Current research in Numerical Relativity

Harald Pfeiffer, CITA

ICTS/TIFR Summer School in Numerical Relativity June 21, 2013, Bangalore

Outline

Motivation

✤ BH-BH

- History
- Recent technical improvements
- The big picture

Beyond vacuum GR

- BH-NS
- NS-NS
- core-collapse SN

The Future

Motivation for Numerical Simulations

Investigate General Relativity in the dynamic, strong-field regime

- compact object mergers
- critical collapse
- higher-dimensional gravity

Astrophysics: What happens when

- ... stars collapse?
- ... compact objects collide?

* Aid GW detectors

LIGO's many Numerical Relativity needs

* Signal detection

 Need template banks of that region of parameter space that is targeted in searches
 e.g. aligned spin binaries

Bounds on event-rates from non-detection

• Some waveforms elsewhere in parameter space e.g. precessing systems; eccentric systems

* Parameter estimation

• Especially accurate waveform models in all parameters being estimated

 $\vec{S}_1, \vec{S}_2, M_1, M_2, e, \dots$

Properties of electro-magnetic counterparts

• What should telescopes look for?

Tools for computing waveforms

Early inspiral

- Post-Newtonian calculations
- Late inspiral & Merger
 - Computer simulations

- Ringdown
 - Perturbation theory
 - Computer simulations

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

More generic case

- Modulated amplitude
- Higher temporal harmonics
- Dependence on inclination
- Modified phasing

50 Years of Vacuum Numerical Relativity

50 Years: The early days

50 Years: Foundations for success

50 Years: Coming of Age

50 Years:

These should also have been on the time-line

- 2005 Constraint Damping (Gundlach, Pretorius, Lindblom)
- 2005 Constraint-preserving outer boundary conditions for GH (Lindblom, Scheel)
- 2009 Unstable 5-D black strings (Lehner, Pretorius)

Audience's additions:

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

The Two-Body Problem in Geometrodynamics

SUSAN G. HAHN

International Business Machines Corporation, New York, New York

AND

RICHARD W. LINDQUIST

The numerical calculations were carried out on an IBM 7090 electronic computer. The parameters a and μ_0 were both set equal to unity; the mesh lengths were assigned the values $h_1 = 0.02$, $h_2 = \pi/150 \approx 0.021$, yielding a 51×151 mesh. The calculations of all unknown functions, including a great number of input-output operations and some built-in checking procedures, took approximately four minutes per time step. Different check routines indicated that results close to the point $\mu = 0$, $\eta = 0$ lost accuracy fairly quickly. Since these would, in the long run, influence meshpoints further away, the computations were stopped after the 50th time step, when the total time elapsed was approximately 1.8. Some of the results are shown in Table I.

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

PRL 95, 121101 (2005)

Evolution of Binary Black-Hole Spacetimes

Frans Pretorius^{1,2,*}

¹Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125, USA ²Department of Physics, University of Alberta, Edmonton, AB T6G 2J1 Canada (Received 6 July 2005; published 14 September 2005)

We describe early success in the evolution of binary black-hole spacetimes with a numerical code based on a generalization of harmonic coordinates. Indications are that with sufficient resolution this scheme is capable of evolving binary systems for enough time to extract information about the orbit, merger, and gravitational waves emitted during the event. As an example we show results from the evolution of a binary composed of two equal mass, nonspinning black holes, through a single plunge orbit, merger, and ringdown. The resultant black hole is estimated to be a Kerr black hole with angular momentum parameter $a \approx 0.70$. At present, lack of resolution far from the binary prevents an accurate estimate of the energy emitted, though a rough calculation suggests on the order of 5% of the initial rest mass of the system is radiated as gravitational waves during the final orbit and ringdown.

	PRL 96, 111101 (2006)	PHYSICAL REVIEW LETTERS	week ending 24 MARCH 2006				
	Accurate Evol	utions of Orbiting Black-Hole Binaries without I	Excision				
	M. Car						
	¹ Department of Physics and Astron ² Department of We present a new alg	PRL 96, 111102 (2006) PHYSICAL RI	EVIEW LETTERS				
		Gravitational-Wave Extraction from an Ins	niraling Configuration	of Mergin			
	corotating shift. Our al		. 12				
	factor. This system, b	John G. Baker, Joan Centrella, Dae-II Ch	ioi, ^{1,2} Michael Koppitz, ¹ and	i James van M			
	and remains nonsingula	¹ Gravitational Astrophysics Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Green					
	use this technique to ful	² Universities Space Research Association, 10211 Win	copin Circle, Suite 500, Colun	nbia, Maryland			
Dfaif	regime. We show fourth	(Received 15 November 2)	005; published 22 March 2006)			
	and angular momentum	We present new ideas for evolving black holes	through a computational grid	without excision			

Harald

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Early days of BH-BH sims

Spin=0 BH-BH kicks Gonzalez, Sperhake, Brügmann, Hannam, Husa 07 v_{max}=130km/sec

