Current research in Numerical Relativity

Harald Pfeiffer, CITA
ICTS/TIFR Summer School in Numerical Relativity June 2I, 20I3, Bangalore

Outline

* Motivation
- BH-BH
- History
- Recent technical improvements
- The big picture
- Beyond vacuum GR
- BH-NS
- NS-NS
- core-collapse SN
* The Future

Motivation for Numerical Simulations

* Investigate General Relativity in the dynamic, strong-field regime
- compact object mergers
- critical collapse
- higher-dimensional gravity
* Astrophysics: What happens when
- ... stars collapse?
- ... compact objects collide?
* Aid GW detectors

LIGO's many Numerical Relativity needs

* Signal detection
- Need template banks of that region of parameter space that is targeted in searches
e.g. aligned spin binaries
* Bounds on event-rates from non-detection
- Some waveforms elsewhere in parameter space
e.g. precessing systems; eccentric systems
* Parameter estimation
- Especially accurate waveform models in all parameters being estimated

$$
\vec{S}_{1}, \vec{S}_{2}, M_{1}, M_{2}, e, \ldots
$$

* Properties of electro-magnetic counterparts
-What should telescopes look for?

Tools for computing waveforms

- Early inspiral
- Post-Newtonian calculations
- Late inspiral \& Merger
- Computer simulations
* Ringdown
- Perturbation theory
- Computer simulations

More generic case

* Modulated amplitude
* Higher temporal harmonics
* Dependence on inclination
* Modified phasing

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

50 Years of Vacuum Numerical Relativity

eararice
Harald Pfeiffer \square

50 Years: The early days

50 Years: Foundations for success

50 Years: Coming of Age

50 Years:

* These should also have been on the time-line
- 2005 Constraint Damping (Gundlach, Pretorius, Lindblom)
- 2005 Constraint-preserving outer boundary conditions for GH (Lindblom, Scheel)
- 2009 Unstable 5-D black strings (Lehner, Pretorius)
* Audience's additions:

The Two-Body Problem in Geometrodynamics

Susan G. Hahn
International Business Machines Corporation, New York, New York

AND
Richard W. Lindquist

The numerical calculations were carried out on an IBM 7090 electronic computer. The parameters a and μ_{0} were both set equal to unity; the mesh lengths were assigned the values $h_{1}=0.02, h_{2}=\pi / 150 \approx 0.021$, yielding a 51×151 mesh. The calculations of all unknown functions, including a great number of input-output operations and some built-in checking procedures, took approximately four minutes per time step. Different check routines indicated that results close to the point $\mu=0, \eta=0$ lost accuracy fairly quickly. Since these would, in the long run, influence meshpoints further away, the computations were stopped after the 50 th time step, when the total time elapsed was approximately 1.8. Some of the results are shown in Table I.

Evolution of Binary Black-Hole Spacetimes

Frans Pretorius ${ }^{1,2, *}$
${ }^{1}$ Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125, USA
${ }^{2}$ Department of Physics, University of Alberta, Edmonton, AB T6G 2 II Canada (Received 6 July 2005; published 14 September 2005)

We describe early success in the evolution of binary black-hole spacetimes with a numerical code based on a generalization of harmonic coordinates. Indications are that with sufficient resolution this scheme is capable of evolving binary systems for enough time to extract information about the orbit, merger, and gravitational waves emitted during the event. As an example we show results from the evolution of a binary composed of two equal mass, nonspinning black holes, through a single plunge orbit, merger, and ringdown. The resultant black hole is estimated to be a Kerr black hole with angular momentum parameter $a \approx 0.70$. At present, lack of resolution far from the binary prevents an accurate estimate of the energy emitted, though a rough calculation suggests on the order of 5% of the initial rest mass of the system is radiated as gravitational waves during the final orbit and ringdown.

