ((0, . . . ,0), Id ) (mean (0, . . . , 0) and covariance matrix Id ).
Π2 = N ((1, . . . ,1), Id ) (mean (1, . . . , 1) and covariance matrix Id ).
d(Π1,Π2)TV = 2P [ |X | ≤ d/2 ], X ∼ N(0, 1).
as d increases, the two measures get further and further apart, becoming
singular w.r.t. each other exponentially fast.
it becomes increasingly harder to construct a sample from Π2 by using a
proposal from Π1.

Solution: The problem of ‘moving’ from Π1 to Π2 is equivalent to that of
moving from a standard normal distribution N (0, 1) to a normal distribution
N (d , 1) (the total variation distance between N (0, 1) and N (d , 1) is the same
as that between Π1 and Π2). Rather than jumping from N (0,1) to N (d ,1) in
one step we get there in d steps: at each step moving from N (k − 1, 1) to
N (k ,1) for index k = 1,2, . . . , d . This algorithm can be immediately
transferred to the corresponding multidimensional set-up.
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2D Stochastic Navier-Stokes equation on the torus T2 , [0, L)× [0,L) with
periodic boundary conditions:

∂u
∂t

− ν∆u + u · ∇u +∇p = f + W (t , x) for all (x , t) ∈ T2 × (0,∞), (32)

∇ · u = 0 for all (x , t) ∈ T2 × (0,∞),

u(x , 0) = u0(x) for all x ∈ T2.

u : T2 × [0,∞) → R2 - the velocity
p : T2 × [0,∞) → R2 - the pressure
f : T2 → R2 - the forcing
W (t , x) - noise
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u =
∑

k∈Z2\{0}

uk (t)ψk (x).

where

ψk (x) ,
k⊥

|k |
exp

(
2πik · x

L

)
k = (k1, k2)

⊤ ∈ Z2 \ {0} k⊥ = (k2,−k1)
⊤.

The equations for the modes:

duk (t) =

−νλk uk (t)− αl,j
k

∑
l+j=k

ul(t)uj(t) + fk

 dt + εk dW k
t .

We approximate the modes uk (t), with ũk (t) for each k ∈ Z \ {0} with
|2πk |2 < λL2:

dũk (t) =

(
−νλk ũk (t)− αl,j

k

∑
Γ

ũl(t)ũj(t) + fk

)
dt + εk dW k

t ; (33)

where the set Γ ,
{
(l , j)

∣∣∣l + j = k and |2πl |2 < λL2 and |2πj |2 < λL2
}

.
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Model parameters

• we use k1, k2 = −32, ...,0, ...32 (i.e. a 642 grid for the discrete fourier
components).
• Smoothing problem approximate p(x0|y1:5) where each yi is a 4x4 grid on
the torus and

yi(j) = u(xj , ti) + N(0, 0.2).

• the dynamics are initialised by a random sample from the prior N(0, δAα)
• for the prior, δ = 5 and α = 2.2.
• torus size is 2π.
• forcing is ∇cos(κ · x) with κ = (1, 1) for the stationary regime and κ = (5, 5)
for the chaotic regime
• ν is 1/50 for chaotic and 1/10 for stationary

MCMC plot: computational cost involving 9 × 105 calls of the PDE solver, with
the slow mixing need more than 9 days for a decent but not super-reliable
answer.

SMC plots: parallel computing computation cost involving 14 × 105 calls of the
PDE solver N = 1000 particles need 7.4 hours.
Numerics done by N. Kantas (Imperial College London).
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Future work

Topics for future work:

systematic exploration of DA/stochastic filtering for multi-scale processes
mathematical theory for DA/stochastic filtering in an infinite-dimensional
state space
stochastic filtering/DA under systematic model and representation errors
(e.g. numerical approximation or parametrization errors)
combined state and parameter estimation
observation networks, quality of data, etc.
proposal steps and nonlinear ensemble transform filters
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