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Measuring gravitational waves in a simulation

• Numerical relativity remains the best
approximation to allow us to model
strong-field gravity.

I BH-BH, BH-NS, NS-NS mergers.
I Late inspiral — last dozen orbits.

• Dynamics of the near-zone can be
modelled with high accuracy.

• The quantities that we are trying to model, however, are
gravitational waves

I How can we define GWs in the near zone?
I How can physical effects be disentangled from coordinates?

• Techniques for measuring GWs within a simulation are called
wave extraction
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Quick Review of Numerical Relativity

• Numerical relativity tends to treat spacetime as a succession of
snapshots

I Spacelike slices.
I Define coordinate t = const. on a slice.
I Spacing ∆t between successive slices.

• Each slice knows the variables:
gab: 3-metric in the slice
Kab: extrinsic curvature of slice
α, βa: Lapse, shift (gauge).

• The Einstein equations evolve one snapshot to the next.

• The spatial size of a slice is finite: limited by computational
resources (memory, available time):

I Increasing the domain can be expensive, so we’d like to make
measurements as close to the source as possible.

I But, “gravitational waves” are only defined in the far-zone.
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Gravitational waves

• Einstein equations:

Rαβ −
1
2

Rgαβ = kTαβ

• Linearize around flat space: Assume a
metric of the form

gαβ = ηαβ + hαβ ,

where ηαβ is the flat-space (Minkowski)
metric, and hαβ is a small perturbation.
• Substitute into Einstein equations, discard

terms nonlinear in hαβ .

�hαβ = 16πTαβ ,

where � = −∂2
t +∇ is the flat-space

d’Alembertian.

• GWs are quadrupolar.

• Two modes: h+, h×.

h+
αβ :

h×αβ :
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Gravitational Waves

• To measure GWs locally we need to have some idea of the background
we are perturbing.

• To measure h+ and h×, we need to be in the transverse-traceless
gauge.

• For BH mergers, we have neither in the domain immediately around the
sources

I Need to work in the “wave zone” – somewhat removed from the
source.

• Two techniques are standard for finite radius measurement:

Perturbative extraction: NCSA (1990s), AEI, SXS collab.
Newman-Penrose ψ4: Baker et al. 2002, Everybody.

• Alternatively, GWs can be defined asymptotically at J +

I The trouble is, how to get there?

• Characteristic extraction: Use Einstein equations to transport local
data to J +.



• The Riemann tensor can be invariantly decomposed into
trace-free parts:

Rαβγδ = Cαβγδ − (gα[γRβ]δ − gα[δRβ]γ) +
1
6

(gα[γgβ]δ − gα[δgβ]γ)R

where Cαβγδ is the Weyl tensor.

• In vacuum, Rαβ = 0, R = 0, so that

Rαβγδ = Cαβγδ

• Weyl tensor has 10 independent components.
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Newman-Penrose wave extraction
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Newman-Penrose wave extraction
• Project the Weyl tensor onto a null tetrad, {`, n,m, m̄}:

` =
1√
2

(̂t + r̂) , n =
1√
2

(̂t − r̂) ,

m =
1√
2

(θ̂ + iφ̂) , m̄ =
1√
2

(θ̂ − iφ̂) .

• The 10 independent components are 5 complex-valued scalars:

ψ0 = Cαβγδ`αmβ`γmδ ,

ψ1 = Cαβγδ`αnβ`γm̄δ ,

ψ2 = Cαβγδ`αmβm̄γnδ ,

ψ3 = Cαβγδ`αnβm̄γnδ ,

ψ4 = Cαβγδnαm̄βnγm̄δ .

• Asymptotically, these fall-off as:

Cαβγδ '
ψ4

r
+
ψ3

r2
+
ψ2

r3
+
ψ1

r4
+
ψ0

r5

• The gravitational radiation measured by distant observers is ψ4.

ḧ+ − i ḧ× =
1
r
ψ4 .
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Perturbative extraction
• Method assumes a background Schwarzschild metric, g0

αβ :

gαβ = g0
αβ + hαβ ,

where g0
αβ corresponds to

ds2 = −(1−M/r)−1 dt2 + (1−M/r) dr2 + r2(dθ2 + sin2 θ dφ2) .

• The perturbations are expanded in a basis of Regge-Wheeler harmonics:

hαβ =
∞∑
`=0

∑̀
m=−`

h`mαβ .