We present a new alg oring shif. Our a factor. This system, b and remains nonsingula use this technique to ful regime. We show fourth and angular momentum

Evolution of Binary Black-Hole Spacetimes

Frans Pretorius ${ }^{1,2, *}$

Early days of BH-BH sims

Spin=0 BH-BH kicks Gonzalez, Sperhake, Brügmann, Hannam, Husa 07

BH-BH superkicks Campanelli ea 07
$\mathrm{v}_{\text {max }} \sim 3500 \mathrm{~km} / \mathrm{sec}$

(in-)validating PN Boyle...HP ea 07

The two approaches to $\mathrm{BH}-\mathrm{BH}$

Puncture initial-data (Brandt\&Brügmann 97)

BSSN w/ moving punctures
(Campanelli ea 06, Baker ea 06)

$$
\begin{aligned}
& g_{i j}=e^{4 \phi} \tilde{g}_{i j}, \\
& \tilde{r}^{i}=\tilde{g}^{k} \tilde{\Gamma}_{j k} \\
& \partial_{t} \phi=\ldots \\
& \partial_{t} \tilde{g}_{i j} \approx-\tilde{A}_{i j} \\
& \partial_{t} \tilde{A}_{j} \approx-\Delta \tilde{g}_{i j} \\
& \partial_{t} \tilde{\Gamma}^{i}=\partial_{t}\left(\tilde{g}^{k} k \tilde{\Gamma}_{j k}\right)
\end{aligned}
$$

Finite differences w/ AMR
(RIT,AEI, GATech,
Goddard, Jena, Palma, „Cardiff, Perimeter)

Quasi-equilibrium excision initial-data (Cook 02, Cook\&HP 04)

Generalized Harmonic w/ constraint damping
(Gundlach ea 05, Pretorius 05)

Multi-domain spectral methods SpEC
SXS collaboration (Cornell-
Caltech-CITA-Washington State Univ-
California State Univ Fullerton)

The two approaches to $\mathrm{BH}-\mathrm{BH}$

Finite differences w/ AMR (RIT,AEI, GeorgiaTech, Jena, Palma, Cardiff, Perimeter)

Conventional wisdom:

-- Robust,"easy"
-- Many short simulations
-- Lower accuracy, higher cost

More recent:

-- longer and more accurate sims

Multi-domain spectral methods
SpEC (Cornell-Caltech-CITA-WSU-CSUF)
Conventional wisdom:
-- Less robust,"difficult"
-- Few long simulations
-- Higher accuracy, lower cost

More recent:

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013
-- mergers becoming routine

Numerical Relativity Groups

- Canada
- CITA/Univ. of Toronto (Pfeiffer)
- Perimeter Institute/Guelph University (Lehner)
- Vancouver (Choptuik)
* France
- Institute d'Astrophysique, Paris (Barausse)
- Meudon near Paris (Gourgoulhon)
* Germany
- AEI (Rezzolla)
- Garching (Janka, Müller)
- Jena (Brügmann,Ansorg)
- Tübingen (Kokkotas)

Italy

- Trento (Giacomazzo)
* Japan
- Kyoto (Shibata)
* New Zealand
- Otago (Beyer, Fraundiener)
- Spain
- Barcelona (Cardoso)
- Palma de Mallorca (Husa)
- Valencia (Font)
* UK
- Cambridge (Sperhake)
- Cardiff (Hannam)
- Southampton (Hawke)
- United States
- Brigham Young Unviersity (David Neilsen)
- Cal State Fullerton (Lovelace, Read)
- Caltech (Ott, Scheel, Szilagyi)
- Cornell (Teukolsky, Kidder)
- Florida Atlantic Univ. (Marronetti,Tichy)
- Georgia Tech (Laguna, Shoemaker)
- Long Island (Liebling)
- NASA/Goddard (Baker)
- Oakland University (Garfinkle)
- Princeton (Pretorius, Burrows)
- Rochester Institute of Technology (Campanelli, Faber, Louso, Zlochower)
- Urbana Champaign (Shapiro)
- Washington State University (Duez)

Some recent BH-BH technical advances

Orbital eccentricity

* Initial data parameters Ω_{0}, v_{r} (or p_{t}, p_{r}) determine orbital eccentricity and phase at periastron
* Unique values for zero eccentricity

use PN parameters

Read off p_{t}, p_{r} from long postNewtonian inspiral

+ easy
+ works for cases w/o precession
$=>\mathrm{e}_{\text {final }} \sim$ few 10^{-3}
Husa ea 08, Hannam ea 10

iterative ecc-removal

HP ea 07, Boyle ea 07, Pürrer ea 12

Eccentricity in precessing $\mathrm{BH}-\mathrm{BH}$

* With enough care, iterative eccentricity removal works!

