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-# Inthe early part of the 20 century Einstein’s theory of
gravity made three predictions
-»-  The Universe was born out of nothing in a big bang everywhere
-» Black holes are the ultimate fate of massive stars

-» Gravitational waves are an inevitable consequence of any
theory of gravity thatis consistent with special relativity

-» Today we have indirect evidence for all but have
directly observed none

-» The key to observing the first two is the new tool that
is provided by the last

-» In this lecture we will discuss what gravitational waves are and
how they can be used to explore the dark and dense Universe
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On Largest Scales Gravity Shapes the World

-® On the largest scales matter is electrically neutral

-» Stars and galaxies feel only the gravitational field of other
stars and galaxies

-» So far, gravity has played a passive role in our
exploration the Universe
-» Butthatis aboutto change
-» Over the next decade we expect to open a new
window on the Universe
- The gravitational window
-# This lecture will take you on a tour of what this
window is all about and what it might tell us about

the Universe
3
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What are Gravitational Waves?

In Newton’s law of gravity the gravitational field satisfies the Poisson
tion: ~
cauation V2d(t, X) = 47Gp(t, X)

Gravitational field is described by a scalar field, the interaction is
instantaneous and no gravitational waves.

In general relativity for weak gravitational fields, i.e.

-

.
< ]

.(/H.f— I}n.f+/’uf~ ‘/’nf

in Lorentz gauge,i.e. i_zo‘ﬁﬁ = (, Einstein’s equations reduce to wave
equations in the metric perturbation:

0> _
<_8752 + Vz) hP = —167T*P,

Here B@g = hap — %n&ﬁnﬂwhw is the trace_reverse tensor.
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Transverse_Traceless Gauge and Number of Degrees of
Freedom

Plane_wave solutions:
R = AP exp(2mik, xt), k. k¢ =
Gravitational waves travel at the speed of light.

Gauge conditions imply that A“’k; = 0. Further gauge conditions

1. A% =0 = Ak; = 0: Transverse wave; and
2. A7; = 0: Traceless wave amplitude.

For awave traveling in the z_directionthen k, = k, k, = k, = 0.
Gauge conditions, transversality and traceless conditions imply

AV = A% = (), A% = AVT AW = — A%

Only two independent amplitudes. Two independent degrees of
freedom for polarization: plus_polarization and cross_polarization.

)
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Tidal Effect of Gravitational Waves

In the TT gauge, the effect of a wave on a particle at rest
d* . 1
gz = oo = =5 (2o = hooi) = 0.
So a particle at rest remains atrest. TT gauge is a coordinate
system that is comoving with freely falling particles.

The waves have a tidal effect which can be seen by looking at the
change in distance between two nearby freely falling particles:

d? . . | .
36 = Rojot’ = Ghijon’, ‘

Isaacson showed that a spacetime with GW will have curvature
with the corresponding Einstein tensor given by

(GW) _ 1 17 77w
Gag = 87TTC<YSW) Taﬁ — 327Thpw ,ah . NeR
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Tidal Gravitational Forces

-»Gravitational effectof a 0 e oo cteiration
distant source can only

be felt through its tidal e
forces

-» Gravitational waves are The acceleration o ;,'mﬂ; [ e
traveling, time o LT LT

dependent tidal forces.

Residual acceleration of the Moon's gravity,
after subtracting the mean acceleration of the Earth.

-» Tidal forces scale with ¥
. . Earth
size, typically produce
elliptical deformations. " Tores o th Eath,
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GW Amplitude - Measure of Strain

-» Gravitational waves cause a strain in space as they pass

-» Measurement of the strain gives the amplitude of
gravitational waves
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Interferometric gravitational-wave
detectors

Wednesday, 26 June 2013




Interferometric gravitational-wave

detectors
I
T 3t
4 2 4
O/ For Typical Astronomical sources

O/ = ﬁl h—ZMSIO'22
2 [
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Gravitational Wave Flux

Flux of gravitational waves can be shown to be

(T(EW0) = (42 + A%)

where k= 2xfis the wave number. For a wave with an
amplitude h in both polarizations the energy flux is