• These variables can be used to define first order gauge-invariant variables:

Q+
`m : even-parity mass multipoles,

Q×`m: odd-parity current multipoles

• Related to the GW strain by:

h+ − ih× =
1√
2r

∞∑
`=0

∑̀
m=−`

(
Q+
`m − i

∫
Q×`m dt

)
−2Y `m .
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Finite radius extraction

• Both methods require waves to be measured at some distance from the
source:

I Newman-Penrose: Requires the peeling property (1/r fall-off in ψ4)
I Perturbative: Requires a known background

• Typically we measure geometric variables on a topological r = const.
sphere around the source

• Several finite radius spheres are chosen,
e.g. from r = 100M to r = 200M.

I Inner bound set by above requirements.
I Outer bound set by available resolution and possible grid

boundary effects.

• Results are fit to the expected 1/r fall-off, and extrapolated in r to get
the result for distant observers
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Null compactification
• GWs are difficult to measure locally without a known background.

• At large radii, GWs can be defined unambiguously for
asymptotically flat spacetimes.

• 1960s: Bondi, Sachs, Penrose and collaborators:
I Rigorous description of null infinity, J +.
I Definition of mass, radiated energy (“news function”) at J +.
I Einstein equations in null coordinates.

t

x

u=t-xv=t+x

i0

i+

i-

r=const.

t=const.

Compactify u and v , define:

U = arctan(u) , V = artctan(v) .
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Hyperboloidal Slices
• Foliate spacetime by spacelike slices that intersect J +

• Can be specified by conditions on initial extrinsic curvature,
gauge
• Slices are asymptotically null or spacelike at J +

• Formalisms worked out by Friedrich, Rinne, Zenginoglu
• Still some aspects to be worked out:

I Initial data
I Gauges
I Regularization at J +

r=
2m

r=0

i0

i+

i-

t=t0
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Characteristic extraction
• Transport data from a standard 3+1 evolution to J + using

the Einstein equations in null coordinates

• Use the Bondi null formulation of the Einstein equations

• Inner boundary data given by 3 + 1 evolution

• Relies on radial null geodesics to define coordinates:
I Need to be careful of caustics
I Not suited to very dynamical domain

r=
2m

r=0

i0

i+

i-

t=t0

r=rbc
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Einstein in a Bondi frame
• Characteristic evolutions make use of a null formulation of the

Einstein equations.
t

r

Collapsing matter

Singularity

Event horizon

• Main idea: Coordinatize spacetime along
null geodesics
• This leads to a number of advantages:

I Spacetime can be compactified.
I Einstein equations reduce to a simple

heirarchy.
I Miminal number of variables.
I Asymptotic boundary conditions are purely

outgoing.
I Well defined energy at I .

• General form of the metric [Bondi et al. 1962]:

ds2 =−
(

e2β V
r
− r 2hABUAUB

)
du2 − 2e2βdudr

− 2r 2hABUBdudyA + r 2hABdyAdyB
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Bondi line element

ds2 =−
(

e2β V
r
− r2hABUAUB

)
du2 − 2e2βdudr

− 2r2hABUBdudθA + r2hABdθAdθB.

Coordinates:
• u labels a family of null hypersurfaces: kα = −∂αu is normal to

u = constant surfaces, and

gαβkαkβ = 0.

• θA = (θ1, θ2) are angular coordinates labelling outgoing null
geodesics which generate the surfaces.

• r is an areal radius running along each generator.
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Bondi line element

ds2 =−
(

e2β V
r
− r2hABUAUB

)
du2 − 2e2βdudr

− 2r2hABUBdudθA + r2hABdθAdθB.

• In these coordinates, the line element is parameterized by six functions
of the coords:

β, V , UA, hAB

• hAB is the conformal geometry of 2-surfaces defined by constant u, r spheres,
and satisfies: det(hAB) = det(qAB), hAChCB = δA

B,
with qAB the unit sphere metric.

• The two independent components of hAB represent the radiative degrees of
freedom in the spacetime.

I In later equations, replaced by J — complex-valued scalar, spin-weight 2.
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Bondi line element

ds2 =−
(

e2β V
r
− r2hABUAUB

)
du2 − 2e2βdudr

− 2r2hABUBdudθA + r2hABdθAdθB.

• In these coordinates, the line element is parameterized by six functions
of the coords:

β, V , UA, hAB

• V is an analogue of a Newtonian potential.

• The scalar β measures the expansion of the light cone between the
asymptotic frame and the world tube.

• UA are angular shift components.
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Bondi evolution system

• Heirarchy of equations
I Hypersurface equations: integrated radially along null slices
I Evolution equations: Evolve data to the next slice

• Hypersurface equations:

β,r = Nβ ,

(r 2Q),r = −r 2(ð̄J + ðK ),r + 2r 4ð
(

r−2β
)
,r

+ NQ ,

U,r = r−2e2βQ + NU ,

(r 2Ŵ ),r =
1
2

e2βR− 1− eβðð̄eβ +
1
4

r−2
(

r 4 (ðŪ + ð̄U
))
,r

+ NW .