Buonnano, Kidder, Mroue, HP, Tarraccini, 10
Pürrer, Husa, Hannam 2012:
Iterative ecc. removal for moving punctures

Mass-ratio I:I00

q	d / M	L / M	$E^{\text {rad }} / M$	$E_{l=2,3,4}^{\text {rad }}(\%)$			
1	10.24	12.48	5.32×10^{-4}	99.6	0	0.03	0
1	12.74	16.76	5.39×10^{-4}	99.3	0	0.03	0
1	17.51	21.82	5.56×10^{-4}	99.4	0	0.03	0
$1 / 2$	12.74	16.69	4.33×10^{-4}	98.1	1.28	0.07	3.71
$1 / 3$	12.74	16.60	3.11×10^{-4}	96.7	2.83	0.16	3.97
$1 / 4$	7.31	10.57	2.16×10^{-4}	95.8	3.85	0.25	3.65
$1 / 4$	12.74	16.53	2.28×10^{-4}	95.4	4.14	0.28	3.72
$1 / 4$	17.51	21.61	2.33×10^{-4}	95.6	4.13	0.27	3.83
$1 / 10$	12.72	16.28	6.05×10^{-5}	92.1	7.09	0.67	1.31
$1 / 10$	16.72	20.55	6.16×10^{-5}	92.5	7.23	0.70	1.33
$1 / 10$	20.72	24.76	6.29×10^{-5}	92.0	7.15	0.67	1.34
$1 / 100$	7.15	9.58	9.10×10^{-7}	88.1	9.01	1.15	0.0243
$1 / 100$	11.87	15.08	9.65×10^{-7}	88.0	9.87	1.46	0.0248
$1 / 100$	13.85	17.21	9.94×10^{-7}	87.8	10.11	1.46	0.0256
$1 / 100$	15.08	18.53	1.012×10^{-6}	87.7	10.05	1.51	0.0260

Head on collisions $q=1$... 100 Sperhake ea II05.539I

Two orbits, starting @ ISCO Lousto, Zlochower II

Simulation:
 Carlos Lousto Yosef Zlochower

Visualization:
Hans-Peter Bischof
CCRE
RIT

Carlos Lousto Tue, 17:00

Spins above the Bowen-York limit

Lovelace, Scheel, Szilagyi I I, Lovelace ea II

* Puncture-data limit: $S / M^{2}<0.93$
* First complete BBH simulation above 0.93 limit!
- Equal mass, equal spins anti-parallel to orbital L

Importance of $\mathrm{S} / \mathrm{M}^{2}>0.93$

* Observational evidence for BH's with S/M²~0.998
* Expansion parameter around extremality

$$
\varepsilon_{\mathrm{spin}} \equiv \sqrt{1-\chi^{2}}
$$

- 0.93 is far from extremal!

Merger Remnant approaches Kerr!

* Gauge invariant horizon structure

Quadrupole moments

Robert Owen 09

(also Campanelli ea 09, Owen I0)

Merger Remnant approaches Kerr!

* Gauge invariant horizon structure

Octupole

Merger Remnant approaches Kerr!

* Gauge invariant horizon structure

Hexadecupole

Merger Remnant approaches Kerr!

* Gauge invariant horizon structure Kerr

Robert Owen 09

(also Campanelli ea 09, Owen I0)

Cauchy-characteristic Extraction

* $\mathrm{h}(\mathrm{t})$ at Scri+
* Post-processing tool for any Cauchy evolution (open source)

Reisswig ea 09 , Reisswig ea IO, Babiuc ea IOII.4223, Babiuc ea II06.484।

Radiation-aligned minimally-rotating frame

* Decompose radiation in a good frame, not an inertial frame
* Schmidt ea 20II, O'Shaugnessy ea 20II, Boyle ea 20II:
- Polar axis ofYlm-decomposition along dominant emission direction

$q=6, \square A=0.9, \square B=0.3,8$ orbits
Figures courtesy Mike Boyle \& Larry Kidder

