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My mini-course will be devoted to the techniques that have been developed in my joint work

with Culler and others for studying the relationship between classical topological invariants

of a 3-manifold and such quantitative invariants as its volume, diameter, minimal injectivity

radius, and Margulis number. Much of this work involves the log(2k − 1) theorem, a quan-

titative result about the geometry of free Kleinian groups, which was proved in a restricted

version in [7] (for the case k = 2) and in [3] (for all k ≥ 2). The final version of the theorem

depends on the Marden conjecture, which was proved by Agol (unpublished) and indepen-

dently by Calegari and Gabai in [4]. In my first lecture I will explain the statement and

proof of the log(2k−1) theorem. I will begin with a brief discussion of the predecessor of the

log 3 theorem that was proved in [22], and with a discussion of the classical Banach-Tarski

paradox, which the proof of the log(2k− 1) theorem parallels in a surprising way. A general

reference for the Banach-Tarski paradox is [23]. I will also discuss Patterson-Sullivan mea-

sures, which are used in an essential way in the proof. A general reference for the theory of

such measures is [18].

In my second lecture, I will discuss a variety of applications of the log(2k − 1) theorem to

comparisons between topological and quantitative-geometry invariants. Some of the results

that I will touch on were proved in [7]; in [3] (building on techniques from [8]); in [6] (which

involves a refined version of the log 3 theorem); in [13] (which builds on results proved in [10]

and [11]); in [1] (which builds on techniques from [3] and [9]); and in [12], [19]; [2] and its

successor [14]; [5] (which involves a variant of the log(2k − 1) theorem for Kleinian groups

that are not free); [15], [16], [17], [20], and [21].
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