Measuring Gravitational Waves in Numerical Simulations

Denis Pollney

Rhodes University
Grahamstown
South Africa

Measuring gravitational waves in a simulation

- Numerical relativity remains the best approximation to allow us to model strong-field gravity.
- BH-BH, BH-NS, NS-NS mergers.
- Late inspiral - last dozen orbits.
- Dynamics of the near-zone can be modelled with high accuracy.

- The quantities that we are trying to model, however, are gravitational waves
- How can we define GWs in the near zone?
- How can physical effects be disentangled from coordinates?
- Techniques for measuring GWs within a simulation are called wave extraction

Quick Review of Numerical Relativity

- Numerical relativity tends to treat spacetime as a succession of snapshots
- Spacelike slices.
- Define coordinate $t=$ const. on a slice.
- Spacing Δt between successive slices.
- Each slice knows the variables: $g_{a b}$: $\quad 3$-metric in the slice $K_{a b}$: extrinsic curvature of slice α, β^{a} : Lapse, shift (gauge).

- The Einstein equations evolve one snapshot to the next.
- The spatial size of a slice is finite: limited by computational resources (memory, available time):
- Increasing the domain can be expensive, so we'd like to make measurements as close to the source as possible.
- But, "gravitational waves" are only defined in the far-zone.

Gravitational waves

- Einstein equations:

$$
R_{\alpha \beta}-\frac{1}{2} R g_{\alpha \beta}=k T_{\alpha \beta}
$$

- Linearize around flat space: Assume a metric of the form

$$
g_{\alpha \beta}=\eta_{\alpha \beta}+h_{\alpha \beta},
$$

where $\eta_{\alpha \beta}$ is the flat-space (Minkowski) metric, and $h_{\alpha \beta}$ is a small perturbation.

- Substitute into Einstein equations, discard terms nonlinear in $h_{\alpha \beta}$.

$$
\square h_{\alpha \beta}=16 \pi T_{\alpha \beta},
$$

- GWs are quadrupolar.
- Two modes: h_{+}, h_{\times}.

where $\square=-\partial_{t}^{2}+\nabla$ is the flat-space d'Alembertian.

Gravitational Waves

- To measure GWs locally we need to have some idea of the background we are perturbing.
- To measure h_{+}and h_{\times}, we need to be in the transverse-traceless gauge.
- For BH mergers, we have neither in the domain immediately around the sources
- Need to work in the "wave zone" - somewhat removed from the source.
- Two techniques are standard for finite radius measurement:

Perturbative extraction: NCSA (1990s), AEI, SXS collab. Newman-Penrose ψ_{4} : Baker et al. 2002, Everybody.

- Alternatively, GWs can be defined asymptotically at \mathcal{J}^{+}

- The trouble is, how to get there?
- Characteristic extraction: Use Einstein equations to transport local data to \mathcal{J}^{+}.

Newman-Penrose wave extraction

- The Riemann tensor can be invariantly decomposed into trace-free parts:

$$
R_{\alpha \beta \gamma \delta}=C_{\alpha \beta \gamma \delta}-\left(g_{\alpha[\gamma} R_{\beta] \delta}-g_{\alpha[\delta} R_{\beta] \gamma}\right)+\frac{1}{6}\left(g_{\alpha[\gamma} g_{\beta] \delta}-g_{\alpha[\delta} g_{\beta] \gamma}\right) R
$$

where $C_{\alpha \beta \gamma \delta}$ is the Weyl tensor.

- In vacuum, $\boldsymbol{R}_{\alpha \beta}=0, R=0$, so that

$$
R_{\alpha \beta \gamma \delta}=C_{\alpha \beta \gamma \delta}
$$

- Weyl tensor has 10 independent components.