News on critical collapse

* Incoming grav wave with

Angular momentum

* Small Amplitude

Tony Chu CITA

- dispersal
* Large Amplitude
- BH formation
- signs of discrete self-similarity

Harald Pfeiffer GWPAW June 4, 20I2

News on 5-D black strings

* Lehner, Pretorius II06.5I84

Some details about

 Spectral Einstein Code (SpEC)
Numerics I:Spectral methods

* Expand in basis-functions,
solve for coefficients

$$
u(x, t)=\sum_{k=1}^{N} \tilde{u}(t)_{k} \Phi_{k}(x)
$$

*Compute derivatives exactly

$$
u^{\prime}(x, t)=\sum_{k=1}^{N} \tilde{u}(t)_{k} \Phi_{k}^{\prime}(x)
$$

*Compute nonlinearities in physical space

Spectral

Finite differences

Numerics II: Domain-decomposition

* Full resolution to outer boundary

* Can place resolution where needed

Spectral Einstein Code SpEC (Caltech-Cornell-CITA) http://www.black-holes.org/SpEC.html

Einstein Constraint Equations

* Can be written as five coupled non-linear elliptic PDEs
- Unknowns $\psi, \vec{\beta}, \tilde{N}$
- Everything else know
- Derivative-operators on possibly non-flat 3-D ($\mathrm{t}=0$) manifold

$$
\begin{aligned}
& \tilde{\nabla}^{2} \psi-\frac{1}{8} \psi \tilde{R}-\frac{1}{12} \psi^{5} K^{2}+\frac{1}{8} \psi^{-7} \tilde{A}_{i j} \tilde{A}^{i j}=-2 \pi G \psi^{-3} \tilde{\rho} . \\
& \tilde{\nabla}_{j}\left(\frac{1}{2 \tilde{N}}(\tilde{\mathbb{L}} \beta)^{i j}\right)-\tilde{\nabla}_{j}\left(\frac{1}{2 \tilde{N}} \tilde{u}^{i j}\right)-\frac{2}{3} \psi^{6} \tilde{\nabla}^{i} K=8 \pi G \tilde{\jmath}^{i}, \\
& \tilde{\nabla}^{2}\left(\tilde{N} \psi^{7}\right)-\left(\tilde{N} \psi^{7}\right)\left[\frac{1}{8} \tilde{R}+\frac{5}{12} \psi^{4} K^{2}+\frac{7}{8} \psi^{-8} \tilde{A}_{i j} \tilde{A}^{i j}\right.\left.+2 \pi G \psi^{4}(\rho+2 S)\right] \\
&=-\psi^{5}\left(\partial_{t} K-\beta^{k} \partial_{k} K\right)
\end{aligned}
$$

HP, Kidder, Scheel, Teukolsky, 2002

Recap: Solving the constraints

* Puncture Initial Data (Brandt, Brügmann, 1997)
- conformal flat
- analytical Bowen-York solution
- disregard "5th equation"
- Demand certain behavior inside $\mathrm{BH} s$
- Simple numerics, but spins limited to <0.92
* Solve all five equations
- Tailor to spinning BH's

$$
\tilde{g}_{i j}=g_{i j}^{A}+g_{i j}^{B}-\delta_{i j}
$$

- Use BH excision

Lovelace, ea 2008

Elliptic Solver I: Spectral discretization

* Elliptic equations:

$$
\mathbf{F}[\mathbf{u}(\vec{x})]=0
$$

* Substitute in spectral expansion

$$
\mathbf{u}(\vec{x})=\sum \tilde{u}_{i} \Phi_{i}(\vec{x})
$$

* nonlinear algebraic set of equations for \tilde{u}_{i}
* Linearize with Newton-Raphson
* Preconditioned fGMRES for linear solution

Evolution equations: Pretorius' breakthrough

- Einstein's equations

$$
0=R_{a b}\left[g_{a b}\right]=-\frac{1}{2} \square g_{a b}+\nabla_{(a} \Gamma_{b)}+\text { lower order terms, } \quad \Gamma_{a}=-g_{a b} \square x^{b} .
$$

- Generalized harmonic coordinates $g_{a b} \square x^{b} \equiv H_{a}\left(x^{a}, g_{a b}\right)$ (Friedrich 1985, Pretorius 2005; $H=0$ used since 1920's)

$$
\square g_{a b}=\text { lower order terms. }
$$

\Rightarrow Constraint $C_{a} \equiv H_{a}-g_{a b} \square x^{b}=0$

- Constraint damping (Gundlach, et al., Pretorius, 2005)

$$
\begin{gathered}
\square g_{a b}=\gamma\left[t_{(a} C_{b)}-\frac{1}{2} g_{a b} t^{c} C_{c}\right]+\text { lower order terms } \\
\partial_{t} C_{a} \sim-\gamma C_{a} .
\end{gathered}
$$

