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Motivations for data assimilation

Environmental and geophysical studies : forecast the natural evolution

 retrieve at best the current state (or initial condition) of the environment.

Geophysical fluids (atmosphere, oceans, . . .) : turbulent systems =⇒ high

sensitivity to the initial condition =⇒ need for a precise identification (much

more than observations)

Environmental problems (ground pollution, air pollution, hurricanes, . . .) :

problems of huge dimension, generally poorly modelized or observed

Data assimilation consists in combining in an optimal way the observations of

a system and the knowledge of the physical laws which govern it.

Main goal : identify the initial condition, or estimate some unknown parame-

ters, and obtain reliable forecasts of the system evolution.
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Data assimilation

t

Observations

Model

combination

model + observations

⇓

retrieve the best possible

state of a geophysical system

Fundamental for a chaotic system (atmosphere, ocean, . . .)

Issue : These systems are generally irreversible

Goal : Combine models and data

Typical inverse problem : retrieve the system state from sparse and noisy

observations
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Forward nudging

Let us consider a model governed by a system of ODE :

dX

dt
= F (X), 0 < t < T,

with an initial condition X(0) = x0.

Yobs(t) : observations of the system

H : observation operator.




dX

dt
= F (X)+K(Yobs −H(X)), 0 < t < T,

X(0) = X0,

where K is the nudging (or gain) matrix.

In the linear case (where F is a matrix), the forward nudging is called

Luenberger or asymptotic observer.
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Forward nudging

– Meteorology : Hoke-Anthes (1976)

– Oceanography (QG model) : De Mey et al. (1987), Verron-Holland (1989)

– Atmosphere (meso-scale) : Stauffer-Seaman (1990)

– Optimal determination of the nudging coefficients :

Zou-Navon-Le Dimet (1992), Stauffer-Bao (1993),

Vidard-Le Dimet-Piacentini (2003)

Lakshmivarahan-Lewis (2011)
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Forward nudging : linear case

Luenberger observer, or asymptotic observer

(Luenberger, 1966)





dXtrue

dt
= FXtrue, Yobs = HXtrue,

dX

dt
= FX+K(Yobs −HX).

d

dt
(X −Xtrue) = (F−KH)(X −Xtrue)

If F − KH is a Hurwitz matrix, i.e. its spectrum is strictly included in the

half-plane {λ ∈ C;Re(λ) < 0}, then X → Xtrue when t→ +∞.
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Backward nudging

How to recover the initial state from the final solution ?

Backward model :





dX̃

dt
= F (X̃), T > t > 0,

X̃(T ) = X̃T .

If we apply nudging to this backward model :





dX̃

dt
= F (X̃)−K(Yobs −HX̃), T > t > 0,

X̃(T ) = X̃T .
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BFN : Back and Forth Nudging algorithm

Iterative algorithm (forward and backward resolutions) :

X̃0(0) = Xb (first guess)





dXk

dt
= F (Xk)+K(Yobs −H(Xk))

Xk(0) = X̃k−1(0)





dX̃k

dt
= F (X̃k)−K ′(Yobs −H(X̃k))

X̃k(T ) = Xk(T )

[Auroux - Blum, C. R. Acad. Sci. Math. 2005]

If Xk and X̃k converge towards the same limit X, and if K = K ′, then X

satisfies the state equation and fits to the observations.
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Choice of the direct nudging matrix K

Implicit discretization of the direct model equation with nudging :

Xn+1 −Xn

∆t
= FXn+1 +K(Yobs −HXn+1).

Variational interpretation : direct nudging is a compromise between the mini-

mization of the energy of the system and the quadratic distance to the obser-

vations :

min
X

[
1

2
〈X −Xn, X −Xn〉 −

∆t

2
〈FX,X〉 +

∆t

2
〈R−1(Yobs −HX), Yobs −HX〉

]
,

by chosing

K = kHTR−1

where R is the covariance matrix of the errors of observation, and k is a scalar.

[Auroux-Blum, Nonlin. Proc. Geophys. 2008]
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Choice of the backward nudging matrix K
′

The feedback term has a double role :

• stabilization of the backward resolution of the model (irreversible system)

• feedback to the observations

If the system is observable, i.e. rank[H,HF, . . . ,HFN−1] = N , then there

exists a matrix K ′ such that −F −K ′H is a Hurwitz matrix (pole assignment

method).

