# **Gravitational Astronomy: The Big Picture**

### International Centre for Theoretical Sciences Bangalore, India, June 25, 2013

B.S. Sathyaprakash

School of Physics and Astronomy, Cardiff University, UK



# What are Gravitational Waves?

In Newton's law of gravity the gravitational field satisfies the Poisson equation:  $\nabla^2 \Phi(t, \mathbf{X}) = 4\pi C o(t, \mathbf{X})$ 

 $\nabla^2 \Phi(t, \mathbf{X}) = 4\pi G \rho(t, \mathbf{X})$ 

Gravitational field is described by a scalar field, the interaction is instantaneous and no gravitational waves.

In general relativity for weak gravitational fields, i.e.

$$g_{\alpha\beta} = \eta_{\alpha\beta} + h_{\alpha\beta}, \quad |h_{\alpha\beta}| \ll 1$$

in Lorentz gauge, i.e.  $\bar{h}^{\alpha\beta}{}_{,\beta} = 0$ , Einstein's equations reduce to wave equations in the metric perturbation:

$$\left(-\frac{\partial^2}{\partial t^2} + \nabla^2\right)\bar{h}^{\alpha\beta} = -16\pi T^{\alpha\beta}.$$

Here  $\bar{h}_{\alpha\beta} = h_{\alpha\beta} - \frac{1}{2} \eta_{\alpha\beta} \eta^{\mu\nu} h_{\mu\nu}$  is the trace-reverse tensor.

# **Gravitational Wave Observables**

• Luminosity = Asymmetry factor  $x (v/c)^{10}$ 

 $= A symmetry \ factor \ x \ (M \, / \, R)^5$ 

- A strong function of velocity: During merger a binary black hole in gravitational waves outshines the entire Universe in light
- Amplitude from a source of size R at a distance D is

h = (Asymmetry factor) (M/D) (M/R)

- Gravitational wave detectors are essentially detectors of neutron stars and black holes
- Frequency of the waves is the dynamical frequency  $f \sim \sqrt{G\rho}$ 
  - For binaries dominant gravitational\_wave frequency is twice the orbital frequency: A binary of 20 solar masses merges at a frequency of 200 Hz
- **Polarization** is determined from a network of detectors
  - A single detector is sensitive only to a linear combination of the two polarizations

## Frequency\_Mass Diagram For Compact Binaries



# **Overview of the Talk**



# **Ultra Low Frequency**



# Planck Satellite

# **Planck Temperature Fluctuations**





Gravitational Waves can Escape from Earliest Moments of the Big Bang



Inflation (Big Bang plus 10<sup>-35</sup> seconds?)



# **Primordial Background and New Physics**

- Horizon scale stochastic radiation
- Gravitational waves can cause
  - Temperature anisotropies as well as specific polarization modes in CMB photons
- Detection can determine the energy scale of inflation
  - Larger the energy scale greater is the strength of the background
- •⊱ New physics
  - Need to have extra dimensions required by string theory



# **Very Low Frequency**



# Pulsar timing arrays: Use millisecond pulsars (MSPs) to detect gravitational waves

Pulsar Timing Array: a galactic-scale gravitational wave detector.



### Sensitive to very low frequency (~nHz) grav waves.

Pulsar Timing Arrays around the world:

Parkes Pulsar Timing Array (PPTA)

European Pulsar Timing Array (EPTA)

North American Nanohertz Observatory for Gravitational Waves (NANOGrav)

In combination, International Pulsar Timing Array (IPTA)!







# **Black Holes Undergo Frequent Merger**



# **Upper Limits on GW Stochastic Background**



Wednesday, 26 June 2013

16

# **Low Frequency**



# LISA: Laser Interferometer Space Antenna

# eLISA

- Consists of 3 spacecraft in heliocentric orbit
  - Distance between
     spacecraft ~ 1 million km
  - 10 to 30 degrees behind earth
- The three eLISA
   spacecraft follow Earth
   almost as a rigid triangle
   entirely due to celestial
   mechanics
  - The triangle rotates like a cartwheel as craft orbit the sun



19

# THE GRAVITATIONAL UNIVERSE

A General Science Theme addressed by the *eLISA* Survey Mission observing the entire Universe

#### eLISA Survey Mission





20

# **Growth of Supermassive Black holes**



# Visibility of SMBBH in eLISA

 Plot shows SNR contours as a function of intrinsic total mass and redshift

- Cosmological redshift makes binaries appear more massive than they actually are
- Even at z=20 SNRs can be pretty large