BH-BH superkicks Campanelli ea 07 v_{max}~3500km/sec

(in-)validating PN Boyle...HP ea 07

The two approaches to BH-BH

$$\Box g_{ab} = -2\nabla_{(a}H_{b)} + \gamma_0 \left[t_{(a}C_{b)} - \frac{1}{2}g_{ab}t^cC_c \right] + \text{lower}$$

Multi-domain spectral methods SpEC SXS collaboration (Cornell-Caltech-CITA-Washington State Univ-California State Univ Fullerton)

BSSN w/

(Brandt&Brügmann 97)

moving punctures

(Campanelli ea 06, Baker ea 06)

Puncture initial-data

$$egin{array}{rcl} egin{array}{rcl} egin{array}{rcl} egin{array}{rcl} egin{array}{rcl} eta^{i} &=& eta^{4\phi} eta^{i}_{ji}, \ &ar{\Gamma}^{i} &=& eta^{jk} ar{\Gamma}^{i}_{jk} \ &\partial_t \phi &=& \dots \ &\partial_t eta^{ij}_{ij} &pprox & - eta_{ij} \ &\partial_t eta^{ij}_{ij} &pprox & - eta eta^{ij}_{ij} \ &\partial_t eta^{ij}_{ij} &pprox & - \Delta eta^{ij}_{ij} \ &\partial_t eta^{i}_{ij} &pprox & - \Delta eta^{ij}_{ij} \end{array}$$

Finite differences w/ AMR (RIT, AEI, GATech, Goddard, Jena, Palma, Cardiff, Perimeter)

The two approaches to BH-BH

Finite differences w/ AMR (RIT, AEI, GeorgiaTech, Jena, Palma, Cardiff, Perimeter)

Conventional wisdom:

- -- Robust, "easy"
- -- Many short simulations
- -- Lower accuracy, higher cost

More recent:

Multi-domain spectral methods SpEC (Cornell-Caltech-CITA-WSU-CSUF)

Conventional wisdom:

- -- Less robust, "difficult"
- -- Few long simulations
- -- Higher accuracy, lower cost

More recent:

ea

-- mergers becoming routine

.30 206 Ъ Ð nman n C $\mathbf{\Omega}$

Numerical Relativity Groups

Canada

- CITA/Univ. of Toronto (Pfeiffer)
- Perimeter Institute/Guelph University (Lehner)
- Vancouver (Choptuik)

France

- Institute d'Astrophysique, Paris (Barausse)
- Meudon near Paris (Gourgoulhon)

Germany

- AEI (Rezzolla)
- Garching (Janka, Müller)
- Jena (Brügmann, Ansorg)
- Tübingen (Kokkotas)

Italy

• Trento (Giacomazzo)

Japan

*

• Kyoto (Shibata)

New Zealand

• Otago (Beyer, Fraundiener)

Spain

- Barcelona (Cardoso)
- Palma de Mallorca (Husa)
- Valencia (Font)

UK

- Cambridge (Sperhake)
- Cardiff (Hannam)
- Southampton (Hawke)

United States

- Brigham Young Unviersity (David Neilsen)
- Cal State Fullerton (Lovelace, Read)

- Caltech (Ott, Scheel, Szilagyi)
- Cornell (Teukolsky, Kidder)
- Florida Atlantic Univ. (Marronetti, Tichy)
- Georgia Tech (Laguna, Shoemaker)
- Long Island (Liebling)
- NASA/Goddard (Baker)
- Oakland University (Garfinkle)
- Princeton (Pretorius, Burrows)
- Rochester Institute of Technology (Campanelli, Faber, Louso, Zlochower)
- Urbana Champaign (Shapiro)
- Washington State University (Duez)

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Some recent BH-BH technical advances

Harald Pfeiffer NRDA/Amaldi July 11, 2011

Orbital eccentricity

* Initial data parameters Ω_0, v_r (or p_t, p_r) determine orbital eccentricity and phase at periastron

use PN parameters

Read off p_t, p_r from long post-Newtonian inspiral

+ easy

+ works for cases w/o precession => e_{final} ~ few 10⁻³

Husa ea 08, Hannam ea 10

HP ea 07, Boyle ea 07, Pürrer ea 12

Eccentricity in precessing BH-BH

With enough care, iterative eccentricity removal works!