Simpler solution : one can define K ′ = k′HTR−1, where k′ is e.g. the smallest

value making the backward numerical integration stable.
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Example of convergence results

Viscous linear transport equation :




∂tu− ν∂xxu+ a(x)∂xu = −K(u− uobs), u(x, t = 0) = u0(x)

∂tũ− ν∂xxũ+ a(x)∂xũ = K ′(ũ− uobs), ũ(x, t = T ) = uT (x)

We set w(t) = u(t) − uobs(t) and w̃(t) = ũ(t) − uobs(t) the errors.

• If K and K ′ are constant, then ∀t ∈ [0, T ] : w̃(t) = e(−K−K′)(T−t)w(t)

(still true if the observation period does not cover [0, T ])

• If the domain is not fully observed, then the problem is ill-posed.

Error after k iterations : wk(0) = e−[(K+K′)kT ]w0(0)

 exponential decrease of the error, thanks to :

• K +K ′ : infinite feedback to the observations (not physical)

• T : asymptotic observer (Luenberger)

• k : infinite number of iterations (BFN) [Auroux-Nodet, COCV 2011]
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Shallow water model

∂tu− (f + ζ)v + ∂xB =
τx

ρ0h
− ru+ ν∆u

∂tv + (f + ζ)u+ ∂yB =
τy

ρ0h
− rv + ν∆v

∂th+ ∂x(hu) + ∂y(hv) = 0

• ζ = ∂xv − ∂yu is the relative vorticity ;

• B = g∗h +
1

2
(u2 + v

2) is the Bernoulli potential ;

• g∗ = 0.02 m.s−2 is the reduced gravity ;

• f = f0 + βy is the Coriolis parameter (in the β-plane approximation), with f0 =

7.10−5 s−1 and β = 2.10−11 m−1.s−1 ;

• τ = (τx, τy) is the forcing term of the model (e.g. the wind stress), with a maximum

amplitude of τ0 = 0.05 s−2 ;

• ρ0 = 103 kg.m−3 is the water density ;

• r = 9.10−8 s−1 is the friction coefficient.

• ν = 5 m2.s−1 is the viscosity (or dissipation) coefficient.
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Shallow water model

2D shallow water model, state = height h and horizontal velocity (u, v)

Numerical parameters : (run example)

Domain : L = 2000 km × 2000 km ; Rigid boundary and no-slip BC ; Time

step = 1800 s ; Assimilation period : 15 days ; Forecast period : 15 + 45 days

Observations : of h only (∼ satellite obs), every 5 gridpoints in each space

direction, every 24 hours.

Background : true state one month before the beginning of the assimilation

period + white gaussian noise (∼ 10%)

Comparison BFN - 4DVAR : sea height h ; velocity :u and v.
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Convergence - perfect obs.
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Comparison - noisy obs.

Top : identified initial

condition after 5 ite-

rations of BFN and

4D-VAR.

Bottom : true initial

condition and background

state.
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Comparison - noisy obs.

Corresponding states at

the end of the forecast per-

iod (45 days) : BFN, 4D-

VAR, true, background.
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BFN-preprocessed 4D-VAR
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Diffusion problem

Backward model and diffusion :

The main issue of the BFN is : how to handle diffusion processes in the

backward equation ?

Let us consider only diffusion : heat equation (in 1D)

∂tu = ∂xxu

The backward nudging model will be :

∂tũ = ∂xxũ+K(ũ− uobs)

from time T to 0. By using a change of variable t′ = T − t, we can rewrite the

backward model as a forward one :

∂t′ ũ = −∂xxũ−K(ũ− uobs),

and we can see that even if the nudging term stabilizes the model, the backward

diffusion is a real issue.
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Numerically, one can solve the backward diffusion equation (with nudging), as

the eigenvalues of the discrete Laplacian are bounded, but all eigenvalues are

positive, and shifting all the spectrum is not very physical.

From a theoretical point of view, the spectrum of ∆ is included in R
− and

once again, the eigenvalues of −∆ are all positive, and unbounded. Even if the

original function has no high frequencies, the correction term (and numerical

approximations) will ensure the presence of high frequencies ⇒ (positive)

exponential divergence in time (with high coefficients !).

⇒ big issue ?
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Diffusion problem

Hopefully, in geophysical problems, diffusion is not a dominant term. The

model has smoothing properties, and diffusion is small → diffusion processes

are not highly unstable in backward mode, even if the model is clearly unstable

without nudging.

Theoretically, there is a problem :

• Viscous linear transport equation : if the support of K is a strict

sub-domain (i.e. some parts of the space domain are not observed), there

does not exist a solution to the backward model, even in the distribution

sense.