• Evolution equations:

2 (rJ),ur =(
r−1V (rJ),r

)
,r
− r−1

(
r2ðU

)
,r

+ 2r−1eβð2eβ −
(

r−1W
)
,r

J + NJ .

u r
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Evolution Scheme
1. Given hAB on a null slice Σ.

2a. On Σ, solve for β:

(β),r =
1
16

rhAChBDhAB,r hCD,r .

2b. Solve for UA:

(r 2QA),r = FQ(hAB, β),

(UA),r = r−2e2βQA.

2c. Solve for V :

(V ),r = FV (hAB, β,UA).

3. Evolve hAB to the next slice using:

(rhAB),ur = FH(hAB, β,UA,V ).

4. Repeat.

Boundary data supplied on the initial u = constant slice, and at Γ.
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Coupling 3+1 to Null Evolutions

r=
2m

r=0

i0

i+

i-

t=t0

r=rbc

• Metric data from a standard 3+1 evolution is stored on an r = const.
world-tube Γ.

I Stored in file as time series of spherical harmonic coefficients
I Store ADM variables (gab,Kab, α, β

i ).

• Null evolution code using data at Γ as inner boundary data.
I Change of variables.
I Locate Γ in Bondi coordinates.

• Null evolution currently a post-processing step:
I One-way transfer of information→ extraction
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Coupling 3+1 to Null Evolutions

x

y

t

"World tube"

g ab

Spacelike slice
R

m

g ab

"World tube"

Characteristic slices

u

R
m

• Metric data from a standard 3+1 evolution is stored on an r = const.
world-tube Γ.

I Stored in file as time series of spherical harmonic coefficients
I Store ADM variables (gab,Kab, α, β

i ).

• Null evolution code using data at Γ as inner boundary data.
I Change of variables.
I Locate Γ in Bondi coordinates.

• Null evolution currently a post-processing step:
I One-way transfer of information→ extraction
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Measurements at J +

• As r →∞, the Bondi variables go to zero with known fall-offs.

• In particular,

J = 0 +
J1

r
+ O(

1
r 2 ) .

• We define the gravitational “news function” by

N =
1
2

(J1),u = − lim
r→∞

1
2

r 2J,ur .

• The Bondi mass-loss formula is:

dm
du

=

∫
J+

|N |2

• The Newman-Penrose quantity ψ4 is related to the news by:

N,u = −1
2
ψ̄4
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Summary of numerical GW measures

Variables Relation to h

Perturbative Q+, Q× Q+ +
∫

Q× dt

Newman-Penrose ψ4
∫ ∫

ψ4 dt dt

Bondi news N
∫
Ndu

• In each case, at least one integration is required to get the strain.

• Integration of noisy time-series can be problematic.
I Results in spurious drifts that need to be removed.
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Some Characteristic Extraction Results

Binary BH: m1 = m2, s1 = +0.8 s2 = +0.4

−2400 −2000 −1600 −1200 −800 −400 0
t/M

−0.0002
0.0000
0.0002

(h
+

) 8
8

(`, m) = (8, 8)

−0.0016
−0.0008

0.0000
0.0008
0.0016

(h
+

) 6
6

(`, m) = (6, 6)

−0.02
−0.01

0.00
0.01
0.02

(h
+

) 4
4

(`, m) = (4, 4)

−0.30
−0.20
−0.10

0.00
0.10
0.20
0.30

(h
+

) 2
2

Model pp

(`, m) = (2, 2)
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Gravitational memory (`,m) = (2,0) mode

−500 −400 −300 −200 −100 0 100
t/M

0.00

0.02

0.04

0.06

0.08

0.10

h
20

0.000

0.002

0.004

0.006

N
20

−40 −20 0 20 40
0.03

0.06

0.09

−40 −20 0 20 40
−0.002

0.000
0.002
0.004
0.006

Non-spinning, equal-mass binary:

• Integration constant for h determined by fit to PN estimate.
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GWs independent of world-tube radius
• A key feature of characteristic extraction is that the results should be

indepdendent of the world-tube radius:
I The full Einstein equations are used over the entire domain (no

linearized assumption)
I Bondi coordinates at I are invariantly defined

−1000 −800 −600 −400 −200 0

t/M

−6

−4

−2

0

2

∆
A

×10−5

∆Ah=0.64M × 2.25

∆Ah=0.96M

−1000 −800 −600 −400 −200 0

t/M

−1.0

−0.5

0.0

0.5

1.0

∆
φ

×10−1

∆φh=0.64M × 2.25

∆φh=0.96M

−150 −100 −50 0 50

t/M

−4

−2

0

2

4

∆
A

×10−4

∆Ah=0.64M × 3.38

∆Ah=0.96M

−150 −100 −50 0 50

t/M

−3

−2

−1

0

1

2

3

∆
φ

∆φh=0.64M × 11.39

∆φh=0.96M

• A convergence test shows that evolutions using RΓ = 100 and RΓ = 250
produce identical results up to numerical truncation error.