Buonnano, Kidder, Mroue, HP, Tarraccini, 10

Pürrer, Husa, Hannam 2012: Iterative ecc. removal for moving punctures

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

q	d/M	L/M	E^{rad}/M	$E_{l=2,3,4}^{\rm rad}(\%)$		$v/(\rm km/s)$	
1	10.24	12.48	5.32×10^{-4}	99.6	0	0.03	0
1	12.74	16.76	5.39×10^{-4}	99.3	0	0.03	0
1	17.51	21.82	5.56×10^{-4}	99.4	0	0.03	0
1/2	12.74	16.69	4.33×10^{-4}	98.1	1.28	0.07	3.71
1/3	12.74	16.60	3.11×10^{-4}	96.7	2.83	0.16	3.97
1/4	7.31	10.57	2.16×10^{-4}	95.8	3.85	0.25	3.65
1/4	12.74	16.53	2.28×10^{-4}	95.4	4.14	0.28	3.72
1/4	17.51	21.61	2.33×10^{-4}	95.6	4.13	0.27	3.83
1/10	12.72	16.28	6.05×10^{-5}	92.1	7.09	0.67	1.31
1/10	16.72	20.55	6.16×10^{-5}	92.5	7.23	0.70	1.33
1/10	20.72	24.76	6.29×10^{-5}	92.0	7.15	0.67	1.34
1/100	7.15	9.58	9.10×10^{-7}	88.1	9.01	1.15	0.0243
1/100	11.87	15.08	9.65×10^{-7}	88.0	9.87	1.46	0.0248
1/100	13.85	17.21	9.94×10^{-7}	87.8	10.11	1.46	0.0256
1/100	15.08	18.53	1.012×10^{-6}	87.7	10.05	1.51	0.0260

Head on collisions q=1...100 Sperhake ea 1105.5391

Two orbits, starting @ ISCO Lousto, Zlochower 11

 $(x_1 - x_2)/M$

 $(y_1 - y_2)/M$

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Carlos Lousto Tue, 17:00

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Spins above the Bowen-York limit

- Puncture-data limit:
 S/M²<0.93
- First complete BBH simulation above
 0.93 limit!
 - Equal mass, equal spins anti-parallel to orbital L

Importance of S/M²>0.93

Observational evidence for BH's with S/M²~0.998

Expansion parameter around extremality

$$\varepsilon_{\rm spin} \equiv \sqrt{1 - \chi^2}$$

• 0.93 is far from extremal!

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Quadrupole moments

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Cauchy-characteristic Extraction

* h(t) at Scri+

Post-processing tool for any Cauchy evolution (open source)

Reisswig ea 09, Reisswig ea 10, Babiuc ea 1011.4223, Babiuc ea 1106.4841

Radiation-aligned minimally-rotating frame

- Decompose radiation in a good frame, not an inertial frame
- Schmidt ea 2011, O'Shaugnessy ea 2011, Boyle ea 2011:
- Polar axis of Ylm-decomposition along dominant emission direction

q=6, 🗚=0.9, 🖪=0.3, 8 orbits Figures courtesy Mike Boyle & Larry Kidder

Harald Pfeiffer GWPAW June 4, 2012

News on critical collapse

Incoming grav wave with Angular momentum

- Small Amplitude
 - dispersal
- Large Amplitude
 - BH formation
 - signs of discrete self-similarity

CITA

Harald Pfeiffer **GWPAW** June 4, 2012

News on 5-D black strings

Lehner, Pretorius
1106.5184

Harald Pfeiffer GWPAW June 4, 2012

Some details about Spectral Einstein Code (SpEC)

Harald Pfeiffer NRDA/Amaldi July 11, 2011

Numerics I: Spectral methods

Expand in basis-functions, solve for coefficients

$$u(x,t) = \sum_{k=1}^{N} \tilde{u}(t)_k \Phi_k(x)$$

Compute derivatives exactly

$$u'(x,t) = \sum_{k=1}^{N} \tilde{u}(t)_k \Phi'_k(x)$$

Compute nonlinearities in physical space

Spectral

Finite differences

Numerics II: Domain-decomposition

Full resolution to outer boundary

Can place resolution where needed

Spectral Einstein Code SpEC (Caltech-Cornell-CITA) http://www.black-holes.org/SpEC.html

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013
Einstein Constraint Equations

Can be written as five coupled non-linear elliptic PDEs

- Unknowns $\psi, \vec{eta}, ilde{N}$
- Everything else know
- Derivative-operators on possibly non-flat 3-D (t=0) manifold

$$\begin{split} \tilde{\nabla}^{2}\psi - \frac{1}{8}\psi\tilde{R} - \frac{1}{12}\psi^{5}K^{2} + \frac{1}{8}\psi^{-7}\tilde{A}_{ij}\tilde{A}^{ij} &= -2\pi G\psi^{-3}\tilde{\rho}.\\ \tilde{\nabla}_{j}\left(\frac{1}{2\tilde{N}}(\tilde{\mathbb{L}}\beta)^{ij}\right) - \tilde{\nabla}_{j}\left(\frac{1}{2\tilde{N}}\tilde{u}^{ij}\right) - \frac{2}{3}\psi^{6}\tilde{\nabla}^{i}K &= 8\pi G\tilde{\jmath}^{i},\\ \tilde{\nabla}^{2}(\tilde{N}\psi^{7}) - (\tilde{N}\psi^{7})\left[\frac{1}{8}\tilde{R} + \frac{5}{12}\psi^{4}K^{2} + \frac{7}{8}\psi^{-8}\tilde{A}_{ij}\tilde{A}^{ij} + 2\pi G\psi^{4}(\rho + 2S)\right]\\ &= -\psi^{5}\left(\partial_{t}K - \beta^{k}\partial_{k}K\right) \end{split}$$