• Viscous Burgers equation : even if K is constant (in time and space ⇒

full observations), the backward equation is ill-posed, as there is no stability

(or continuity) with respect to the initial condition.

Without viscosity, one can prove the convergence of the BFN on these equa-

tions.
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Diffusive BFN

Diffusive free equations in the geophysical context :

In meteorology or oceanography, theoretical equations are usually diffusive

free (e.g. Euler’s equation for meteorological processes).

In a numerical framework, a diffusive term is added to the equations (or

a diffusive scheme is used), in order to both stabilize the numerical inte-

gration of the equations, and take into consideration some subscale phenomena.

Example : weather forecast is done with Euler’s equation (at least in Météo

France. . .), which is diffusive free. Also, in quasi-geostrophic ocean models,

people usually consider ∇4 or ∇6 for dissipation at the bottom, or for vertical

mixing.
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Diffusive BFN

Standard BFN algorithm :

Original model :

∂tX = F (X), 0 < t < T.

Corresponding BFN algorithm :




∂tXk = F (Xk)+K(Yobs −H(Xk)),

Xk(0) = X̃k−1(0), 0 < t < T,





∂tX̃k = F (X̃k)−K ′(Yobs −H(X̃k)),

X̃k(T ) = Xk(T ), T > t > 0,

with the notation X̃0(0) = x0.
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Diffusive BFN

Addition of a diffusion term :

∂tX = F (X)+ν∆X, 0 < t < T,

where F has no diffusive terms, ν is the diffusion coefficient, and we assume

that the diffusion is a standard second-order Laplacian (could be a higher

order operator).

We introduce the D-BFN algorithm in this framework, for k ≥ 1 :




∂tXk = F (Xk)+ν∆Xk+K(Yobs −H(Xk)),

Xk(0) = X̃k−1(0), 0 < t < T,





∂tX̃k = F (X̃k)−ν∆X̃k−K
′(Yobs −H(X̃k)),

X̃k(T ) = Xk(T ), T > t > 0.
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Diffusive BFN

It is straightforward to see that the backward equation can be rewritten, using

t′ = T − t :

∂t′X̃k = −F (X̃k)+ν∆X̃k+K ′(Yobs −H(X̃k)), X̃k(t′ = 0) = Xk(T ),

where X̃ is evaluated at time t′. As it is now forward in time, this equation can

be compared with the forward nudging equation :

∂tXk = F (Xk)+ν∆Xk+K(Yobs −H(Xk)), Xk(0) = X̃k−1(t
′ = T ).

Then the backward equation can easily be solved, with an initial condition,

and the same diffusion operator as in the forward equation. Only the physical

model has an opposite sign.

The diffusion term both takes into account the subscale processes and stabilizes

the numerical backward integrations, and the feedback term still controls the

trajectory with the observations.
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Convergence of D-BFN

We assume here that the model F and the observation operator H are linear.

Let us define the following operator that corresponds to one forward + one

backward integrations :

ψ : (X1(0), Yobs(0)) 7→ X̃1(0).

This operator is linear in the initial conditions, so that there exist C and D

linear operators such that

X2(0) = ψ(X1(0), Yobs(0)) = ψ(X1(0), 0)+ψ(0, Yobs(0)) = CX1(0) +DYobs(0).

So that the initial state Xk+1(0) of the (k + 1)th D-BFN iteration satisfies :

Xk+1(0) = Ckx0 +

(
k−1∑

m=0

Cm

)
DYobs(0)

CAOS, IISc, Bangalore, 13 July 2011 27/40



Convergence of D-BFN

If the spectrum of C is included in [−ρ; ρ], with ρ < 1, then Ck → 0 and
k∑

m=0

Cm → (I − C)−1 when k → ∞. Therefore, in that case, Xk(0) converges

as k goes to infinity to X∞ solution of

X∞ = (I − C)−1DYobs(0)
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Linear transport equation

∂tu+ a(x) ∂xu = 0, t ∈ [0, T ], x ∈ Ω, u(t = 0) = u0 ∈ L2(Ω)

with periodic boundary conditions, and we assume that a ∈W 1,∞(Ω).

Numerically, for both stability and subscale modelling, the following equation

would be solved :

∂tu+ a(x) ∂xu = ν∂xxu, t ∈ [0, T ], x ∈ Ω, u(t = 0) = u0 ∈ L2(Ω),

where ν ≥ 0 is assumed to be constant.
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Linear transport equation

Let us assume that the observations satisfy the physical model (without diffu-

sion) :

∂tuobs + a(x) ∂xuobs = 0, t ∈ [0, T ], x ∈ Ω, uobs(t = 0) = u0
obs ∈ L2(Ω).