#### BBH Mergers in NGO are Loud: Understanding Black Hole Populations

- Masses can be measured to an accuracy of 0.1% to 1%
- Absolute errors in dimensionless spin in the range 0.01 to 0.1
- $\cdot$  For sources within z=1 distance could be measured to within 1 to 10%



### Milky Way's black hole – a 4 million solar mass monster

0



# Measuring the Kerr Geometry



# **High Frequency**





 Between 2006\_2010 larger detectors took 2 years worth of data at unprecedented sensitivity levels

American LIGO Hanford and Livingston detectors

 Between 2006\_2010 larger detectors took 2 years worth of data at unprecedented sensitivity levels



 Between 2006\_2010 larger detectors took 2 years worth of data at unprecedented sensitivity levels



 Between 2006\_2010 larger detectors took 2 years worth of data at unprecedented sensitivity levels



 Between 2006\_2010 larger detectors took 2 years worth of data at unprecedented sensitivity levels



 Between 2006\_2010 larger detectors took 2 years worth of data at unprecedented sensitivity levels

Advanced Detectors: Ca 2015-2025



# Detector Networks 2015-



# Detector Networks 2016-



# Detector Networks 2018-



Detector Networks 2022-

# **Detector Beam Pattern Function**

- Gives the sensitivity of a detector to sources at different parts of the sky
- For a single
   detector the beam
   is a quadrupole
- For a network of 5

   or more globally
   distributed
   detectors the
   pattern can
   essentially become
   isotropic



# Challenge of Gravitational Wave Searches

- A network of gravitational wave detectors is always on and sensitive to most of the sky
- Signals can be milliseconds long or last for years
- Multiple signals could be in band but with different amplitudes
- We can integrate and build SNR by coherently tracking signals in phase



# How confident our detections are likely to be? The Big Dog Event



# Advanced LIGO Sensitivity



36

# Advanced Detectors: Schedule and Sensitivity



# Advanced Detectors: Schedule and Sensitivity



# Advanced Detectors: Schedule and Sensitivity



#### Aasi et al 2013 (arXiv:1304.0670)

### Sources in advanced detectors



Beyond Advanced Detectors: Einstein Telescope







2008–2011 European Conceptual Design Study

2013\_2016 ET R&D

Underground detectors should have Significant reduction in GG





Wednesday, 26 June 2013

# ET's Null Stream

- Given a network of (two collocated and three or more non-collocated) detectors it is possible to construct a linear combination of the responses that is completely devoid of any gravitational waves
  - For detectors that are not collocated different linear combinations are required for different directions on the sky
- For ET the linear combination is the same for all directions on the sky
  - It is just the sum of the responses from the three triangular detectors
  - This is called the null stream and contains no gravitational wave signals
  - Extremely useful for understanding detector noise

### Sources in advanced detectors



### Sources in ET



### Fundamental Physics, Astrophysics and Cosmology with Ground Based Detectors

# Cosmology

### Cosmography

- Strengthen existing distance calibrations at high *z*
- Calibration\_free measurements of distance and cosmological parameters

### Black hole seeds

- Black hole seeds could be stellar mass or intermediate mass black holes
- Explore hierarchical growth of central engines of black holes

### Anisotropic cosmologies

 In an anisotropic Universe the distribution of H on the sky should show residual quadrupole and higher\_order anisotropies

#### Primordial gravitational waves

• Quantum fluctuations in the early Universe produce a stochastic b/g

### Production of GW during early Universe phase transitions

 Phase transitions, pre\_heating, re\_heating, etc., could produce detectable stochastic GW

# Probing black hole mergers at $z \sim 10-20$



# Hubble Constant from Advanced Detectors

EXPLORING SHORT GAMMA-RAY BURSTS AS GRAVITATIONAL-WAVE STANDARD SIRENS SAMAYA NISSANKE<sup>1,2</sup>, SCOTT A. HUGHES<sup>2</sup>, DANIEL E. HOLZ<sup>3</sup>, NEAL DALAL<sup>1</sup>, JONATHAN L. SIEVERS<sup>1</sup> Draft version April 7, 2009

we find that one year of observation should be enough to measure  $H_0$  to an accuracy of ~ 1% if SHBs are dominated by beamed NS-BH binaries using the "full" network of LIGO, Virgo, AIGO, and LCGT—admittedly,



49

# ET: Measuring Dark Energy and Dark Matter

- ET will observe 100's of binary neutron stars and GRB associations each year
- $\cdot$  GRBs could give the host location and red\_shift, GW observation provides D<sub>L</sub>