First order reduction

* Rewrite as first order symmetric hyperbolic system

$$
\partial_{t} u^{\alpha}+A^{k \alpha}{ }_{\beta}[u] \partial_{k} u^{\beta}=R^{\alpha}[u] \quad u^{\alpha}=\left\{g, \partial_{t} g_{a b}, \partial_{i} g_{a} b\right\}
$$

* Characteristic fields w.r.t. boundary normal n:

$$
e^{\hat{\alpha}}{ }_{\alpha} n_{k} A^{k \alpha}{ }_{\beta}=v_{(\hat{\alpha})} e^{\hat{\alpha}}{ }_{\beta}
$$

* Must impose BC on incoming fields

$$
v_{\hat{\alpha}}<0
$$

- Internal boundaries:
- Outgoing fields become incoming fields of neighbor
- Outer boundary:
- Incoming Constraints $\equiv 0 \Rightarrow$ conditions on some incoming fields - two further incoming fields represent GWs -> set to zero
- final four incoming fields represent coordinates

Black Hole Excision

Artificial boundary inside horizon

space

Technical details

* BH excision (no inner BCs)

* Non-reflective outer BCs (Lindblom, Rinne et al. 06)
* Wave-extraction \& extrapolation (Boyle et al 07, Boyle \& Mroue, 09)
* Coordinate conditions (Pretorius; Lindblom \& Szilagyi, 09)
* Domain-decomposition follows BHs (Scheel, et al., 06)
* Switch domain-decomposition at merger (Scheel, et al., 08, Szilagyi et al 09)
- Construct initial data (Cook, HP 04-07, Lovelace et 08)
* Reduce orbital eccentricity (HP ea 2006, Buonnano, et al, 10)

Exploring Parameter Space \& Precession

Waveform Catalog Efforts

Ninjal (2008)

Results from the first NINJA project

Ninja2 (2012)

Lack of parameter space coverage

* BH-BH simulations are hard
- World-wide NINJA-2 collaboration computed 40 spin-alinged systems (no precession at all)

Ajith ea, 1211.5319
Harald Pfeiffer ICTS @ Bangalore Jun 2I, 2013

Pushing parameter space coverage

* 700 configurations quasi-circularized (Mroue, HP I2I0.2958)
* I7I simulations completed
- Mroue ea, arXiv:I304.6077

Abdul H. Mroué, ${ }^{1}$ Mark A. Scheel, ${ }^{2}$ Béla Szilágyi, ${ }^{2}$ Harald P. Pfeiffer, ${ }^{1,3}$ Michael Boyle, ${ }^{4}$ Daniel A. Hemberger, ${ }^{4}$ Lawrence E. Kidder, ${ }^{4}$ Geoffrey Lovelace,,${ }^{5,2}$ Serguei Ossokine, ${ }^{1,6}$ Nicholas W. Taylor, ${ }^{2}$ Anıl Zenginoğlu, ${ }^{2}$ Luisa T. Buchman, ${ }^{2}$ Tony Chu, ${ }^{1}$ Evan Foley, ${ }^{5}$ Matthew Giesler, ${ }^{5}$ Robert Owen, ${ }^{7}$ and Saul A. Teukolsky ${ }^{4}$

I7I waveform catalog

 1

 $\frac{1}{2} 1$

 (1000

20004000600080001000012000

$2000-4000-1$

3 years, 50 Mio CPU-hours

Examples of precessing binaries

Mass-ratio 3 spins $0.5 \& 0$

Orientation-dependence of waveform

Mroue ea, arXiv: I 304.6077

Alternative study: Georgia Tech

* Pekowsky ea I304.3I76, continuing sequence of papers
- 191 generic BBH waveforms
- precessing waveform $=$ [non-precessing waveform] \times [Rotation]
- IMRPhenomB fits to better than 95% for 200 Msun<M<2500Msun
- At low masses, GW's can measure BH-BH properties
- At high masses, GW's can measure remnant properties

Expanding parameter space coverage

* Most spinning runs at $\mathrm{q}<2$

* So far, pushing parameters was always difficult
- Each arrow I-2years hard work

Precessing Movie

Precessing Movie

(3)

$\mathrm{BH}-\mathrm{BH}$ the big picture

* $\mathrm{BH}-\mathrm{BH}$ simulations quite mature
- Lot's of parameter space remains for exploration
- Boundaries of parameter space challenge current codes:
- spins very close to maximal
- mass-ratios beyond IO
* Present goal: Remove waveform modeling errors from GW data-analysis
- Explore all parameters w/ sufficient accuracy
- Check where Post-Newtonian is sufficient
- Construct waveform models
- Perform injection studies

post-Newtonian -- NR comparison

* NR \& PN agree!