HP, Kidder, Scheel, Teukolsky, 2002

Recap: Solving the constraints

Puncture Initial Data (Brandt, Brügmann, 1997)

- conformal flat
- analytical Bowen-York solution
- disregard "5th equation"
- Demand certain behavior inside BHs
- Simple numerics, but <u>spins limited to <0.92</u>

Lovelace, ea 2008

Elliptic Solver I: Spectral discretization

Elliptic equations:

$$\mathbf{F}[\mathbf{u}(\vec{x})] = 0$$

Substitute in spectral expansion

$$\mathbf{u}(\vec{x}) = \sum \tilde{u}_i \Phi_i(\vec{x})$$

- * nonlinear algebraic set of equations for u_i
- Linearize with Newton-Raphson
- Preconditioned fGMRES for linear solution

Evolution equations: Pretorius' breakthrough

Einstein's equations

$$0 = R_{ab}[g_{ab}] = -\frac{1}{2}\Box g_{ab} + \nabla_{(a}\Gamma_{b)} + \text{lower order terms}, \qquad \Gamma_a = -g_{ab}\Box x^b.$$

 Generalized harmonic coordinates g_{ab}□x^b ≡ H_a(x^a, g_{ab}) (Friedrich 1985, Pretorius 2005; H = 0 used since 1920's)

 $\Box g_{ab} =$ lower order terms.

 \Rightarrow Constraint $C_a \equiv H_a - g_{ab} \Box x^b = 0$

• Constraint damping (Gundlach, et al., Pretorius, 2005)

 $\Box g_{ab} = \gamma \left[t_{(a}C_{b)} - \frac{1}{2}g_{ab}t^{c}C_{c} \right] + \text{lower order terms}$

$$\partial_t C_a \sim -\gamma C_a$$
.

First order reduction

Lindblom ea 2006

Rewrite as first order symmetric hyperbolic system

$$\partial_t u^{\alpha} + A^{k\,\alpha}{}_{\beta}[u]\,\partial_k u^{\beta} = R^{\alpha}[u] \qquad u^{\alpha} = \left\{g, \partial_t g_{ab}, \partial_i g_a b\right\}$$

Characteristic fields w.r.t. boundary normal n:

$$e^{\hat{\alpha}}{}_{\alpha}n_k A^{k\,\alpha}{}_{\beta} = v_{(\hat{\alpha})} e^{\hat{\alpha}}{}_{\beta}$$

Must impose BC on incoming fields

 $v_{\hat{\alpha}} < 0$

- Internal boundaries:
 - Outgoing fields become incoming fields of neighbor
- Outer boundary:
 - Incoming Constraints $\equiv 0 \Rightarrow$ conditions on some incoming fields
 - two further incoming fields represent GWs -> set to zero
 - final four incoming fields represent coordinates

Technical details

- BH excision (no inner BCs)
- Non-reflective outer BCs (Lindblom, Rinne et al. 06)
- Wave-extraction & extrapolation (Boyle et al 07, Boyle & Mroue, 09)
- Coordinate conditions (Pretorius; Lindblom & Szilagyi, 09)
- Domain-decomposition follows BHs (Scheel, et al., 06)
- Switch domain-decomposition at merger (Scheel, et al., 08, Szilagyi et al 09)
- Construct initial data (Cook, HP 04-07, Lovelace et 08)
- Reduce orbital eccentricity (HP ea 2006, Buonnano, et al, 10)

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Exploring Parameter Space & Precession

Harald Pfeiffer NRDA/Amaldi July 11, 2011

Waveform Catalog Efforts

Results from the first NINJA project

0.3 SpEC q=1

BAM FAU

0

-0.3

0.3

0

-0.3

0.3

-0.3

0.3

0

-0.3

0.3

0

-0.3

0.3

0

-0.3

-2000

LazEv

MayaKranc e0

Lack of parameter space coverage

BH-BH simulations are hard

• World-wide NINJA-2 collaboration computed 40 spin-alinged systems (no precession at all)