Newman-Penrose wave extraction

- Project the Weyl tensor onto a null tetrad, $\{\ell, n, m, \bar{m}\}$:

$$
\begin{aligned}
\ell & =\frac{1}{\sqrt{2}}(\hat{t}+\hat{r}), & n & =\frac{1}{\sqrt{2}}(\hat{t}-\hat{r}), \\
m & =\frac{1}{\sqrt{2}}(\hat{\theta}+i \hat{\phi}), & \bar{m} & =\frac{1}{\sqrt{2}}(\hat{\theta}-i \hat{\phi}) .
\end{aligned}
$$

- The 10 independent components are 5 complex-valued scalars:

$$
\begin{aligned}
& \psi_{0}=C_{\alpha \beta \gamma \delta} \ell^{\alpha} m^{\beta} \ell^{\gamma} m^{\delta} \\
& \psi_{1}=C_{\alpha \beta \gamma \delta} \ell^{\alpha} n^{\beta} \ell^{\gamma} \bar{m}^{\delta} \\
& \psi_{2}=C_{\alpha \beta \gamma \delta} \ell^{\alpha} m^{\beta} \bar{m}^{\gamma} n^{\delta} \\
& \psi_{3}=C_{\alpha \beta \gamma \delta} \ell^{\alpha} n^{\beta} \bar{m}^{\gamma} n^{\delta} \\
& \psi_{4}=C_{\alpha \beta \gamma \delta} n^{\alpha} \bar{m}^{\beta} n^{\gamma} \bar{m}^{\delta} .
\end{aligned}
$$

- Asymptotically, these fall-off as:

$$
C_{\alpha \beta \gamma \delta} \simeq \frac{\psi_{4}}{r}+\frac{\psi_{3}}{r^{2}}+\frac{\psi_{2}}{r^{3}}+\frac{\psi_{1}}{r^{4}}+\frac{\psi_{0}}{r^{5}}
$$

- The gravitational radiation measured by distant observers is ψ_{4}.

$$
\ddot{h}_{+}-i \ddot{h}_{\times}=\frac{1}{r} \psi_{4} .
$$

Perturbative extraction

- Method assumes a background Schwarzschild metric, $g_{\alpha \beta}^{0}$:

$$
g_{\alpha \beta}=g_{\alpha \beta}^{0}+h_{\alpha \beta}
$$

where $g_{\alpha \beta}^{0}$ corresponds to

$$
d s^{2}=-(1-M / r)^{-1} d t^{2}+(1-M / r) d r^{2}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right) .
$$

- The perturbations are expanded in a basis of Regge-Wheeler harmonics:

$$
h_{\alpha \beta}=\sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} h_{\alpha \beta}^{\ell m} .
$$

- These variables can be used to define first order gauge-invariant variables:
$Q_{\ell m}^{+}: \quad$ even-parity mass multipoles, $Q_{\ell m}^{\times}$: odd-parity current multipoles
- Related to the GW strain by:

$$
h_{+}-i h_{\times}=\frac{1}{\sqrt{2} r} \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell}\left(Q_{\ell m}^{+}-i \int Q_{\ell m}^{\times} d t\right)_{-2} Y^{\ell m}
$$

Finite radius extraction

- Both methods require waves to be measured at some distance from the source:
- Newman-Penrose: Requires the peeling property ($1 / r$ fall-off in ψ_{4})
- Perturbative: Requires a known background
- Typically we measure geometric variables on a topological $r=$ const. sphere around the source
- Several finite radius spheres are chosen, e.g. from $r=100 \mathrm{M}$ to $r=200 \mathrm{M}$.
- Inner bound set by above requirements.
- Outer bound set by available resolution and possible grid boundary effects.

- Results are fit to the expected $1 / r$ fall-off, and extrapolated in r to get the result for distant observers

Null compactification

- GWs are difficult to measure locally without a known background.
- At large radii, GWs can be defined unambiguously for asymptotically flat spacetimes.
- 1960s: Bondi, Sachs, Penrose and collaborators:
- Rigorous description of null infinity, \mathcal{J}^{+}.
- Definition of mass, radiated energy ("news function") at \mathcal{J}^{+}.
- Einstein equations in null coordinates.

Compactify u and v, define:

$$
U=\arctan (u), \quad V=\operatorname{artctan}(v)
$$

Null compactification

- GWs are difficult to measure locally without a known background.
- At large radii, GWs can be defined unambiguously for asymptotically flat spacetimes.
- 1960s: Bondi, Sachs, Penrose and collaborators:
- Rigorous description of null infinity, \mathcal{J}^{+}.
- Definition of mass, radiated energy ("news function") at \mathcal{J}^{+}.
- Einstein equations in null coordinates.