F—szh2 Fgw—Qh2f2
| | gw = O MW 1><10—22] llkHz]

This is alarge flux (twice that of full Moon ) for even a source
with a very small amplitude: Integrating over a sphere of

radius r and assuming that the signal lasts for a duration z
gives the amplitude in terms of energy in GW

By 1/2 . “1r o7l
0.01Mc? [20 Mpc] [1 kHz]

- 1-1/2

h =102 [

1 ms
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Understanding Sources of
Gravitational Waves
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-»  Hybrid Models

-»- A mixture of post_Newtonian, NR and phenomenological approach

-»  Field Theoretical Approach
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Binary black hole dynamics

-# Thesignal from a binary black hole is characterized by

-» fastand luminous merger phase; requires numerical solutions to Einstein
equations
-» rapid ringdown phase; newly black hole emits quasi-normal radiation

.»-  The shape of the signal contains information about the binary

Ringdown
—

AN}
VA vmu”'

Adiabatic Inspiral

QL
z

5
et
a

=
<
=
O

Merge r

Wednesday, 26 June 2013



Two-Body Problem in General Relativity:

Application of Various Methods

3k Post-Newtonian
Theory

2—( \

4 Post-Newtonian
Theory
&
Perturbation 7/

Theory V4

\_’,

1 Numerical
Relativity

- J

Perturbation
Theory

0 1 2 3 4

[Blanchet et al. 10]

e Two parameters determine the

range of validity of each method:

Gm_ v’ mo
r19 C2 c2 m1

e EOB formalism can incorporate

results of different methods.

It can span the entire parameter
and provide GW detectors with
faithful templates.
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Numerical Relativity

-2~ Merger phase of binary neutron stars
-» Tidal ripping, bar mode instability, EM afterglows, off_axis emissions
-# Inspiral and merger of neutron star-black hole binaries

-»  Cumulative effect of black hole spin, precession of the orbital plane

-» Merger phase of binary black holes
-»  Effect of spin-orbitand spin_spin couplings
-» Quasi-normal mode excitation and the spectrum of modes for different
binary configurations

-»-  Phenomenological waveforms, effective one_body model, numerical
simulations
-» Supernovae
-»  Full 3-D simulations including all the necessary physical effects
(magneto_hydrodynamics, spin, neutrino viscosity, general relativity,

-# Small black holes and neutron stars falling into big black holes
16
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Analytical Models of Inspiral and Merger
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Challenges of Gravitational Wave
Searches
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wave detectors is always on
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sky

-»- Signals can be milliseconds
long or last for years

-» Multiple signals could be in
band but with different
amplitudes

-» We can integrate and build
SNR by coherently tracking
signals in phase but
-» Requires good algorithms
-» Alot computational power

-» Discrimination between noise
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Sources in advanced detectors
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Sources in Einstein Telescope
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Current Status of Gravitational Observations:
Science Runs:LIGOS1-S6 and VSR 1-3
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Virgo Science Run-2
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Gravitational Wave Searches
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Gravitational Wave Searches

-»-  Coherent search algorithms

> Sub_optimal techniques (e.g. hierarchical methods, time_frequency analysis,
etc.)

-»-  Template placement for generic signals and in arbitrary dimensions
.» Efficient parameter estimation methods
. Searches for compact binaries in more than 2 dimensions

-» Including the effect of spins on orbital dynamics, spin evolution
-»  Eccentricorbits and higher harmonics

-# Importance of higher-order post-Newtonian corrections

-» InGW searches and parameter estimation

-» Estimating the background and false alarm rate
-# Analysing data sets that are hours or days long

-»  Algorithms for parameter estimation when multiple signals are
present

26

Wednesday, 26 June 2013



Search Methods

27
Wednesday, 26 June 2013



Search Methods

-» Taking advantage of signal structure

27
Wednesday, 26 June 2013



Search Methods

-» Taking advantage of signal structure

- Searching for known signals

27
Wednesday, 26 June 2013



Search Methods

-» Taking advantage of signal structure

- Searching for known signals
-»  Matched filtering greatly improves signal visibility