Boyle et al 2007

post-Newtonian -- NR comparison

* NR \& PN agree!

Boyle et al 2007

post-Newtonian -- NR comparison

* NR \& PN agree!

Boyle et al 2007

post-Newtonian -- NR comparison

* NR \& PN agree!

Boyle et al 2007

post-Newtonian -- NR comparison

* NR \& PN agree!
* Or do they?
- SOME versions of PN match very well
- NO a priori knowledge which ones work (if any)

Boyle et al 2007

post-Newtonian -- NR comparison

* NR \& PN agree!
* Or do they?
- SOME versions of PN match very well
- NO a priori knowledge which ones work (if any)

Boyle et al 2007

Phenomenological, aligned spins

* Unequal-mass, aligned spins (Ajith ea 201I) "IMRPhenomC"
- 2-dim waveform family (mass-ratio, effective spin)
- $(2,2)$ mode calibrated against 24 sims (BAM, Ccatie, Llama)
* Two stages:
I.construct TaylorTI+NR hybrids
2.fit model to hybrids

$$
\begin{aligned}
& A(f)=C f_{1}^{-7 / 6} \begin{cases}f^{\prime-7 / 6}\left(1+\sum_{i=2}^{3} \alpha_{i} v^{i}\right) & \text { if } f<f_{1} \\
w_{m} f^{\prime-2 / 3}\left(1+\sum_{i=1}^{2} \epsilon_{i} v^{i}\right) & \text { if } f_{1} \leq f<f_{2} \\
w_{r} \mathcal{L}\left(f, f_{2}, \sigma\right) & \text { if } f_{2} \leq f<f_{3},\end{cases} \\
& \Psi(f) \equiv 2 \pi f t_{0}+\varphi_{0}+\frac{3}{128 \eta v^{5}}\left(1+\sum_{k=2}^{7} v^{k} \psi_{k}\right) .
\end{aligned}
$$

Harald Pfeiffer ICTS @ Bangalore Jun 2I, 2013

$\mathrm{EOB}+\mathrm{NR}$

* Effective one body
- Buonanno, Damour 1999; many papers since
* Inspiral-Merger-Ringdown waveform model based on
- Effective Hamiltonian to capture conservative dynamics

$$
H=\mu \sqrt{p_{r}^{2}+A(r)\left[1+\frac{p_{r}^{2}}{r^{2}}+2(4-3 \nu) \nu \frac{p_{r}^{4}}{r^{2}}\right]}, \quad A(r)=\sum_{k=0}^{4} \frac{a_{k}(\nu)}{r^{k}}+\frac{a_{5}(\nu)}{r^{5}}
$$

- Radiation reaction terms

$$
\begin{aligned}
\frac{d p_{r}}{d t} & =-\frac{\partial H}{\partial p_{r}}+a_{\mathrm{RR}}^{r} \frac{\dot{r}}{r^{2} \Omega} \widehat{\mathcal{F}}_{\phi} \\
\frac{d p_{\varphi}}{d t} & ==0-\frac{v_{\Omega}^{3}}{\nu V_{\phi}^{6}} F_{4}^{4}\left(V_{\phi} ; \nu, v_{\text {pole }}\right), \quad \text { using 4-PN term } \mathcal{F}_{8, \nu=0}+\nu A_{8}
\end{aligned}
$$

- Attach ringdown modes
\star Fit parameters to NR simulations

EOB for non-spinning BH-BH

* Physical parameter mass-ratio q
*"EOBNRv2" Pan ea, 201I
- supersedes EOBNRvI (Buonnano ea 2007)
- Five modes: $(2,2),(2, I),(3,3),(4,4),(5,5)$
- calibrated against SpEC q=I,2,3,4,6.