Null compactification

- GWs are difficult to measure locally without a known background.
- At large radii, GWs can be defined unambiguously for asymptotically flat spacetimes.
- 1960s: Bondi, Sachs, Penrose and collaborators:
- Rigorous description of null infinity, \mathcal{J}^{+}.
- Definition of mass, radiated energy ("news function") at \mathcal{J}^{+}.
- Einstein equations in null coordinates.

Null compactification

- GWs are difficult to measure locally without a known background.
- At large radii, GWs can be defined unambiguously for asymptotically flat spacetimes.
- 1960s: Bondi, Sachs, Penrose and collaborators:
- Rigorous description of null infinity, \mathcal{J}^{+}.
- Definition of mass, radiated energy ("news function") at \mathcal{J}^{+}.
- Einstein equations in null coordinates.

Null compactification

- GWs are difficult to measure locally without a known background.
- At large radii, GWs can be defined unambiguously for asymptotically flat spacetimes.
- 1960s: Bondi, Sachs, Penrose and collaborators:
- Rigorous description of null infinity, \mathcal{J}^{+}.
- Definition of mass, radiated energy ("news function") at \mathcal{J}^{+}.
- Einstein equations in null coordinates.

Null compactification

- GWs are difficult to measure locally without a known background.
- At large radii, GWs can be defined unambiguously for asymptotically flat spacetimes.
- 1960s: Bondi, Sachs, Penrose and collaborators:
- Rigorous description of null infinity, \mathcal{J}^{+}.
- Definition of mass, radiated energy ("news function") at \mathcal{J}^{+}.
- Einstein equations in null coordinates.

Null compactification

- GWs are difficult to measure locally without a known background.
- At large radii, GWs can be defined unambiguously for asymptotically flat spacetimes.
- 1960s: Bondi, Sachs, Penrose and collaborators:
- Rigorous description of null infinity, \mathcal{J}^{+}.
- Definition of mass, radiated energy ("news function") at \mathcal{J}^{+}.
- Einstein equations in null coordinates.

Null compactification

- GWs are difficult to measure locally without a known background.
- At large radii, GWs can be defined unambiguously for asymptotically flat spacetimes.
- 1960s: Bondi, Sachs, Penrose and collaborators:
- Rigorous description of null infinity, \mathcal{J}^{+}.
- Definition of mass, radiated energy ("news function") at \mathcal{J}^{+}.
- Einstein equations in null coordinates.

Hyperboloidal Slices

- Foliate spacetime by spacelike slices that intersect \mathcal{J}^{+}
- Can be specified by conditions on initial extrinsic curvature, gauge
- Slices are asymptotically null or spacelike at \mathcal{J}^{+}
- Formalisms worked out by Friedrich, Rinne, Zenginoglu
- Still some aspects to be worked out:
- Initial data
- Gauges
- Regularization at \mathcal{J}^{+}

Characteristic extraction

- Transport data from a standard $3+1$ evolution to \mathcal{J}^{+}using the Einstein equations in null coordinates
- Use the Bondi null formulation of the Einstein equations
- Inner boundary data given by $3+1$ evolution
- Relies on radial null geodesics to define coordinates:
- Need to be careful of caustics
- Not suited to very dynamical domain

Characteristic extraction

- Transport data from a standard $3+1$ evolution to \mathcal{J}^{+}using the Einstein equations in null coordinates
- Use the Bondi null formulation of the Einstein equations
- Inner boundary data given by $3+1$ evolution
- Relies on radial null geodesics to define coordinates:
- Need to be careful of caustics
- Not suited to very dynamical domain

Characteristic extraction

- Transport data from a standard $3+1$ evolution to \mathcal{J}^{+}using the Einstein equations in null coordinates
- Use the Bondi null formulation of the Einstein equations
- Inner boundary data given by $3+1$ evolution
- Relies on radial null geodesics to define coordinates:
- Need to be careful of caustics
- Not suited to very dynamical domain

Einstein in a Bondi frame

- Characteristic evolutions make use of a null formulation of the Einstein equations.