27
Wednesday, 26 June 2013



Search Methods

-» Taking advantage of signal structure

- Searching for known signals
-»  Matched filtering greatly improves signal visibility

- Searching for unknown transients

27
Wednesday, 26 June 2013



Search Methods

-» Taking advantage of signal structure

- Searching for known signals
-»  Matched filtering greatly improves signal visibility

-» Searching for unknown transients

-» Look forexcess powerintime_frequency domain

27
Wednesday, 26 June 2013



Search Methods

-» Taking advantage of signal structure

- Searching for known signals
-»  Matched filtering greatly improves signal visibility

-» Searching for unknown transients
-» Look forexcess powerintime_frequency domain

-»  Not much difference between the two methods when the number of cycles ~ few

27
Wednesday, 26 June 2013



Search Methods

-» Taking advantage of signal structure

- Searching for known signals
-»  Matched filtering greatly improves signal visibility

-» Searching for unknown transients
-» Look forexcess powerintime_frequency domain

-»  Not much difference between the two methods when the number of cycles ~ few

-» Taking advantage of detector networks

27
Wednesday, 26 June 2013



Search Methods

-» Taking advantage of signal structure

- Searching for known signals
-»  Matched filtering greatly improves signal visibility

-» Searching for unknown transients
-» Look forexcess powerintime_frequency domain

-»  Not much difference between the two methods when the number of cycles ~ few

-» Taking advantage of detector networks

-»  Coincidence Searches: Cheaper and easier method

27
Wednesday, 26 June 2013



Search Methods

-» Taking advantage of signal structure

- Searching for known signals
-»  Matched filtering greatly improves signal visibility

-» Searching for unknown transients
-» Look forexcess powerintime_frequency domain

-»  Not much difference between the two methods when the number of cycles ~ few

-» Taking advantage of detector networks

-»  Coincidence Searches: Cheaper and easier method

-»  Separately analyse data from different detectors and look for coincidences

27
Wednesday, 26 June 2013



Search Methods

-» Taking advantage of signal structure

- Searching for known signals
-»  Matched filtering greatly improves signal visibility

-» Searching for unknown transients
-» Look forexcess powerintime_frequency domain

-»  Not much difference between the two methods when the number of cycles ~ few

-» Taking advantage of detector networks

-»  Coincidence Searches: Cheaper and easier method

-»  Separately analyse data from different detectors and look for coincidences
-»  Coherent searches: Computationally and algorithmically more
challenging

27
Wednesday, 26 June 2013



Search Methods

-» Taking advantage of signal structure

- Searching for known signals
-»  Matched filtering greatly improves signal visibility

-» Searching for unknown transients
-» Look forexcess powerintime_frequency domain

-»  Not much difference between the two methods when the number of cycles ~ few

-» Taking advantage of detector networks

-»  Coincidence Searches: Cheaper and easier method

-»  Separately analyse data from different detectors and look for coincidences
-»  Coherent searches: Computationally and algorithmically more
challenging

-»  Coherentintegration of data from different detectors

27
Wednesday, 26 June 2013



Search Methods

-» Taking advantage of signal structure

- Searching for known signals
-»  Matched filtering greatly improves signal visibility

-» Searching for unknown transients
-» Look forexcess powerintime_frequency domain

-»  Not much difference between the two methods when the number of cycles ~ few

-» Taking advantage of detector networks

-»  Coincidence Searches: Cheaper and easier method

-»  Separately analyse data from different detectors and look for coincidences
-»  Coherent searches: Computationally and algorithmically more
challenging

-»  Coherentintegration of data from different detectors

27
Wednesday, 26 June 2013



Gravitational wave searches

28
Wednesday, 26 June 2013



Gravitational wave searches

- Compact binary coalescences

-
B

28
Wednesday, 26 June 2013



Gravitational wave searches

- Compact binary coalescences

> Binary neutron stars — low-mass
searches

-
B

28
Wednesday, 26 June 2013



Gravitational wave searches

-»  Compact binary coalescences A A LA

.» Binary neutron stars _ low_mass i A o
searches

-»- Binary black holes — high-mass searches '