We assume in this idealized situation that the system is fully observed (and H

is then the identity operator).

Then the D-BFN algorithm applied to this problem gives, for k ≥ 1 :





∂tuk+a(x) ∂xuk = ν∂xxuk+K(uobs,k − uk),

t ∈ [2(k − 1)T, 2(k − 1)T + T ], x ∈ Ω

uk(2(k − 1)T, x) = ũk−1(2(k − 1)T, x)




∂tũk−a(x) ∂xũk = ν∂xxũk+K(ũobs,k − ũk),

t ∈ [2kT − T, 2kT ], x ∈ Ω

ũk(2kT − T, x) = uk(2kT − T, x).
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Energy estimate

dt‖u‖
2 ≤ −2ν‖∂xu‖

2 − (2K − ‖∂xa‖∞)‖u‖2≤ −δ‖u‖2,

where δ = 2K − ‖∂xa‖∞ is non negative for K large enough. Therefore

‖Cu0‖
2 ≤ e−2δT ‖u0‖

2, so that ‖C‖ < 1 and convergence is ensured. Note

that it is totally independent of ν ⇒ one can consider very small diffusion

coefficients.

In the special case where a(x) = a ∈ R, we can change variables to straighten

characteristics as follows. Setting vk(t, y) = uk(t, y + a(t − 2(k − 1)T )) and

ṽk(t, z) = ũk(t, z − a(t− 2kT )) leads to

∂tvk = ν∂yyvk +K(u0
obs(y) − vk), ∂tṽk = ν∂zz ṽk +K(u0

obs(z) − ṽk).
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Smoothing equation

At the limit k → ∞, vk and ṽk tend to v∞(x) solution of

ν∂xxv∞ +K(u0
obs(x) − v∞) = 0,

or equivalently

−
ν

K
∂xxv∞ + v∞ = u0

obs.

This equations is well known in signal or image processing, as being the stan-

dard linear diffusion restoration equation. In some sense, v∞ is the result of a

smoothing process on the observations uobs, where the degree of smoothness is

given by the ratio ν
K

.
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Numerical experiments
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Numerical experiments

Linear transport equation with non-constant transport :
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Burgers equation

1D inviscid Burgers equation :

∂u

∂t
+

1

2

∂u2

∂x
= 0,

with a given initial condition u(x, 0) and periodic boundary conditions.

Diffusive BFN :




∂uk

∂t
+

1

2

∂u2
k

∂x
= ν

∂2uk

∂x2
+K(uobs −H(uk)), 0 < t < T, 0 < x < L,

uk(x, 0) = ũk−1(x, 0), 0 < x < L,





∂ũk

∂t
+

1

2

∂ũ2
k

∂x
= −ν

∂2ũk

∂x2
−K ′(uobs −H(ũk)), 0 < t < T, 0 < x < L,

ũk(x, T ) = uk(x, T ), 0 < x < L.
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Numerical experiments

Inviscid Burgers equation : creation of shocks in finite time
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Numerical experiments

Comparison with a variational method :

Comparison between D-BFN and variational algorithms in the case of sparse

and noisy observations on Burgers’ equation with shock.
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Numerical experiments

Forecast error (difference between the true trajectory and the solutions of the

direct model initialized with the identified solutions) for D-BFN and VAR

algorithms, with sparse (nx = 4 = nt) and noisy observations (15% noise).
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Conclusions

Back and Forth Nudging algorithm :

• Easy implementation (no linearization, no adjoint state, no minimization

process)

• Very efficient in the first iterations (faster convergence)

• Lower computational and memory costs than other DA methods

• Stabilization of the backward model

• Excellent preconditioner for 4D-VAR (or Kalman filters)

Diffusive BFN algorithm :

• Converges even faster, with smaller backward nudging coefficients

• Still produces very precise forecasts

• . . .
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Perspectives

Under investigation :

• Tests on a full primitive model (NEMO ocean model) : PhD thesis of G.

Ruggiero (Univ. Nice), very promising results on twin experiments with

D-BFN (while it was hard to make the backward model converge with the

standard BFN)

• + perspectives of the standard BFN : correction of non-observed variables

from the knowledge of only the SSH ; efficient resolution of Riccati-like equa-

tions for a better backward nudging matrix ; . . .
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