- Main idea: Coordinatize spacetime along null geodesics
- This leads to a number of advantages:
- Spacetime can be compactified.
- Einstein equations reduce to a simple heirarchy.
- Miminal number of variables.
- Asymptotic boundary conditions are purely outgoing.
- Well defined energy at \mathscr{I}.
- General form of the metric [Bondi et al. 1962]:

$$
\begin{aligned}
d s^{2}= & -\left(e^{2 \beta} \frac{V}{r}-r^{2} h_{A B} U^{A} U^{B}\right) d u^{2}-2 e^{2 \beta} d u d r \\
& -2 r^{2} h_{A B} U^{B} d u d y^{A}+r^{2} h_{A B} d y^{A} d y^{B}
\end{aligned}
$$

Bondi line element

$$
\begin{aligned}
d s^{2}= & -\left(e^{2 \beta} \frac{V}{r}-r^{2} h_{A B} U^{A} U^{B}\right) d u^{2}-2 e^{2 \beta} d u d r \\
& -2 r^{2} h_{A B} U^{B} d u d \theta^{A}+r^{2} h_{A B} d \theta^{A} d \theta^{B}
\end{aligned}
$$

Coordinates:

- u labels a family of null hypersurfaces: $k_{\alpha}=-\partial_{\alpha} u$ is normal to $u=$ constant surfaces, and

$$
g^{\alpha \beta} k_{\alpha} k_{\beta}=0
$$

- $\theta^{A}=\left(\theta^{1}, \theta^{2}\right)$ are angular coordinates labelling outgoing null geodesics which generate the surfaces.
- r is an areal radius running along each generator.

Bondi line element

$$
\begin{aligned}
d s^{2}= & -\left(e^{2 \beta} \frac{V}{r}-r^{2} h_{A B} U^{A} U^{B}\right) d u^{2}-2 e^{2 \beta} d u d r \\
& -2 r^{2} h_{A B} U^{B} d u d \theta^{A}+r^{2} h_{A B} d \theta^{A} d \theta^{B}
\end{aligned}
$$

- In these coordinates, the line element is parameterized by six functions of the coords:

$$
\beta, \quad V, \quad U^{A}, \quad h_{A B}
$$

- $h_{A B}$ is the conformal geometry of 2-surfaces defined by constant u, r spheres, and satisfies:

$$
\operatorname{det}\left(h_{A B}\right)=\operatorname{det}\left(q_{A B}\right), \quad h^{A C} h_{C B}=\delta^{A}{ }_{B},
$$ with $q_{A B}$ the unit sphere metric.

- The two independent components of $h_{A B}$ represent the radiative degrees of freedom in the spacetime.
- In later equations, replaced by J - complex-valued scalar, spin-weight 2.

Bondi line element

$$
\begin{aligned}
d s^{2}= & -\left(e^{2 \beta} \frac{V}{r}-r^{2} h_{A B} U^{A} U^{B}\right) d u^{2}-2 e^{2 \beta} d u d r \\
& -2 r^{2} h_{A B} U^{B} d u d \theta^{A}+r^{2} h_{A B} d \theta^{A} d \theta^{B} .
\end{aligned}
$$

- In these coordinates, the line element is parameterized by six functions of the coords:

$$
\beta, \quad V, \quad U^{A}, \quad h_{A B}
$$

- V is an analogue of a Newtonian potential.
- The scalar β measures the expansion of the light cone between the asymptotic frame and the world tube.
- U^{A} are angular shift components.

Bondi evolution system

- Heirarchy of equations
- Hypersurface equations: integrated radially along null slices
- Evolution equations: Evolve data to the next slice
- Hypersurface equations:

$$
\begin{aligned}
\beta_{, r} & =N_{\beta}, \\
\left(r^{2} Q\right)_{, r} & =-r^{2}(\bar{\delta} J+\partial K)_{, r}+2 r^{4} \check{\partial}\left(r^{-2} \beta\right)_{, r}+N_{Q} \\
U_{, r} & =r^{-2} e^{2 \beta} Q+N_{U} \\
\left(r^{2} \hat{W}\right)_{, r} & =\frac{1}{2} e^{2 \beta} \mathcal{R}-1-e^{\beta} \partial \bar{\delta} e^{\beta}+\frac{1}{4} r^{-2}\left(r^{4}(\check{\partial} \bar{U}+\bar{\delta} U)_{, r}+N_{W}\right.
\end{aligned}
$$