28
Wednesday, 26 June 2013



Gravitational wave searches

-»-  Compact binary coalescences e A

> Binary neutron stars — low-mass
searches

-» Binary black holes — high-mass searches

-» Unmodelled bursts of radiation

28
Wednesday, 26 June 2013



Gravitational wave searches

-» Compact binary coalescences

> Binary neutron stars — low-mass
searches

-
A0

-» Binary black holes — high-mass searches

-» Unmodelled bursts of radiation

- Un-triggered searches 2

28
Wednesday, 26 June 2013



Gravitational wave searches

-» Compact binary coalescences

> Binary neutron stars — low-mass
searches

ST
~

-» Binary black holes — high-mass searches

> Unmodelled bursts of radiation
-» Un-triggered searches

-»-  Searchestriggered by gamma-ray 2 , '
bursts, pulsar glitches, supernovae, etc. /.~ 7 / 7,

28
Wednesday, 26 June 2013



Gravitational wave searches

-»  Compact binary coalescences
- Binary neutron stars - low-mass
searches

-»  Binary black holes — high-mass searches
-» Unmodelled bursts of radiation

-» Un-triggered searches

JESES
i
.» Searches triggered by gamma-ray J , [ ! J; i
bursts,pulsarglitches,supernovae,etc../";."i/’f"/_/,.f'/,,"/,-"'_//' 771 ‘/ Jlf_' / "; / i \
.» Continuous waves from rapidly T LA e
rotating heutron stars

28
Wednesday, 26 June 2013



Gravitational wave searches

-»  Compact binary coalescences
- Binary neutron stars - low-mass
searches

-»  Binary black holes — high-mass searches
-» Unmodelled bursts of radiation

-» Un-triggered searches

JESES
i
.» Searches triggered by gamma-ray J , [ ! J; i
bursts,pulsarglitches,supernovae,etc../";."i/’f"/_/,.f'/,,"/,-"'_//' 771 ‘/ Jlf_' / "; / i \
.» Continuous waves from rapidly T LA e
rotating heutron stars

Radiation from known pulsars

28
Wednesday, 26 June 2013



Gravitational wave searches

-»-  Compact binary coalescences S A L A
> Binary neutron stars — low-mass o
searches

-»-  Binary black holes - high-mass searches

-» Unmodelled bursts of radiation
-5 Un_triggered searches
- Searches triggered by gamma-ray 2 “ L 74 1_»!
bursts,pulsarglitches,supernovae,etc../’:’.""’/’f;/"' ./// / ‘/ f / f /! i i
.» Continuous waves from rapidly i i
rotating heutron stars
Radiation from known pulsars
All sky, blind searches

28
Wednesday, 26 June 2013



Gravitational wave searches

-»-  Compact binary coalescences

Binary neutron stars - low-mass 0% . ' (1T
searches s K
-»-  Binary black holes — high-mass searches

-» Unmodelled bursts of radiation

JEBES
.»  Un_triggered searches ' | ‘.‘
-»-  Searchestriggered by gamma-ray 2% T f! ,'; !
bursts, pulsar glitches, supernovae, etc. /// /,-"_// // f ‘/ Jlf_‘ / "J / i \
.» Continuous waves from rapidly T LA e
rOtating heutron stars
-»- Radiation from known pulsars
-» Allsky, blind searches
..&.

Pulsars in binary systems

28
Wednesday, 26 June 2013



Gravitational wave searches

-»-  Compact binary coalescences

Binary neutron stars — low-mass
searches
c%-

Binary black holes —high_-mass searches
-» Unmodelled bursts of radiation

:l
|
-»  Un_triggered searches LA I | ‘i
-»-  Searchestriggered by gamma-ray S i B
bursts, pulsar glitches, supernovae, etc. / '
.»- Continuous waves from rapidly —

rotating neutron stars
-
..&.
..&.