(l
,m

)
=

(2
,2

)

(l
,m

)
=

(6
,6

)
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Comparison with finite radius measurements

• We can estimate the error of finite radius ψ4 measurements by
comparing with CCE results.

−1000 −800 −600 −400 −200 0

t/M

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

φ
c
−
φ
e

(r
ad

)

×10−2
10−6

10−5

10−4

10−3

10−2

10−1

|(A
c
−
A
e
)/
A
c
|

−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8

<(
ψ

4
)

(l
=

2,
m

=
2)

×10−1

CCE

Extrapolated

• Extrapolation using radii:
r = 300M − 1000M from source

• Max. amplitude diff: 1.08%

• Max. phase diff: 0.019rad

• This is good news for numrel −→
standard extrapolation techniques are
quite accurate

• Note: Finite radius measurements
usually carried out within r = 200M

I This can increase error by order
of magnitude.

• Observed errors are larger than the
discretization errors for this
resolution.
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Extrapolation error from small radii

Amplitude exrapolation error

Phase extrapolation error

400 600 800 1000 1200 1400
t/M

10−7

10−6

10−5

10−4

10−3

10−2

10−1

∆
A
/A

400 600 800 1000 1200 1400
t/M

10−7

10−6

10−5

10−4

10−3

10−2

10−1

∆
φ

rmin = 100m, rmax = 220m

rmin = 160m, rmax = 260m

rmin = 200m, rmax = 400m

rmin = 240m, rmax = 600m

Experiment:

• Measure ψ4 at r = 1000M from the source
I (on a large grid where this radius is not influenced by outer boundary)

• Compare with smaller radius extrapolations to estimate the wave at r = 1000M
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Initial data for characteristic evolutions

• A remaining potential inconsistency is the
specification of data on the initial null cone

• Information travelling inwards from the past
can influence the measured signal

• For 3+1 codes, initial data corresponds to the solution of elliptic
constraint equations, typically under assumption of conformal
flatness
• In the characteristic domain, conformal flatness corresponds to a

simple prescription:
J = 0

• Perhaps we can do better by imposing an outgoing wave solution
on the initial characteristic slice
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A linearized characteristic solution

• Bishop (2005) developed a linearized characteristic solution,
representing purely outgoing waves:

β2,ν(r) = b1 (constant)

j2,ν(r) = (12b1 + 6iνc1 + iν3c2)

√
6

9
+

2
√

6c1

r
+

√
6c2

3r3

u2,ν(r) =
√

6
(
ν4c2 + 6ν2c1 − 12iνb1

18
+

2b1

r
+

2c1

r2
− 2iνc2

3r3
− c2

2r4

)
w2,ν(r) = r2 12iνb1 − 6ν2c1 − ν4c2

3
+ r
−6b1 + 12iνc1 + 2iν3c2

3
+ 2ν2c2

− 2iνc2

r
− c2

r2

• The free constants are fixed by the known 3+1 data at the
world-tube

• Purely outgoing solution can be matched with the GW signal at
the world-tube, Γ [Bishop, DP, Reisswig 2011]:

I Evaluate “junk” radiation in null initial data
I Diagnose radiation content of initial 3+1 slice
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Initial data on the world tube
• Model problem: Equal mass non-spinning binary

0 200 400 600 800 1000
u/M
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N 450
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Linearized vs. Conf. flat data
— initialized after junk radiation

600 800 1000 1200 1400
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∆
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φ
(R

ad
) N 0

0
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lin

Conf. flat (before junk) vs. Linearized (after
junk)

• Initial data on the null side can have an influence.
• But consistent data seem to agree pretty well, i.e.:

I 3+1 conformally flat? → use J = 0.
I 3+1 wavey (after junk)? → use linearized wave J.

• Comparison with linearized solution suggests a component of incoming
radiation in 3+1 initial data — lasts up to 800M.



• Numerical relativity evolutions involve a number of systematic
errors beyond discretization.

• One of these is the extrapolation error due to finite radius
measurements.

• For extrapolation radii < 200M, this error may be significantly
larger than achievable discretization accuracies.

• Evaluating waves at J + is one way to reduce this ambiguity.
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Summary