- Evolution equations:

$$
\begin{aligned}
2(r J)_{, u r} & = \\
& \left(r^{-1} V(r J)_{, r}\right)_{, r}-r^{-1}\left(r^{2} \partial U\right)_{, r}+2 r^{-1} e^{\beta} \wp^{2} e^{\beta}-\left(r^{-1} W\right)_{, r} J+N_{J}
\end{aligned}
$$

Evolution Scheme

1. Given $h_{A B}$ on a null slice Σ.

2a. On Σ, solve for β :

$$
(\beta)_{, r}=\frac{1}{16} r h^{A C} h^{B D} h_{A B, r} h_{C D, r}
$$

2b. Solve for U^{A} :

$$
\begin{aligned}
\left(r^{2} Q_{A}\right)_{, r} & =F_{Q}\left(h_{A B}, \beta\right) \\
\left(U_{A}\right)_{, r} & =r^{-2} e^{2 \beta} Q_{A} .
\end{aligned}
$$

2c. Solve for V :

$$
(V)_{, r}=F_{V}\left(h_{A B}, \beta, U_{A}\right)
$$

3. Evolve $h_{A B}$ to the next slice using:

$$
\left(r h_{A B}\right)_{, u r}=F_{H}\left(h_{A B}, \beta, U_{A}, V\right)
$$

4. Repeat.

Coupling 3+1 to Null Evolutions

- Metric data from a standard $3+1$ evolution is stored on an $r=$ const. world-tube Γ.
- Stored in file as time series of spherical harmonic coefficients
- Store ADM variables ($g_{a b}, K_{a b}, \alpha, \beta^{i}$).
- Null evolution code using data at Γ as inner boundary data.
- Change of variables.
- Locate 「 in Bondi coordinates.
- Null evolution currently a post-processing step:
- One-way transfer of information \rightarrow extraction

Coupling 3+1 to Null Evolutions

- Metric data from a standard $3+1$ evolution is stored on an $r=$ const. world-tube Γ.
- Stored in file as time series of spherical harmonic coefficients
- Store ADM variables ($g_{a b}, K_{a b}, \alpha, \beta^{i}$).
- Null evolution code using data at Γ as inner boundary data.
- Change of variables.
- Locate 「 in Bondi coordinates.
- Null evolution currently a post-processing step:
- One-way transfer of information \rightarrow extraction

Measurements at \mathcal{J}^{+}

- As $r \rightarrow \infty$, the Bondi variables go to zero with known fall-offs.
- In particular,

$$
J=0+\frac{J_{1}}{r}+O\left(\frac{1}{r^{2}}\right) .
$$

- We define the gravitational "news function" by

$$
\mathcal{N}=\frac{1}{2}\left(J_{1}\right)_{, u}=-\lim _{r \rightarrow \infty} \frac{1}{2} r^{2} J_{u r} .
$$

- The Bondi mass-loss formula is:

$$
\frac{d m}{d u}=\int_{\mathcal{J}^{+}}|\mathcal{N}|^{2}
$$

- The Newman-Penrose quantity ψ_{4} is related to the news by:

$$
\mathcal{N}_{, u}=-\frac{1}{2} \bar{\psi}_{4}
$$

Summary of numerical GW measures

	Variables	Relation to h
Perturbative	Q^{+}, Q^{\times}	$Q^{+}+\int Q^{\times} d t$
Newman-Penrose	ψ_{4}	$\iint \psi_{4} d t d t$
Bondi news	\mathcal{N}	$\int \mathcal{N} d u$

- In each case, at least one integration is required to get the strain.
- Integration of noisy time-series can be problematic.
- Results in spurious drifts that need to be removed.

Some Characteristic Extraction Results

Binary BH: $m_{1}=m_{2}, s_{1}=+0.8 s_{2}=+0.4$

Gravitational memory $(\ell, m)=(2,0)$ mode

Non-spinning, equal-mass binary:

- Integration constant for h determined by fit to PN estimate.

