Coalescence and explosion of compact neutron star binaries - numerical relativity study -

Masaru Shibata

Yukawa Institute for Theoretical Physics, Kyoto University

In collaboration with Hotokezaka, Kiuchi, Kyutoku, Sekiguchi

Contents

- **1. Brief introduction**
- 2. Gravitational waves & EOS
- 3. Merger as high-energy phenomena
- 4. Electromagnetic counter parts

Galactic compact NS-NS observed

	PSR	P(day)	е	$M(M_{sur})$	$_{1}) M_{1}$	M_2	T _{GW}
1.	B1913+16	0.323	0.617	2.828	1.387	1.441	2.45
2.	B1534+12	0.421	0.274	2.678	1.333	1.345	22.5
3.	B2127+11C	0.335	0.681	2.71	1.35	1.36	2.2
4.	J0737-3039	0.102	0.088	2.58	1.35	1.24	0.85
5.	J1756-2251	0.32	0.18	2.58	1.31	1.26	1.69

4+1(GC) NS-NS, which will merge in *10⁸ yrs Hubble time (13.7 Gyr), have been found. Merger time

- → Galactic merger rate $\sim 1/10^4 1/10^6$ yrs
- \rightarrow Merger in the Universe ~ $10^5 10^7$ / yrs
- → Event-rate for aLIGO/VIRGO/KAGRA ~ 1 100 /yrs (e.g. Kalogera+, 2007, Belczyski+, ...)

Why NS-NS/BH-NS are important?

- 1. The most promising sources of gravitational waves
- 2. Invaluable laboratory for studying high-density nuclear matter
- 3. Possible origins of short-hard GRBs
- 4. Sources of strong EM emission

I Gravitational waves & EOS

Status & Issues in numerical relativity

Evolution of NS-NS

EOS is stiff: but still too many candidates

Radius (km)

Two interesting phases

Both waveforms could be used for constraining EOS of neutron stars

Tidal effects in a binary inspiral

(originally pointed out by Lai+1992)

Close Binary System \rightarrow Tidal deformation \rightarrow Quadrupole is induced $A \sim 2 \frac{GM}{2}$ 5PN correction (very high): But $C \sim MR^5$, $R \sim 5 - 8 M$ For $r \sim 2R$, it could play a role.

*hh#M(M,C)C*₁₂₁₂

Latest EOB study (Damour, Nagar + 2012)

A static tidal approximation:

Quadrupole moment = $-\lambda$ (tidal field); linear approx.

Fourier spectrum

Relation between peak and radius

GWs from NSNS: summary

- If D < 100 Mpc, late inspiral waveforms could be used to constrain EOS (aLIGO/ VIRGO/KAGRA)
- If D < ~ 30 Mpc, merger waveforms could be used to constrain EOS (aLIGO/VIRGO/ KAGRA)
- ET will be the robust detector for exploring EOS of NS

Kyutoku + PRD 2011: Piece-wise polytropic EOS

Condition for tidal disruption

BH tidal force > NS self-gravity

f h_f 100Mpc

With BH spin & high-mass BH

For all, $a=0.75 \ 1.35 - 5.4M_{sun}$

fľh(f)at 100Mpc

Latest systematic study (Lackey, Kyutoku+ '13) > 100 simulations

For all, $a=0.50 \ 1.35 - 4.05 M_{sun}$

Fisher analysis with hybrid waveforms (Lackey, Kyutoku + '13)

GWs from BH-NS binaries

- For the case that tidal disruption occurs, GWs have a characteristic feature
- Tidal disruption occurs only for low-mass BH for zero BH spin.
 But, tidal disruption occurs for a realistic mass of BH is BH spin > ~0.5
- GWs from tidal disruption events could be used for constraining EOS
- > In particular, ET will be powerful

II Merger as high-energy phenomena: Theoretical study for short-hard GRB models

NS-NS simulation with microphysics Contour in x-z plane; only after the merger

- High-neutrino luminosity near pole (white region)
- Now, no neutrino heating, pair annihilation

 $BH(a=0, M=4.05M_{sun}) - NS(1.35M_{sun})$: New

- Neutrino luminosity is also high ~ 10^{53} erg/s:
- In the presence of viscosity/B-field, the luminosity could be enhanced.

Could supply SGRB power

- Neutrino heating and pair creation are important
- We should take into account them in the future

Evolution of magnetic energy

▶ Saturation level \approx 6-7 10⁴⁸ erg (2-3 % of kinetic energy)

Status

- Simulations with neutrino-heating and finite-temperature EOS is ongoing (Kyoto, Caltech/Cornell/CITA/Was)
- High-resolution simulation with B-field is ongoing (AEI, Kyoto, Illinois...)
- Simulation with microphysics & high-res
 B-field is next step

III Electromagnetic counter parts

Summary by Metzger & Berger, 2012

Mass ejection and EM counter parts

- Neutron-rich & high-velocity ejecta could generate observable EM signals via
- Kilo-nova/Macro-nova: Production and Decay of r-process-heavy nuclei (Li & Paczynski 1998, Kulkarni 05, Metzger+ '10, Barnes+ '13, Tanaka-Hotokezaka '13) Required mass >~0.01 M_{sun}
- ➤ Long-term radio flare (Nakar-Piran 2011) Required kinetic energy >~10⁴⁹ erg with a large v/c > ~0.1; need high-density of ISM

r-process $\rightarrow \beta$ -decay or fission \rightarrow heating material $\rightarrow UV \sim IR$

Li-Paczynski's estimate (i)

