
Computational
Epigraphy
Lab

iMSc

Statistical Mechanics of

Complex Networks
Tutorial: Algorithms for network metrics

Sitabhra Sinha
The Institute of Mathematical Sciences, Chennai

Bangalore School on Statistical Physics XIV, Sept 2023

How do you represent a network in a computer ?

Information about a network can be stored in computer memory in a number

of possible formats

How you store the information about the vertices and edges can affect speed

of computation & memory usage !

❑ The vertices are represented by unique labels, viz., 1, 2, 3, …, N

❑ To represent edges, one can use different possible representations, e.g.,

❑ Adjacency matrix

Simple (stored as 2-dimensional array of integers) and fast in finding/removing

edges (O(1)) but for sparse graphs is inefficient in terms of use of memory

and takes O(N) operations for neighbour enumeration

❑ Adjacency list [Most popular data storage format]

List containing labels of other vertices to which each vertex is connected:

economical in terms of memory usage and takes O(L/N) operations for

neighbour enumeration in sparse graphs but also for finding/removing edges

❑ Adjacency tree

Like adjacency list, but list of neighbors of each vertex is stored as a binary tree

(values stored in left child of node i and its descendants are less than value

stored in node i) takes O(log(L/N)) for adding/finding/removing edges

Calculating degree distribution

In adjacency list, information about neighbors for each vertex is maintained

To obtain degree for each node, we need simply count the number of entries in the

neighbor set

For adjacency matrix, we need to sum together all the entries of i-th row or column to

find the degree of the i-the node

Once the degree of all nodes {k1,k2, …, kN} are known, create a histogram

❑ Construct an array comprising kmax “bins” – each bin storing the number of

vertices of a specific degree (up to the maximum degree).

❑ Set all array elements initially to zero.

❑ Run through each vertex in turn, find its degree q (say) and add 1 to the q-th bin.

❑ Once all N vertices have been gone through divide all array elements by N to

obtain pk.

Problem: For small bin widths, may look extremely non-uniform, but with larger

bins we lose resolution

Solution: Construct complementary cumulative degree distribution pk>K by

sorting the degrees in descending order, ranking them from 1 to N and plotting

the rank divided by N as a function of the degree

Calculating clustering

Ci = (number of pairs of neighbors of i that are connected)

(number of pairs of neighbors of i)

The local clustering coefficient of a node i is

The denominator is just ½ ki (ki – 1), trivial to obtain once degree of node i is known

To calculate the numerator

❑ go through every pair of distinct neighbors (p,q) of vertex i (with p<q)

❑ For each pair we determine whether an edge exists between them

❑ count up the number of such edges.

To calculate the numerator

❑ consider for every vertex i (=1, 2, …, N) each pair of neighbors (p, q) with p< q

❑ find whether they are connected by an edge

❑ add up the total number of such edges over all vertices

The overall clustering coefficient of a network is C = 3 (number of triangles)

(number of connected triples)

The denominator is ½ i ki (ki – 1), trivial to obtain once degree of node i is known

Calculating path length
Breadth-first search algorithm
finds the shortest (geodesic) distance from a single source vertex s to every other

vertex in the network

❑ Start from vertex s

❑ Initially the distances to all other vertices

are unknown

❑ Find all the neighbors of s

By definition these have distance 1 from s.

❑ Then find all the neighbors of those vertices,

excluding those already visited

These vertices have distance 2 from s

s

❑ Then find their neighbors, excluding those

already visited – these which have distance 3,

and so on.

❑ On every iteration, the set

of vertices visited grows by one step.

❑ Keep iterating until all nodes are visited

