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Homogeneous spaces

G a locally compact group -

(always assumed to be 2nd countable).

Ex.: R,Rn, n ≥ 2, GL(n,R), SL(n,R)

closed subgroups, quotients by closed normal subgroups,

direct products, covering groups, ...

X a homogeneous space; viz. X = G/H, where H is a closed subgroup,

consisting of the cosets gH, g ∈ G, equipped with the quotient topology; (this

is locally compact).

Equivalently, a topological space with a continuous action

of G which is transitive.

Ex.: Rn\(0) ≈ GL(n,R)/{g ∈ GL(n,R) | ge1 = e1}
(we denote by {ei} the standard basis of Rn).

Similarly Pn−1, Grassmannian manifolds

SL(n,R)/SL(n,Z), G/Γ where Γ is a discrete subgroup of G.

Measures on homogeneous spaces

We consider a homogeneous space G/H equipped with the

G-action on the left: (g, xH) 7→ (gx)H for all g, x ∈ G.
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Theorem G/H admits a G-invariant (Borel) measure if and only if ∆G(h) =

∆H(h) for all h ∈ H.

(Here ∆ stands for the modular homomorphism of the group in

the suffix.)

Rn/Zn admits an Rn-invariant measure

Rn\(0) admits a GL(n,R)-invariant measure, viz the

restriction of the Lebesgue measure.

Pn−1 does not admit a GL(n,R)-invariant measure.

SL(n,R)/SL(n,Z) admits an SL(n,R)-invariant measure.

In the last example the invariant measure is finite. Homogeneous spaces

with finite invariant measure are of special interest.

Lattices

Defn.: A closed subgroup Γ of G is called a lattice in G if Γ is discrete and

G/Γ admits a finite G-invariant measure.

Zn is a lattice in Rn.

SL(n,Z) is a lattice in SL(n,R).

If Γ is a discrete subgroup of SL(n,R) such that SL(n,R)/Γ is

compact, then Γ is a lattice.

A lattice for which the corresponding quotient is compact is said

to be uniform; otherwise it is said to be nonuniform -

SL(n,Z) is a nonuniform lattice in SL(n,R): Let G = SL(n,R) and Γ =

SL(n,Z). Suppose G/Γ is compact. Then there exists

a compact subset K of G such that G = KΓ (= {xγ | x ∈ K, γ ∈ Γ}).
Then G(e1) = KΓ(e1) ⊂ KZn, but this is not possible.

Flows

G a locally compact group and Γ a lattice in G.

For a closed subgroup H of G the H-action on G/Γ is called the flow

induced by H on G/Γ. Typically we shall be interested in actions of cyclic
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subgroups (equivalently of elements of G), or one-parameter flows, namely

actions induced by (continous) one-parameter subgroups {gt}t∈R where gt ∈ G
for all t ∈ R.

Ex.:

G = Rn, