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Measuring gravitational waves in a simulation

e Numerical relativity remains the best
approximation to allow us to model
strong-field gravity.

» BH-BH, BH-NS, NS-NS mergers.
» Late inspiral — last dozen orbits.

e Dynamics of the near-zone can be
modelled with high accuracy.

e The quantities that we are trying to model, however, are
gravitational waves

» How can we define GWs in the near zone?
» How can physical effects be disentangled from coordinates?

e Techniques for measuring GWs within a simulation are called
wave extraction

Denis Poliney ICTS /July 2013



Quick Review of Numerical Relativity

e Numerical relativity tends to treat spacetime as a succession of
snapshots

» Spacelike slices.

» Define coordinate t = const. on a slice. -

» Spacing At between successive slices.

e Each slice knows the variables: !
Gab: 3-metric in the slice

Kab: extrinsic curvature of slice o
«, 3% Lapse, shift (gauge).

e The Einstein equations evolve one snapshot to the next.

e The spatial size of a slice is finite: limited by computational
resources (memory, available time):
> Increasing the domain can be expensive, so we’d like to make
measurements as close to the source as possible.
» But, “gravitational waves” are only defined in the far-zone.
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Gravitational waves

Einstein equations:

ity
1
R(xﬂ - ERg(xﬂ = kTozB j j& L’/\/—\

T VS
Linearize around flat space: Assume a

metric of the form

9o = Mg + hag , e GWs are quadrupolar.

e Two modes: h., hy.
where 1, is the flat-space (Minkowski)
metric, and h, s is a small perturbation.
nropaamalperunaler. e O () OO
Substitute into Einstein equations, discard
terms nonlinear in h,g.

s (O )OO0
Dhaﬁ = 1671'7-@/3 5

where O = —9? + V is the flat-space
d’Alembertian.
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Gravitational Waves

e To measure GWs locally we need to have some idea of the background
we are perturbing.

e To measure h, and hy, we need to be in the transverse-traceless
gauge.

e For BH mergers, we have neither in the domain immediately around the
sources

» Need to work in the “wave zone” — somewhat removed from the
source.

e Two techniques are standard for finite radius measurement: i5

Perturbative extraction: NCSA (1990s), AEI, SXS collab. ! ]
Newman-Penrose v4: Baker et al. 2002, Everybody.

o Alternatively, GWs can be defined asymptotically at 7"

» The trouble is, how to get there?

e Characteristic extraction: Use Einstein equations to transport local
datato J.
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Newman-Penrose wave extraction

e The Riemann tensor can be invariantly decomposed into
trace-free parts:

Rapys = Caprys — (Galy Rsls — Gals Raly) + %(ga['ygﬁ]S — 9a15987)R
where C, 345 is the Weyl tensor.
e Invacuum, R,g =0, R =0, so that
Ropys = Caprs

e Weyl tensor has 10 independent components.

Denis Poliney

ICTS /July 2013



Newman-Penrose wave extraction

e Project the Weyl tensor onto a null tetrad, {¢, n, m, m}:

627(t+?)7 n:—z(f—?%
1 .~ N P S
:$(6+I¢)7 m= ﬁ(e i})

e The 10 independent components are 5 complex-valued scalars:
Yo = CopyslomPerme
Y1 = CoprslonP 07 me
o = CopslmPmrn’
3 = Coprsl®nPmin®
8

= =5
P4 = Copysn*mZnrme .

e Asymptotically, these fall-off as:

e The gravitational radiation measured by distant observers is 1)4.

1
hy —ihx :71114-
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Perturbative extraction

e Method assumes a background Schwarzschild metric, ggﬁ:
Gap = ggﬁ + ha[}a
where g2 ; corresponds to
ds? = —(1 = M/r)~1 df? + (1 — M/r) dr® + r(d6? + sin? 9 d¢?) .

e The perturbations are expanded in a basis of Regge-Wheeler harmonics:

%) Y4
h(w:Z Z e

(=0 m=—2¢
e These variables can be used to define first order gauge-invariant variables:
+ . ; ;
Q/,,: even-parity mass multipoles,

Q,.,:  odd-parity current multipoles

e Related to the GW strain by:

£

, 1T ,
hy — ihy :EZ > (ojm—//o;mdt) N
4

=0 m=—¢
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Finite radius extraction

e Both methods require waves to be measured at some distance from the
source:

» Newman-Penrose: Requires the peeling property (1/r fall-off in 14)
» Perturbative: Requires a known background

e Typically we measure geometric variables on a topological r = const.
sphere around the source

e Several finite radius spheres are chosen,
e.g. from r = 100M to r = 200M.

» Inner bound set by above requirements. ‘ ‘
» Outer bound set by available resolution and possible grid
boundary effects.

e Results are fit to the expected 1/r fall-off, and extrapolated in r to get
the result for distant observers

Denis Poliney



Null compactification

e GWs are difficult to measure locally without a known background.

e At large radii, GWs can be defined unambiguously for
asymptotically flat spacetimes.

e 1960s: Bondi, Sachs, Penrose and collaborators:
» Rigorous description of null infinity, 7.
» Definition of mass, radiated energy (“news function”) at 7.
» Einstein equations in null coordinates.

v=t+x U=t-x
AN r=const.
N p

AN
. //
\

t=const.

Compactify u and v, define:

U = arctan(u), V = artctan(v) .
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Hyperboloidal Slices

¢ Foliate spacetime by spacelike slices that intersect 7"

e Can be specified by conditions on initial extrinsic curvature,
gauge

e Slices are asymptotically null or spacelike at 7+

e Formalisms worked out by Friedrich, Rinne, Zenginoglu

e Still some aspects to be worked out:

> Initial data
» Gauges
» Regularization at 7+

Denis Poliney ICTS /July 2013



Characteristic extraction

e Transport data from a standard 3+1 evolution to 7 using
the Einstein equations in null coordinates

e Use the Bondi null formulation of the Einstein equations
¢ Inner boundary data given by 3 + 1 evolution

e Relies on radial null geodesics to define coordinates:
» Need to be careful of caustics

» Not suited to very dynamical domain
r=0
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Einstein in a Bondi frame

e Characteristic evolutions make use of a null formulation of the

Einstein equations.

>

>

e Main idea: Coordinatize spacetime along
null geodesics
e This leads to a number of advantages:

Spacetime can be compactified.
Einstein equations reduce to a simple
heirarchy.

Miminal number of variables.

» Asymptotic boundary conditions are purely

outgoing.
Well defined energy at .7.

e General form of the metric [Bondi et al. 1962]:

ds® = — (em% —r?h,

sU” UB> au? — 2e?® dudr

— 2rPhasUBdudy” + rPhasdy”dy®
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Bondi line element

ds? = — (ezﬁ\r/ — rzhABUAUB> du? — 2e?Pdudr

— 2r°hagUBdude? + r>hagdd”de®.

Coordinates:

e u labels a family of null hypersurfaces: k, = —9d,u is normal to
u = constant surfaces, and

gaﬁkakﬁ =0.

e 04 = (0",6?) are angular coordinates labelling outgoing null
geodesics which generate the surfaces.

e ris an areal radius running along each generator.
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Bondi line element

ds? = — (ezﬁ\r/ — rzhABUAUB> du? — 2e®’dudr

— 2r°hagUBdude? + r>hagdd”de®.

¢ In these coordinates, the line element is parameterized by six functions

of the coords:
B, V, UY has

e hyg is the conformal geometry of 2-surfaces defined by constant u, r spheres,
and satisfies:
det(hAE;) = det(qAB), hAChCB = 5AB,
with gag the unit sphere metric.

e The two independent components of hag represent the radiative degrees of
freedom in the spacetime.

» In later equations, replaced by J — complex-valued scalar, spin-weight 2.
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Bondi line element

74
ds® = — (ezﬁr — r’hpgU” UB> du? — 228 dudr
— 2r2hagUBdudé” + r2hagd6”deb.
¢ In these coordinates, the line element is parameterized by six functions

of the coords:
B, V, UY has

V is an analogue of a Newtonian potential.

The scalar 8 measures the expansion of the light cone between the
asymptotic frame and the world tube.

U* are angular shift components.
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Bondi evolution system

e Heirarchy of equations

» Hypersurface equations: integrated radially along null slices ;+
» Evolution equations: Evolve data to the next slice

e Hypersurface equations:

ﬂ,r = Nﬁ 5
(PQ), = —r2(BJ + 9K) , +2r*d (r*ﬂ) + N,

U,=r2eQ+ Ny,

(rPW), = %ez‘*n —1-e’0de” + %Fz <r4 (8U + 8U)) + N .
,r

e Evolution equations:
z(rJ),ur:
—1 _ 1 (2 185258 _ (1
(r V(rJ)’,),r r (r 8U>r+2r e’o“e (r W)rJ+NJ.
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Evolution Scheme

1. Given hag on a null slice .
2a. On 1, solve for 3:

I ]
(B).r= 16 H*hBP hag o .
Jt 2b. Solve for U*:
P (r*Qa).r = Fa(has, B);
//// // /,. (UA),r _ rfzeZBQA.
F ‘ i 2c. Solve for V:
o /. (V).r = Fy(has, 8, Ua).
7 hypersuiface eqns.
Ry 3. Evolve hyp to the next slice using:

(rhAB),ur = F,A-/(l'lAB,ﬂ7 UA, V)

4. Repeat.

Boundary data supplied on the initial u = constant slice, and at I'.
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Coupling 3+1 to Null Evolutions

-+

r=0 1

=t 7

/
e Metric data from a standard 3+1 evolution is stored on an r = const.
world-tube T.

» Stored in file as time series of spherical harmonic coefficients
» Store ADM variables (gap, Kab, a, 8').

e Null evolution code using data at I' as inner boundary data.

» Change of variables.
» Locate I' in Bondi coordinates.

e Null evolution currently a post-processing step:
» One-way transfer of information — extraction
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S
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Measurements at 7"

e As r — oo, the Bondi variables go to zero with known fall-offs.

In particular,
Js 1

J=0+ " +0(5).

o We define the gravitational “news function” by

N = 2w =~ Jim 2P

r—oo

e The Bondi mass-loss formula is:
am _

2
adu T+ ‘N|

The Newman-Penrose quantity 14 is related to the news by:
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Summary of numerical GW measures

Variables | Relation to h
Perturbative QH,Q* | QT+ [Q*dt
Newman-Penrose 4 [ [ s dtdt
Bondi news N J Ndu

e In each case, at least one integration is required to get the strain.

e Integration of noisy time-series can be problematic.
» Results in spurious drifts that need to be removed.
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Some Characteristic Extraction Results

Binary BH: my = m», sy = +0.8 s, = +0.4

Nodel pp

Eoem=@2

oo WivmomwW
2R SSoSosS

—0.02 - (6,m) = (4,4)

—0.0008 | (&m) =56

0.0000
T—0.0002 F (¢m) =5

—2400 —2000 —1600  —1200 —800 —400 0
tIM
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Gravitational memory (¢, m)

0.004

jen}
2” 0.002

0.000F

0.10

0.08

< 0.06
=

0.04

0.02

0-00556~—

¢ Integration constant for h determined by fit to PN estimate.
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(2,0) mode

Non-spinning, equal-mass binary:
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GWs independent of world-tube radius

o A key feature of characteristic extraction is that the results should be
indepdendent of the world-tube radius:

» The full Einstein equations are used over the entire domain (no
linearized assumption)
» Bondi coordinates at .# are invariantly defined

x10°!
T

05F B

~ = n Sk —
(] S 0.0 ey it ©
AN 05— A¢h0HM x 225 E ©
~ Agh=0.96) ~
| 1.0l | | | | | 1
TI000 o800 600 400 200 0
_ <10 i —
g T T T T T T IS
oF
< -~
— —

[ <

- AAP0GM o 9 95 1 AAP06A o 3 38
gL —  AAR090M E — AA=0I6M

I I I I | | 4 I I I | I
—1000  —800 —600 —400 —200 0 —150 —100 =50 [ 50

e A convergence test shows that evolutions using Rr = 100 and Rr = 250
produce identical results up to numerical truncation error.
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Comparison with finite radius measurements

e We can estimate the error of finite radius 4 measurements by
comparing with CCE results.

e Extrapolation using radii:
r = 300M — 1000M from source

107!

— T T T
— CCE

—  Extrapolated

2)

m

2,

e Max. amplitude diff: 1.08%

e Max. phase diff: 0.019rad

3

e This is good news for numrel —
standard extrapolation techniques are
quite accurate

Ad)/Ad

[(Ac

e Note: Finite radius measurements

0 usually carried out within r = 200M
1.0 pr—rrr—r— g . .
5 O E > This can increase error by order
E 0 E of magnitude.
s i') 3 e Observed errors are larger than the
Y AT TRV PR S B 0 B A PRI discretization errors for this
—1000 —800 —600 —400 —200 0 .
o resolution.
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Extrapolation error from small radii

Experiment:
e Measure 4 at r = 1000M from the source
» (on a large grid where this radius is not influenced by outer boundary)
e Compare with smaller radius extrapolations to estimate the wave at r = 1000M

107!

1072
0%
Amplitude exrapolation error 3}

107"

106

100 600 800 1000 1200 1400
t/M
107!

1072
Phase extrapolation error I
510

107"

100 ---

Pain = 240, Tyae = 600m

10400 00 500 1000 1200 1400
t/M
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Initial data for characteristic evolutions

¢ A remaining potential inconsistency is the
specification of data on the initial null cone

¢ Information travelling inwards from the past
can influence the measured signal

4

e For 3+1 codes, initial data corresponds to the solution of elliptic
constraint equations, typically under assumption of conformal
flatness

¢ In the characteristic domain, conformal flatness corresponds to a
simple prescription:
J=0

e Perhaps we can do better by imposing an outgoing wave solution
on the initial characteristic slice

Denis Poliney ICTS /July 2013



A linearized characteristic solution

e Bishop (2005) developed a linearized characteristic solution,
representing purely outgoing waves:

B2.,(r) = by (constant)

\@ 2\/601 \/g(‘e
' =(12 ' i3co)~—
Jo.u(r) = (12by + 6ivey + iv°ep) 9 + p a3
l/402 + 61/201 — 12ivb, 2by 2¢q 2iveo Co
=6 — ==
e, (1) f( 18 Tt 3r3 2r4>
wo () = P2 12ivby — B2c) — Ve n r—6b1 + 12ivey + 28y + 2120
: 3 3
_ 2ives G
r r2
e The free constants are fixed by the known 3+1 data at the
world-tube

e Purely outgoing solution can be matched with the GW signal at
the world-tube, I [Bishop, DP, Reisswig 2011]:

» Evaluate “junk” radiation in null initial data
» Diagnose radiation content of initial 3+1 slice
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Initial data on the world tube

e Model problem: Equal mass non-spinning binary

107
— 102k 4
< 0.0090 2 -
) AFI50 - N
10+ 00000 5600150200 350 300, M T S N R O OO .
s + f ! f f . " f ! f f
= 100 = 100 — 70
En £ N
= 50 3 50
25 25
1 1 1 1 1
107 B 107!
10724} 10~
ap
g
107°F -- 104
109k | 107 | | | |
0 200 100 600 800 1000 600 800 1000 1200 1400
u/M u/M
Linearized vs. Conf. flat data Conf. flat (before junk) vs. Linearized (after
— initialized after junk radiation

junk)
o |Initial data on the null side can have an influence.
e But consistent data seem to agree pretty well, i.e.:
» 3+1 conformally flat? — use J = 0.
» 3+1 wavey (after junk)? — use linearized wave J.

e Comparison with linearized solution suggests a component of incoming
radiation in 3+1 initial data — lasts up to 800M.
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Numerical relativity evolutions involve a number of systematic
errors beyond discretization.

One of these is the extrapolation error due to finite radius
measurements.

For extrapolation radii < 200M, this error may be significantly
larger than achievable discretization accuracies.

Evaluating waves at 7+ is one way to reduce this ambiguity.
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