Radiation from known pulsars
All sky, blind searches

Pulsars in binary systems
-»  Stochastic radiation

28
Wednesday, 26 June 2013



Gravitational wave searches

-»-  Compact binary coalescences

Binary neutron stars — low-mass
searches
c%-

Binary black holes —high_-mass searches
-» Unmodelled bursts of radiation

:l
|
-»  Un_triggered searches LA I | ‘i
-»-  Searchestriggered by gamma-ray S i B
bursts, pulsar glitches, supernovae, etc. / '
.»- Continuous waves from rapidly —

rotating neutron stars
-
..&.
..&.

Radiation from known pulsars
All sky, blind searches

Pulsars in binary systems

-® Stochastic radiation

Isotropic searches

28
Wednesday, 26 June 2013



Gravitational wave searches

-»-  Compact binary coalescences

Binary neutron stars — low-mass
searches
c%-

Binary black holes —high_-mass searches
-» Unmodelled bursts of radiation

:l
|
-»  Un_triggered searches LA I | ‘i
-»-  Searchestriggered by gamma-ray S i B
bursts, pulsar glitches, supernovae, etc. / '
.»- Continuous waves from rapidly —

rotating neutron stars
-
..&.
..&.

Radiation from known pulsars
All sky, blind searches

Pulsars in binary systems
-»  Stochastic radiation

-»  Isotropic searches
-»- Directed searches

28
Wednesday, 26 June 2013




Inspiral Search Pipeline

Detector 1 Detector 2 . . . Detector X
data data data
\4 Y \4
Create a bank of Create a bank of Create a bank of
templates with templates with templates with
desired desired desired
minimal match. minimal match. minimal match.
\ 4 Y \4
Match filter data Match filter data Match filter data
with template with template with template
bank. Generate bank. Generate bank. Generate
triggers. triggers. triggers.
Y
Perform coincidence test in
mass parameters and time.

Create a bank of Create a bank of Create a bank of
templates from templates from .. e templates from
triggers that survive triggers that survive triggers that survive
coincidence. coincidence. coincidence.

| | |
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Inspiral Search Pipeline

K

Create a bank of
templates from

triggers that survive

coincidence.

Y

Create a bank of
templates from

triggers that survive

coincidence.

(- Match filter data R

with triggered
template bank.
Compute signal
consistency tests.

Y

-

Match filter data R

with triggered
template bank.
Compute signal
consistency tests.

Create a bank of
templates from

triggers that survive

coincidence.

Y

4 Match filter data )
with triggered
o template bank.
Compute signal
consistency tests.

Y

Use time shifts to calculate
FAR of coincident triggers.

Y

Use simulated signals to evaluate
efficiency and calculate
rate limits.

N
4
Apply data quality vetoes.
Perform coincidence test in mass
and time. Apply amplitude
consistency test.
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Binary Neutron Star Searches

-» Matched filtering using inspiral phase of the
signal

-»- Merger phase of the signal is out of detector’s
sensitivity band

-» Spins are not important and they are neglected both
in the searches and computing upper limits

-» Search in the two_dimensional space of the
two component masses

- Component masses varied from 1 to 24 solar masses
-» Total mass from 2 to 25 solar masses
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Binary Neutron Star Searches: Rate Upper Limits

10—6:_....; ............ SRR ............ ............ ......... .

2.0 5.0 8.0 11.0 14.0 17.0 20.0 25.0
Total Mass (M)

Wednesday, 26 June 2013




Neutron Star-Black Hole Searches: Rate Upper Limits
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Binary Black Hole Searches

.»- Effective one_body waveforms are usedin a
matched filter search
.» Search space is still two_dimensional but spins

are included in computing the upper limits

-» Heavier binaries consisting of either
neutron stars or black holes
-» Component masses varied from 1 to 99 solar
masses
-» Total mass from 25 to 100 solar masses

- Complementary to the low-mass search
36
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Rate upper limit: per Mpc3 per Myr
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Intermediate Mass Black Hole Binary Searches

-» Black holes so massive that they cannot form via the
usual evolution of massive stars are called

-»  Could be of 50-1000 solar masses

-» We don’t know if IMBHs existin the Universe, let alone
IMBBH

.»  Believed to be hosts of astronomical candidates: Ultra_luminous
X_ray sources