GWs independent of world-tube radius

- A key feature of characteristic extraction is that the results should be indepdendent of the world-tube radius:
- The full Einstein equations are used over the entire domain (no linearized assumption)
- Bondi coordinates at \mathscr{I} are invariantly defined

- A convergence test shows that evolutions using $R_{\Gamma}=100$ and $R_{\Gamma}=250$ produce identical results up to numerical truncation error.

Comparison with finite radius measurements

- We can estimate the error of finite radius ψ_{4} measurements by comparing with CCE results.

- Extrapolation using radii:
$r=300 M-1000 M$ from source
- Max. amplitude diff: 1.08\%
- Max. phase diff: 0.019rad
- This is good news for numrel \longrightarrow standard extrapolation techniques are quite accurate
- Note: Finite radius measurements usually carried out within $r=200 \mathrm{M}$
- This can increase error by order of magnitude.
- Observed errors are larger than the discretization errors for this resolution.

Extrapolation error from small radii

Experiment:

- Measure ψ_{4} at $r=1000 \mathrm{M}$ from the source
- (on a large grid where this radius is not influenced by outer boundary)
- Compare with smaller radius extrapolations to estimate the wave at $r=1000 \mathrm{M}$

Amplitude exrapolation error

Phase extrapolation error

Initial data for characteristic evolutions

- A remaining potential inconsistency is the specification of data on the initial null cone
- Information travelling inwards from the past can influence the measured signal

- For 3+1 codes, initial data corresponds to the solution of elliptic constraint equations, typically under assumption of conformal flatness
- In the characteristic domain, conformal flatness corresponds to a simple prescription:

$$
J=0
$$

- Perhaps we can do better by imposing an outgoing wave solution on the initial characteristic slice

A linearized characteristic solution

- Bishop (2005) developed a linearized characteristic solution, representing purely outgoing waves:

$$
\begin{aligned}
\beta_{2, \nu}(r) & =b_{1} \text { (constant) } \\
j_{2, \nu}(r) & =\left(12 b_{1}+6 i \nu c_{1}+i \nu^{3} c_{2}\right) \frac{\sqrt{6}}{9}+\frac{2 \sqrt{6} c_{1}}{r}+\frac{\sqrt{6} c_{2}}{3 r^{3}} \\
u_{2, \nu}(r) & =\sqrt{6}\left(\frac{\nu^{4} c_{2}+6 \nu^{2} c_{1}-12 i \nu b_{1}}{18}+\frac{2 b_{1}}{r}+\frac{2 c_{1}}{r^{2}}-\frac{2 i \nu c_{2}}{3 r^{3}}-\frac{c_{2}}{2 r^{4}}\right) \\
w_{2, \nu}(r) & =r^{2} \frac{12 i \nu b_{1}-6 \nu^{2} c_{1}-\nu^{4} c_{2}}{3}+r \frac{-6 b_{1}+12 i \nu c_{1}+2 i \nu^{3} c_{2}}{3}+2 \nu^{2} c_{2} \\
& -\frac{2 i \nu c_{2}}{r}-\frac{c_{2}}{r^{2}}
\end{aligned}
$$

- The free constants are fixed by the known 3+1 data at the world-tube
- Purely outgoing solution can be matched with the GW signal at the world-tube, Г [Bishop, DP, Reisswig 2011]:
- Evaluate "junk" radiation in null initial data
- Diagnose radiation content of initial 3+1 slice

Initial data on the world tube

- Model problem: Equal mass non-spinning binary

Linearized vs. Conf. flat data

- initialized after junk radiation

Conf. flat (before junk) vs. Linearized (after junk)

- Initial data on the null side can have an influence.
- But consistent data seem to agree pretty well, i.e.:
- 3+1 conformally flat? \rightarrow use $J=0$.
- 3+1 wavey (after junk)? \rightarrow use linearized wave J.
- Comparison with linearized solution suggests a component of incoming radiation in $3+1$ initial data - lasts up to 800 M .
- Numerical relativity evolutions involve a number of systematic errors beyond discretization.
- One of these is the extrapolation error due to finite radius measurements.
- For extrapolation radii < 200M, this error may be significantly larger than achievable discretization accuracies.
- Evaluating waves at \mathcal{J}^{+}is one way to reduce this ambiguity.