Class. Quantum Grav. 27 (2010) 215006

B S Sathyaprakash et al



**Figure 3.** Scatter plot of the retrieved values for  $(\Omega_{\Lambda}, w)$ , with 1- $\sigma$ , 2- $\sigma$  and 3- $\sigma$  contours, in the case where weak lensing is not corrected. **50** 

# Measuring w and its variation with z



# **Fundamental Physics**

- The two body problem in general relativity
- Properties of gravitational waves
  - Testing GR beyond the quadrupole formula
  - How many polarizations are there?
  - Do gravitational waves travel at the speed of light?
- EoS of dark energy
  - -> Black hole binaries are standard candles / sirens
- EoS of supra-nuclear matter
  - Signature of EoS in GW emitted when neutron stars merge
- Black hole no\_hair theorem and cosmic censorship
  - Are BH (candidates) of nature BH of general relativity?
- An independent constraint / measurement of neutrino mass
  - Delay in the arrival times of neutrinos and gravitational waves

# Binary black hole dynamics

- The signal from a binary black hole is characterized by
  - slow adiabatic inspiral the two bodies slowly spiral in towards each other; dynamics well described by post\_Newtonian approximation
  - fast and luminous merger phase; requires numerical solutions to Einstein equations
  - rapid ringdown phase; newly black hole emits quasi\_normal radiation
- The shape of the signal contains information about the binary



53

# Binary black hole waveforms

Amplitude

- The shape of the signal is determined by masses, spins and eccentricity
- The amplitude and • 🛃 • arrival times in different detectors are determined by the distance, direction, polarization and inclination



### Testing Black Hole No\_Hair Theorem

- Deformed black holes are unstable; they emit energy in their deformation as gravitational waves
  - Superposition of damped waves with many different frequencies and decay times
  - In Einstein's theory, frequencies and decay times all depend only on the mass *M* and spin *j* of the black hole
- Measuring two or modes would constrain Einstein's theory or provide a smoking gun evidence of black holes
  - If modes depend on other parameters (e.g., the structure of the central object), then test of the consistency between different mode frequencies and damping times would fail
- The amplitude of the modes cary additional information about what caused the deformity

Dreyer et al (2004), Berti, Cardoso, Will (2006), Berti Cardoso, Cardoso, Cavaglia (2007) 55

# Astrophysics

#### Unveiling progenitors of short\_hard GRBs

• Understand the demographics and different classes of short-hard GRBs

#### Understanding Supernovae

• Astrophysics of gravitational collapse and accompanying supernova?

#### Evolutionary paths of compact binaries

• Evolution of compact binaries involves complex astrophysics

#### Finding why pulsars glitch and magnetars flare

 What causes sudden excursions in pulsar spin frequencies and what is behind ultra high\_energy transients of EM radiation in magnetars

### • Ellipticity of neutron stars as small as 1 part in a billion $(10 \mu m)$

• Mountains of what size can be supported on neutron stars?

### NS spin frequencies in LMXBs

Why are spin frequencies of neutron stars in low\_mass X\_ray binaries bounded?

#### Onset/evolution of relativistic instabilities

• CFS instability and r\_modes

# **Binary Neutron Stars**

- These are systems we know exist and we should see them
- Rates are highly uncertain
  - Advanced detectors could see events in the range 0.5 to 400 per year
- Observed event rates will constrain models of formation and evolution of compact binaries
- Can measure masses and spins and possibly equation of state of supranuclear matter

#### See SB's talk on July 5



# **Progenitors of GRBs**

- What causes these giant explosions?
- What are the different classes of **GRBs**?
- Synergy between EM and GW Astronomy
  - •⊱ Distances measured with GW
  - Redshift measured with EM
  - Could potentially be very useful for cosmography

See SB's talk on July 5



# **Gravitational Astronomy**

- We expect gravitational waves to be detected before the end of this decade • >.
  - Detections could come from either Pulsar Timing Arrays or interferometers • 5.
- Scientific potential of future detectors, eLISA and ET, is huge • • • • •
- **Fundamental Physics** • >
  - Is the **nature of gravitational radiation** as predicted by Einstein? • 5.
  - Is Einstein theory the **correct theory** of gravity? • 5.
  - Are black holes in nature **black holes of GR** and are there **naked singularities?** • .>.
- Astrophysics
  - What is the nature of gravitational collapse? • 5
  - What is the origin of gamma ray bursts? • 5.
  - What is the **structure of neutron stars** and other compact objects? • >.
- Cosmology •.5
  - How did **massive black holes at galactic nuclei** form and evolve? • 5
  - What is dark energy? • >.
  - What phase transitions took place in the early Universe? • 5
  - What were the **physical conditions** at the big bang and what role did quantum gravity in • 5. the early evolution of the Universe