-»  Greatinterestalsoin cosmology as they could be the first seed
black holes

-2 Signals are very short: typically less than 1 second in bad

-# Searched for using the burst method

39
Wednesday, 26 June 2013



Effective Range of HLV in Mpc
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Rate upper limit: per Mpc3 per Myr
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Searches Triggered by Gamma-Ray Bursts

-# Receive triggers from gamma-ray satellites
-» Progenitors of gamma-ray bursts could be:

-® Short hard bursts that last 2 seconds or less
-# Long soft burst that last more than 2 seconds
-» Two search methods employed

-»- Search for binary neutron star inspirals

-»  un-modelled bursts around the time of the gamma-ray
trigger

-» Since the search makes use of awindow of data only a
few minutes long the search sensitivity is better

-» Inspiral searches can use fully coherent search algorithms to
further improve upon sensitivity
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Origin of GRB070201
from LIGO Observations

-»- LSC searched for binary inspirals
and did not find any events:
resultsin ApJ 681 1419 2008

-2 Null inspiral search result

excludes binary progenitorin
M31

-» Soft Gamma_ray Repeater (SGR),
models predict energy release
<= 1046 ergs.

-# SGR not excluded by GW limits
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LETTERS

An upper limit on the stochastic gravitational-wave
background of cosmological origin

The LIGO Scientific Collaboration* & The Virgo Collaboration*
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Stochastic background

® Metric fluctuations carry energy:

C2

327G
® Characterize by frequency dependence:

1 d
Qe ) = - el

® Describe in terms of strain power spectrum

_ 3HE Qew(f)
1072 f3

pPew = < hab ;Lab >

S(f)

® Strain scale:

h(f) =6.3 x 107 \/QGW(f) (

3/2
100 Hz) —
f
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Searching for a Stochastic Background
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> Nucleosynthesis upper_limit
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-» Upper limit from LIGO data from
the 4th Science run
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Searches for Continuous Waves
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Searches for Continuous Waves

-® Searching for CW should have been trivial

- Justtake the Fourier transform of the signal and look for peaks

- However, this is arguably the most computationally
expensive search

- Earth’s spin and rotation about the sun causes amplitude and
phase modulations

-» Different methods are used in searches

-»  Fully coherent searches for known pulsars (also make use of radio
data to follow the EM signal,

-» Semi_coherent and hierarchical search methods for blind searches

-#  Einstein@HOME one of the most successful project that uses

public volunteered computational resources to get in excess of
100’s of TFLOPS for GW searches
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Spin-down limit on the Crab pulsar

2 kpc away, formed in a spectacular LSC, ApJ Lett., 683, (2008,45
supernovain 1054 AD

Losing energy in the form of particles
and radiation, leading to its spin—-down

spin frequency of v = 29.78 Hz
spin-down rate, v ~ —3.7x107 1" Hzs™!

E=4r21,v|0| ~ 4.4x 1031 W

hed = 8.06 x 10~ Isgri L (|| /v) /2

‘2 We have searched for gravitational waves in
data from the fifth science run of LIGO
detectors

-# The search did not find any gravitational
waves

—uniform prior |
---restricted prior |
—spin—down limit||

gm?

A OoN

4

w

‘& Lack of GW at S5 sensitivity means a limit on
ellipticity a factor 4 better than spin-down
upper limit - less than 4% of energy in GW

AP = 34%x1072, = 1.8x10"4 c

10
ellipticity

moment of inertia / 1038k
N
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Challenges of Gravitational
Astronomy
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> What are the expected mass and spin distributions of binary mergers and how do they differ
from one model to another

> Is there a gap in the distribution of masses of neutron stars and black holes and can future
GW observations measure this gap?

> What is the mechanism behind core_collapse supernovae, especially core bounce and
shock revival when a black hole forms?

-»  Measuring the neutron star equation of state from binary neutron star mergers
-»-  Howwell can we measure cosmological parameters with GW observations?

-»  Following—up GW events with astronomical telescopes

-» The EMtransient background
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