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

EOB for aligned spins

* EOB w/ aligned spins "SEOBNRvl"
- Taracchini ea 2012
- $(2,2)$ mode calibrated against 7x SpEC \& Teukolsky code
- Prototype-model: Intended for re-calibration with more NR sims
* Caveats:
- Calibrated in tiny region of param space:
(a) zero spin $q=1,2,3,4,6$
(b) $q=$ I, equal spin ± 0.44
- Current EOB model fails for aligned spins >0.7

Taracchini ea 2012

Precessing BH-BH

* First generic spin model (Sturani ea 2010)
- Based on 24 MayaKranc sims
- TaylorT4 until very close to merger \& phenomenological Ansatz

BH-BH in non-vacuum environment

$\mathrm{BH}-\mathrm{BH}$ in gaseous environment

* center-of-mass v=0.Ic "Bondi-Hoyle-Lyttleton BH-BH"

Farris, Liu, Shapiro 10

$\mathrm{BH}-\mathrm{BH}$ in gaseous environment

Bode, Bogdanovic, Haas, Healy, Laguna, Shoemaker IIOI. 4684

Black hole magnetosphere

* Tenuous plasma. Inertia dominated by magnetic field

$$
\rho \vec{E}+\vec{\jmath} \times \vec{B}=\rho_{\text {plasma }} \vec{a}_{\text {plasma }} \equiv 0
$$

- Maxwell's equations close; matter disappears from eqns.

$$
\begin{aligned}
& \partial_{t} \vec{E}=\nabla \times \vec{B}-\vec{j}, \\
& \partial_{t} \vec{B}=-\nabla \times \vec{E}, \\
& \nabla \cdot \vec{E}=\rho, \\
& \nabla \cdot \vec{B}=0,
\end{aligned}
$$

$$
\vec{j}=\frac{\vec{B}}{B^{2}}[\vec{B} \cdot(\nabla \times \vec{B})-\vec{E} \cdot(\nabla \times \vec{E})]+\frac{\vec{E} \times \vec{B}}{B^{2}} \nabla \cdot \vec{E} .
$$

* Appropriate for pulsar and BH magnetospheres
* cf. MHD: B-field attached to moving fluid

BH in force-free plasma

* Single BH's consistent with Blandford-Znajek

FIG. 7 (color online). Density of energy flux F_{EM} at $t=100 M$ for a single spinning black hole with $a=0.99$, together with the magnetic field lines. Left: An aligned black hole $\left(\theta_{o}=0\right)$. Right: A misaligned black hole with $\theta_{o}=\pi / 4$.

Palenzuela, Garrett, Lehner, Liebling IO

$\mathrm{BH}-\mathrm{BH}$ in force-free plasma

Palenzuela, Lehner,
Liebling 10

BH-NS \& NS-NS

Much harder than $\mathrm{BH}-\mathrm{BH}$

* BH-BH: Completely solve the problem for GW detectors
* BH-NS, NS-NS: investigate qualitative features

BH-NS \& NS-NS: Goals

* Gravitational Waves
- Long inspirals, accurate bulk evolution, accurate metric \& GW extraction
* Test short GRB viability
- Need massive disk, baryon poor region
- Need MHD and/or neutrio radiation for energy extraction
* Ejecta effects (r-process elements, afterglow emission)
- Need to track outflows with reasonable accuracy

Courtesy Matt Duez

Basic stages

Courtesy Matt Duez

BH-NS: disruption vs. direct plunge

* Toy-model w/ tidal effects (courtesy Matt Duez)

BH-NS

* Early fully GR simulations
- Shibata et al 06,07,08: Polytropic EOS
- Etienne et al 08,09: Polytropic EOS, aligned spin BH
- Duez et al 08: Polytropic EOS
* Current activity:
- Higher mass-ratios
- Effect of BH-spin (aligned, and non-aligned)
- Magnetic fields
- Neutrino cooling
- Realistic EOS
* Different groups chose different order of attack

BH-NS: some recent activities

* Kyotuko, Shipara, Taniguchi 10
- Piecewise polytropic EOS's, zero spin, q=2,3
* Kiuchi et al
- Study of compactness, mass-ratio, BH spin
* Chawla et al, IO
- BH spin 0.5, q=5, MHD
* Geleazzi et al
- q=5, MHD

Duez, et al IO

- Polytropic \& Shen EOS's, spin 0.5, q=3
* Foucart et al II
- BH spin 0 ... 0.9 , vary angle, $q=3$