		$q = 1, A_1$	$-A_2 - A$	
١F	SpEC q = 1.0 x = -0.95	BAM q = 1.0 χ = -0.85	BAM q = 1.0 x = -0.75	8AM q = 1.0 x = -0.5
-	ø/////////////////////////////////////	·····	1////#////////////////////////////////	VVVV#VVVVW#WW
H	SpEC q = 1.0 y = -0.44	Liama g = 1.0 y = -0.4	BAMe=10 v=-025	Liama g = 1.0 y = -0.2
0.0.0	A BAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	0.	AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0.
3	e va e e e e e e e e e e e e e e e e e e	10004000000000000	1	CONTRACTOR CONTRACT
1	BAM q = 1.0 x = 0.0	GATech q = 1.0 x = 0.0	Liama q = 1.0 χ = 0.0	SpEC q = 1.0 x = 0.0
AVA		-/////.www.e///	·/////////////////////////////////////	~~~~~
	GAllech q = 1.0 χ = 0.2	Liama q = 1.0 _X = 0.2	BAMq = 1.0 x = 0.25	GATech.g = 1.0 χ = 0.4
W	//////////////////////////////////////	·/////////////////////////////////////	·/////////////////////////////////////	www.www.
	Liama q = 1.0 χ = 0.4	5pEC q = 1.0 x = 0.44	BAMq=1.0 χ=0.5	GATech-q = 1.0 x = 0.6
w	/////h////////////////////////////////	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		·/////////////////////////////////////
	BAM q = 1.0 x = 0.75	GATech q = 1.0 x = 0.8	BAM-q = 1.0 x = 0.85	UIUC q = 1.0 x = 0.85
w	/////www.ewww.we	·/////////////////////////////////////	·····	www.www.www.
_	Officeho - 10 - 00	C-CC- 10, 0.07	1	-2000.0 -1000.0
1	restand = ro.X = o.b	spec q = 1.0 X = 0.9V	4	-500010 -100010
W				1M
W	-2000.0 -1000.0 0	2000.0 -1000.0 (1M g ≠ 1, χ ₁	$ = \chi_2 = 0 $	100.0
W	-2000.0 -1000.0 0 5M BAM9-20	$\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	$= \chi_2 = 0$	5pEC q = 20
~~	-2000.0 -1000.0 0 5M BAM9 = 20	$\frac{1000000 -100000}{10000}$	$= \chi_2 = 0$ Uama q = 2.0	50EC q - 20
~~	-2000.0 -1000.0 0 5M BAM q = 2.0	$\frac{1}{1000.0} + \frac{1}{1000.0} + \frac{1}$	$= \chi_2 = 0$ Uamag = 20 Uamag = 40 BAMg = 40	50EC q = 20
~~	-2000.0 -1000.0 0 5M BAM9 - 2.0 WWWWWWWW	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	D.0 = χ ₂ = 0 Uamag - 20 VVVVV(Φ/VVV)(Φ/VV)	506C q = 20 S06C q = 20 S06C q = 20 LEAN q = 4.0 S06C q = 4.0
~~~	-2000.0 -1000.0 0 BAM q - 2.0 BAM q - 2.0 BAM q - 3.0 BAM q - 3.0 Suff C q - 4.0	$\chi = \frac{100000 - 10000}{10000}$	0.0 = χ ₂ = 0 Uama q - 20 WWWWWWWWWWWWWWW BAM q - 4.0 BAM q - 4.0 RT q - 10.0	506C q - 20 500 LEAN q - 40 
	-2000.0 -1000.0 0 5M BAM9 - 2.0 MAM9 - 3.0 BAM9 - 3.0 SpEC 9 - 4.0	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	0.0 = χ ₂ = 0 Uama q = 20 WWW WWW WWW BAM q = 4.0 Rif q = 100 Rif q = 100	SpEC q = 20 SpEC q = 20 SpEC q = 40 UEAN q = 40 -2000.0 -1000.0 SM
	-2000.0 -1000.0 0 5M BAMq = 2.0 MMQ = 3.0 BAMq = 3.0 SpEC q = 4.0	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	2.0 = χ ₂ = 0 Uama q = 2.0 MAM q = 4.0 BAM q = 4.0 Rif q = 10.0 Rif q = 10.0	5000.0 -1000.0 5M 1000.0 -2000.0 -1000.0 1000.0 -1000.0 1000.0 -1000.0 1000.0 -1000.0 1000.0 -1000.0
	-2000.0 -1000.0 0 5M BAM q - 2.0 MM 0 BAM q - 3.0 MM 0 BAM q - 3.0 MM 0 Suff C q = 4.0 -2000.0 -1000.0 0	100         -2000.0         -1000.0         0           100         -2000.0         -1000.0         0           100         -2000.0         -1000.0         0           100         -2000.0         -1000.0         0           100         -2000.0         -2000.0         -2000.0           100         -2000.0         -1000.0         0           100         -2000.0         -1000.0         0	2.0 = χ ₂ = 0 Uama q = 2.0 MAM q = 4.0 MAM q = 4.0 Ref q = 10.0 Ref q = 10.0 0.0 -2000.0 -1000.0	5000.0 - 1000.0 5M 1000.0 - 1000.0 1000.0 - 1000.0 1000.
~~~	-2000.0 -1000.0 0 BAM q - 2.0 MM Q - 2.0 BAM q - 3.0 Suff C q = 4.0 Suff C q = 4.0 -2000.0 -1000.0 0 EM	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	BAMq = 4.0 RrT q = 10.0 0.0 -2000.0 -1000.0 UM	5000.0 - 1000.0 5M 1000.0 - 1000.0 1000.0 - 1000.0 1000.
	-2000.0 -1000.0 0 5M BAM q - 20 BAM q - 20 BAM q - 30 BAM q - 30 Set C q = 40 -2000.0 -1000.0 0 5M	$\chi_1 \neq \chi_2$	D.0 = χ ₂ = 0 Uama q = 20 MMM q = 40 BAM q = 40 MMM q = 40 MM q = 40 MM q = 40	$\frac{5060.0 - 1000.0}{5M}$ $\frac{1000.0 - 1000.0}{5M}$ $\frac{1000.0 - 1000.0}{5M}$ $\frac{1000.0 - 1000.0}{5M}$ $\frac{1000.0 - 1000.0}{5M}$
	-2000.0 -1000.0 0 5M BAM q = 2.0 MWWWWWWW BAM q = 3.0 MWQ = 3.0 MWWWWWWWW -2000.0 -1000.0 0 5M -2000.0 -1000.0 0 5M	$\begin{array}{c} x_{1} \neq x_{2} \\ x_{1} \neq x_{2} \\ x_{2} \neq x_{2} \\ x_{1} \neq x_{2} \\ x_{2} \neq x_{2} \\ x_{1} \neq x_{2} \\ x_{2} \neq x_{2} \\ x_{3} \neq x_{2} \\ x_{4} \neq x_{4} = x_{4} \\ x_{4} \neq x_{4} \\ x_{5} \neq x_{5} = x_{5} \\ x_{5} \neq x_{5} = x_{5} \\ x_{5} \neq x_{5} = x_{5} \\ x_{5} \neq x_{5} \\ x_{5} = x_{5} \\$	$\chi_2 = 0$ Use a - 20	5000.0 - 1000.0 5M 1000.0 - 1000.0 1000.0 - 1000.0 1000.0 - 1000.0 1000.0 - 1000.0 1000.0 - 1000.0 1000.0 - 1000.0
	-2000.0 -1000.0 0 5M BAM q = 2.0 WWWWWWW BAM q = 3.0 WWWWWWW Suff C q = 4.0 -2000.0 -1000.0 0 5M WWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWWW	$\begin{array}{c} & & & & & & & & & & & & & & & & & & &$	200 = χ ₂ = 0 Liama q = 20 WWW/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/	1000.0 $1000.01000.$