• Ejected material is heated by r-process elements, but initially the ejecta is optically thick

Li-Paczynski's estimate

At the Luminosity becomes maximum

3∰ **€**gs/s M15.0 mag

m=20 .0 mag @ 100Mpc

m=21.5 mag @ 200Mpc

These depend on mass, velocity, & opacity

Model luminosity curve of NS-NS@200Mpc (M. Takana & Hotokezaka, '13)

Long-term radio flare (Nakar & Piran 2011)

Ejecta sweeps interstellar matter → Shock → synchrotron emission

$M_{\rm ejecta} = -$	$\frac{4M}{3}\Xi_{IS}$ ($\left(\right)^{3}$	<i>t</i> [4	$\operatorname{yrs} \frac{\varphi}{\tau} \frac{\mathscr{A}M_{e}}{\overline{\dot{\varrho}}.000}$	$\frac{1/3}{30/2} \begin{array}{c} & & & & & \\ & & & & & \\ \hline & & & & & \\ \hline & & & &$	$\frac{\psi}{\varphi} = \frac{21}{\varphi} \frac{\varphi}{\varphi} \frac{\varphi}{\varepsilon}$	$n_{\rm IS}$ 21/3 -3
$F_{K} \mid \not \oplus 0 $	$y \frac{\varphi}{\varphi} \frac{E_{e}}{10}$	⁵⁰⁻³ ergs0.2	φ πφ φ έττε φ έφε	$\propto^{2.80.75} \varphi^{2.80} \eta_{\rm IS}$	$- \begin{array}{c} 0.9 \\ \tau \\ \tau \\ \phi \\ \epsilon \end{array}$	22	$\frac{K}{4 Hz}^{2}$
Radio Facility	Obs Freq. (GHz)	$ \begin{array}{c} {\rm Field} \\ {\rm of \ view} \\ {\rm (deg^2)} \end{array} $	$1 hr rms \mu Jy$	$ns^2 1 hr$ horizon [†] $n = 1 cm^{-3}$	$ns^2 10 hr$ horizon ^{††} $n = 0.1 cm^{-3}$	nsbh 1 hr horizon [†] $n = 1 \text{cm}^{-3}$	nsbh 10 hr horizon ^{††} $n = 0.1 \text{cm}^{-3}$
${f EVLA}^a \ {f ASKAP}^b \ {f MeerKAT}^c \ {f Apertif}^d \ {f LOFAR}^e$	$1.4 \\ 1.4 \\ 1.4 \\ 1.4 \\ 0.15$	$0.25 \\ 30 \\ 1.5 \\ 8 \\ 20$	$7\\30\\35\\50\\1000$	360 Mpc 170 Mpc 160 Mpc 135 Mpc 70 Mpc	200Mpc 100 Mpc 90 Mpc 75 Mpc 40 Mpc	1.8 Gpc 850Mpc 800 Mpc 670 Mpc 300Mpc	1.4 Gpc 700 Mpc 650 Mpc 550 Mpc 250 Mpc

Uncertainties: Mass and velocity as well as configuration

Many uncertainties

- Opacity → Significant difference between irontype and heavier r-process elements (Kasen et al. '13, Tanaka & Hotokezaka '13);
 → Opacity is quite high in the UV band
- Ejecta mass \rightarrow Need numerical relativity
- Ejecta speed \rightarrow Need numerical relativity
- Ejecta configuration \rightarrow Need numerical relativity
- R-process → More realistic simulations including electron fraction, neutrino heating/cooling

Many issues in numerical relativity and associated numerical works

First step: Merger of 1.3-1.4 M_{sun} NS: EOS=APR4; stiff but relatively soft: NS radius ~ 11 km

 $Log \rho (g/cm^3)$

t=0 ms

Much wider view: L ~ 1200 km

Amount of ejection depends strongly on EOS (Relatively) Soft EOS is favoured 0.01 APR4 Compact NS M_{*esc} (M_{sun}) **H4** MS1 Factor ~10 0.001 $0.0005 - 0.01 \ M_{sun}$ Large-radius NS 10 $(10^{50} erg)$ Compact NS Kinetic energy 1 $10^{49} - 10^{51}$ erg Factor ~10 E^{*esc} (Large-radius NS APR4 0.1 5 10 0 15 2_{6 esc} (10⁵⁰ erg) $t - t_{merge}$ (ms)

t - t_{merge} (ms)

Only ejecta with escape velocity is shown

Effect of morphology is important

Issue for the mass ejection

- Scenario basically OK
- First step: Properties of mass ejection should be clarified: total mass, energy, morphology, dependence on EOS & binary masses
- Are magnetic power and neutrino wind important for mass ejection ?
- <u>Advanced steps</u>: NR simulation data + r-process calculation; details of light-curve & spectrum ? (Many calculations were based on one-zone cal)
- Detailed study of fall back signal is interesting

Many things to do; new topic in NR

Summary

- Many systematic simulations for NS-NS and BH-NS coalescence are ongoing: Many gravitational waveforms are in hand.
- Quantitative modeling of GW is necessary
- Advanced numerical simulations (+neutrinos, magnetic fields, ...) are also ongoing: However, more detailed modeling with high grid resolution will be necessary
- Study for electromagnetic counter parts is new field that should be developed soon

BH formation case: APR4, mass=1.3-1.6M_{sun} Wider view: L ~ 1200 km

Kasen+ '13 (last week)

Smaller peak luminosity
→ Bad
Longer time scale
→ Good

Barnes-Kasen '13

Optical Search Following a GW Trigger