Precessing BH-NS

Density

* Tidal tails precess
* Mdisk depends on spin orientation

Time=0

High mass-ratio ($q=7$, as expected)

- Disruption only occurs for large spins

$$
q=7, \chi_{\mathrm{BH}}=0.5, C_{\mathrm{NS}}=0.144
$$

$$
q=7, \chi_{\mathrm{BH}}=0.9, C_{\mathrm{NS}}=0.144
$$

Outflows: Important for counterparts

q	χ_{BH}	$M_{\text {ejecta }}$
$\mathrm{I}-3$	<0.5	$<1 \%$
$3-7$	>0.9	$I-20 \%$
$5-7$	<0.7	0

- Only computed for parts of the parameter space
- High uncertainties at large mass ratios
- Energetic outflows possible for high spins

Magnetic BH-NS

Chawla et al II

* $q=5$, spin $0.5, B=0$ and $B=10^{12} \mathrm{G}$
- Essentially no unbound material
- Magnetic field irrelevant
(a) $\mathrm{t}=5.9 \mathrm{~ms}$
(b) $t=16.8 \mathrm{~ms}$
(c) $t=27.8 \mathrm{~ms}$

Hyperboloidal BH-NS encounters

Stephens, East, Pretorius II

Small p direct coalescence

Larger P
Tidal disruption \& tail

* Large Mdisk even for $\mathrm{a}=0$
* Unbounded ejecta, zoom-whirl behavior

Some recent NS-NS simulations

* Baiotti, Shibata, Yamamoto IO
- Comparison SACRA vs.Whisky
* Baiotti et al II03.3874
- 20GW cycles \& comparison to EOB
* Giacomazzo et al II, Rezzolla et al II
- MHD, long run-time after merger
* Hotokezaka et al II
- 6 piecewise polytropic EOS
* Segikuchi et al IO
- finite-temperature Shen EOS, neutrio cooling

Dependence on EOS

* Hotokezaka et al II
- 6 EOS's from Read et al 09
- different masses for 16 simulations
* Different merger outcome
- Type I: Prompt BH formation
- Type 2: short-lived HMNS
- Type 3: long-lived HMNS

NS-NS w/ neutrino cooling

* Shen EoS, neutrino cooling
- Equal mass NS-NS, M=1.45, I.5, I.6Msun

Sekiguchi ea 1105.2125

Neutrino luminosity (three flavours)

formation

GW Waveforms

NS-NS simulation shows jets

* GR+MHD+ideal fluid+long evolution ($\sim 30 \mathrm{~ms}$)

* B-fields amplified and ordered

Giacomazzo ea IO, Rezzolla ea II

- Baryon-poor funnel

NS-NS simulation shows jets

Rezzolla ea

NS-NS in scalar-tensor theories

FIG. 1: The separation and the dominant mode of the ψ_{4} scalar (encoding the effect of GWs) for a binary with gravitational masses $\{1.58,1.67\} M_{\odot}$, and for different values of β.

FIG. 2: The scalar field $\varphi G^{1 / 2}$ (color code) and the NS surfaces (solid black line) at $t=\{1.8,3.1,4.0,5.3\} \mathrm{ms}$ for $\beta /(4 \pi G)=-4.5$, and the binary of Fig. [1.

Barausse et al, arXiv/I2 | 2.5053

Beyond compact object binaries

* Supernova simulations
- Require more micro-physics
- Yet higher computational cost

Ott ea, 2012

Future challenges (BH-NS, NS-NS)

* Accuracy
- Hydro converges <=3rd order (shocks Ist order)
- Realistic EOS has discontinuities which are hard to model
* Neutrino transport
- leakage schemes and beyond
- Magnetic fields
- magnetospheres are not MHD
- magneto-rotational instability excites small scales
* BH-NS parameter space

The future

Likely themes for the coming years

* BH-BH
- precessing waveform models
- targeted simulations, in response to LIGO detection
- eccentric systems
- alternative gravity; higher dimensional gravity
- can GW observations distinguish between GR and alternative theories?
* Matter simulations
- Tremendous amount of work needed for micro-physics
- Parameter studies with
- increasing amount of micro-physics
- increasing parameter space coverage
- Understand jets and their EM, nu signatures
- Understand ejecta and their EM, nu signatures
- What NS properties can GW detectors measure?

Harald Pfeiffer ICTS @ Bangalore Jun 21, 2013