Ajith ea, 1211.5319

Pushing parameter space coverage

700 configurations quasi-circularized (Mroue, HP 1210.2958)

I7I simulations completed

- Mroue ea, arXiv:1304.6077
- Abdul H. Mroué,¹ Mark A. Scheel,² Béla Szilágyi,² Harald P. Pfeiffer,^{1,3} Michael Boyle,⁴ Daniel A. Hemberger,⁴ Lawrence E. Kidder,⁴ Geoffrey Lovelace,^{5,2} Serguei Ossokine,^{1,6} Nicholas W. Taylor,² Anıl Zenginoğlu,² Luisa T. Buchman,² Tony Chu,¹ Evan Foley,⁵ Matthew Giesler,⁵ Robert Owen,⁷ and Saul A. Teukolsky⁴

171 waveform catalog

0009 0032 0038 0041 0043 0044 0046 0054 0057 0059 0062 0109 0111 0122 0147 0151 0154
0030 0051 0052 0053 10156 0159 0167 1
00106 016 0117 0118 0119 0120 0121 0123 016
0042 0137 0138 0139 0140 0141 0142 0144 0145 0146 0148 0149 0162
0025 0026 0028 0029 0039 0060 0077 0078 0102 0102 0171
0014 0037 0056 0061 0153 0157 0158 0160 0166
0065 0093 0093 0099

3 years, 50 Mio CPU-hours

Mroue ea, arXiv:1304.6077

Examples of precessing binaries

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Orientation-dependence of waveform

Mroue ea, arXiv: 1304.6077

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Alternative study: Georgia Tech

Pekowsky ea 1304.3176, continuing sequence of papers

- 191 generic BBH waveforms
- precessing waveform = [non-precessing waveform] x [Rotation]
- IMRPhenomB fits to better than 95% for 200Msun<M<2500Msun
- At low masses, GW's can measure BH-BH properties
- At high masses, GW's can measure remnant properties

Expanding parameter space coverage

Most spinning runs at q<2</p>

So far, pushing parameters was <u>always</u> difficult

• Each arrow 1-2years hard work

Precessing Movie

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Precessing Movie

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

BH-BH the big picture

Harald Pfeiffer NRDA/Amaldi July 11, 2011

BH-BH simulations quite mature

- Lot's of parameter space remains for exploration
- Boundaries of parameter space challenge current codes:
 - spins very close to maximal
 - mass-ratios beyond 10

Present goal: Remove waveform modeling errors from GW data-analysis

- Explore all parameters w/ sufficient accuracy
- Check where Post-Newtonian is sufficient
- Construct waveform models
- Perform injection studies

Boyle et al 2007

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Boyle et al 2007

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Boyle et al 2007

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

GW-cycles to merger 26 18 10 2 order 0.3 order 3.0 PN order 3.5 $\phi_{PN} - \phi_{NR}$ (radians) () tertine -0.3 TaylorT1 ···· TaylorT2 TaylorT3 TaylorT4 -0.6 2400 3600 1200 t/m

Boyle et al 2007

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Friday, June 21, 13

post-Newtonian -- NR comparison

Or do they?

- SOME versions of PN match very well
- NO a priori knowledge which ones work (if any)

Boyle et al 2007

Harald Pfeiffer

post-Newtonian -- NR comparison

• Or do they?

NR & PN agree!

- SOME versions of PN match very well
- NO a priori knowledge which ones work (if any)

ICTS @ Bangalore Jun 21, 2013

Boyle et al 2007

Phenomenological, aligned spins

Unequal-mass, aligned spins (Ajith ea 2011) "IMRPhenomC"

- 2-dim waveform family (mass-ratio, effective spin)
- (2,2) mode calibrated against 24 sims (BAM, Ccatie, Llama)

EOB + NR

Effective one body

- Buonanno, Damour 1999; many papers since
- Inspiral-Merger-Ringdown waveform model based on
 - Effective Hamiltonian to capture conservative dynamics

$$H = \mu \sqrt{p_r^2 + A(r) \left[1 + \frac{p_r^2}{r^2} + 2(4 - 3\nu)\nu \frac{p_r^4}{r^2} \right]}, \qquad A(r) = \sum_{k=0}^4 \frac{a_k(\nu)}{r^k} + \frac{a_5(\nu)}{r^5}$$

Radiation reaction terms

$$\frac{dp_r}{dt} = -\frac{\partial H}{\partial p_r} + a_{\rm RR}^r \frac{\dot{r}}{r^2 \Omega} \widehat{\mathcal{F}}_{\phi}$$

$$\frac{dp_{\varphi}}{dt} = 0 - \frac{v_{\Omega}^3}{\nu V_{\phi}^6} F_4^4(V_{\phi}; \nu, v_{\text{pole}}), \quad \text{using 4-PN term } \mathcal{F}_{8,\nu=0} + \nu A_8$$

- Attach ringdown modes
- **★** Fit parameters to NR simulations

EOB for non-spinning BH-BH

Physical parameter mass-ratio q

* "EOBNRv2" Pan ea, 2011

- supersedes EOBNRv1 (Buonnano ea 2007)
- Five modes: (2,2), (2,1), (3,3), (4,4), (5,5)
- calibrated against SpEC q=1,2,3,4,6.

EOB for aligned spins

EOB w/ aligned spins "SEOBNRv1"

- Taracchini ea 2012
- (2,2) mode calibrated against 7x SpEC & Teukolsky code
- Prototype-model: Intended for re-calibration with more NR sims

Caveats:

- Calibrated in tiny region of param space:
 (a) zero spin q=1,2,3,4,6
 (b) q=1, equal spin ±0.44
- Current EOB model fails for aligned spins >0.7

Precessing BH-BH

First generic spin model (Sturani ea 2010)

- Based on 24 MayaKranc sims
- TaylorT4 until very close to merger & phenomenological Ansatz

BH-BH in non-vacuum environment

Harald Pfeiffer NRDA/Amaldi July 11, 2011

BH-BH in gaseous environment

center-of-mass v=0.1c "Bondi-Hoyle-Lyttleton BH-BH"

Farris, Liu, Shapiro 10

BH-BH in gaseous environment

Bode, Bogdanovic, Haas, Healy, Laguna, Shoemaker 1101.4684

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Black hole magnetosphere

Tenuous plasma. Inertia dominated by magnetic field

$$\rho \vec{E} + \vec{j} \times \vec{B} = \rho_{\text{plasma}} \vec{a}_{\text{plasma}} \equiv 0$$

• Maxwell's equations close; matter disappears from eqns.

Appropriate for pulsar and BH magnetospheres

cf. MHD: B-field attached to moving fluid

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013
BH in force-free plasma

Single BH's consistent with Blandford-Znajek

FIG. 7 (color online). Density of energy flux $F_{\rm EM}$ at t = 100M for a single spinning black hole with a = 0.99, together with the magnetic field lines. *Left:* An aligned black hole ($\theta_o = 0$). *Right:* A misaligned black hole with $\theta_o = \pi/4$.

Palenzuela, Garrett, Lehner, Liebling 10

BH-BH in force-free plasma

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

BH-NS & NS-NS

Much harder than BH-BH * BH-BH: Completely solve the problem for GW detectors * BH-NS, NS-NS: investigate qualitative features

Harald Pfeiffer NRDA/Amaldi July 11, 2011

BH-NS & NS-NS: Goals

Gravitational Waves

• Long inspirals, accurate bulk evolution, accurate metric & GW extraction

Test short GRB viability

- Need massive disk, baryon poor region
- Need MHD and/or neutrio radiation for energy extraction

Ejecta effects (r-process elements, afterglow emission)

Need to track outflows with reasonable accuracy

Courtesy Matt Duez

Basic stages

Courtesy Matt Duez

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

BH-NS: disruption vs. direct plunge

Toy-model w/ tidal effects (courtesy Matt Duez)

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

BH-NS

Early fully GR simulations

- Shibata et al 06,07,08: Polytropic EOS
- Etienne et al 08,09: Polytropic EOS, aligned spin BH
- Duez et al 08: Polytropic EOS

Current activity:

- Higher mass-ratios
- Effect of BH-spin (aligned, and non-aligned)
- Magnetic fields
- Neutrino cooling
- Realistic EOS

Different groups chose different order of attack

BH-NS: some recent activities

- Kyotuko, Shipara, Taniguchi 10
 - Piecewise polytropic EOS's, zero spin, q=2,3

Kiuchi et al

- Study of compactness, mass-ratio, BH spin
- Chawla et al, 10
 - BH spin 0.5, q=5, MHD
- * Geleazzi et al
 - q=5, MHD

Duez, et al 10

• Polytropic & Shen EOS's, spin 0.5, q=3

Foucart et al II

• BH spin 0 ... 0.9, vary angle, q=3

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

73

Precessing BH-NS

Foucart et al, I I

Disruption only occurs for large spins

 $q=7, \chi_{\rm BH}=0.5, C_{\rm NS}=0.144$

Outflows: Important for counterparts

P	$\chi_{ m BH}$	$M_{\rm ejecta}$
I-3	< 0.5	<1%
3-7	>0.9	I-20%
5-7	<0.7	0

- Only computed for parts of the parameter space
- High uncertainties at large mass ratios
- Energetic outflows possible for high spins

Magnetic **BH-NS**

Chawla et al 11

✤ q=5, spin 0.5, B=0 and B=10¹²G

- Essentially no unbound material
- Magnetic field irrelevant

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Large Mdisk even for a=0

Hyperboloidal BH-NS encounters

Vary impact parameter p

Small p direct coalescence

Larger p Tidal disruption & tail

Yet larger p periodic mass-transfer

Unbounded ejecta, zoom-whirl behavior

Some recent NS-NS simulations

Baiotti, Shibata, Yamamoto 10

Comparison SACRA vs. Whisky

Baiotti et al 1103.3874

• 20GW cycles & comparison to EOB

✤ Giacomazzo et al II, Rezzolla et al II

• MHD, long run-time after merger

Hotokezaka et al II

• 6 piecewise polytropic EOS

Segikuchi et al 10

• finite-temperature Shen EOS, neutrio cooling

79

Dependence on EOS

Hotokezaka et al II

- 6 EOS's from Read et al 09
- different masses for 16 simulations

Different merger outcome

- Type 1: Prompt BH formation
- Type 2: short-lived HMNS
- Type 3: long-lived HMNS

NS-NS w/ neutrino cooling

• Equal mass NS-NS, M=1.45, 1.5, 1.6Msun

Shen EoS, neutrino cooling

Sekiguchi ea 1105.2125

GW Waveforms Neutrino luminosity (three flavours) h_{+×} [10⁻²²] L_{v} [10⁵³ erg/s] L_{v} [10⁵³ erg/s] L_{v} [10⁵³ erg/s] (a) L 2 h_{+×}[10⁻²²] (b) M 3 2 h_{+,×} [10⁻²²] (c) H 4 3 10 11 12 13 14 15 $t_{\rm ret} - t_{\rm merge}$ [ms] 20 15 25 10 t_{merge} [ms] B formation

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

15

20

25

NS-NS simulation shows jets

GR+MHD+ideal fluid+long evolution (~30ms)

B-fields amplified and orderedBaryon-poor funnel

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Giacomazzo ea 10, Rezzolla ea 11

NS-NS simulation shows jets

NS-NS in scalar-tensor theories

0.007

0.005

0.004

FIG. 1: The separation and the dominant mode of the ψ_4 scalar (encoding the effect of GWs) for a binary with gravitational masses $\{1.58, 1.67\}M_{\odot}$, and for different values of β .

0.06

0.04

0.03

FIG. 2: The scalar field $\varphi G^{1/2}$ (color code) and the NS surfaces (solid black line) at $t = \{1.8, 3.1, 4.0, 5.3\}$ ms for $\beta/(4\pi G) = -4.5$, and the binary of Fig. 1.

Barausse et al, arXiv/1212.5053

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

Beyond compact object binaries

Supernova simulations

- Require more micro-physics
- Yet higher computational cost

Ott ea, 2012

Future challenges (BH-NS, NS-NS)

Accuracy

- Hydro converges <=3rd order (shocks 1st order)
- Realistic EOS has discontinuities which are hard to model

Neutrino transport

leakage schemes and beyond

Magnetic fields

- magnetospheres are not MHD
- magneto-rotational instability excites small scales

BH-NS parameter space

The future

Harald Pfeiffer NRDA/Amaldi July 11, 2011

Likely themes for the coming years * BH-BH

- precessing waveform models
- targeted simulations, in response to LIGO detection
- eccentric systems
- alternative gravity; higher dimensional gravity
- can GW observations distinguish between GR and alternative theories?

Matter simulations

- Tremendous amount of work needed for micro-physics
- Parameter studies with
 - increasing amount of micro-physics
 - increasing parameter space coverage
- Understand jets and their EM, nu signatures
- Understand ejecta and their EM, nu signatures
- What NS properties can GW detectors measure?

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013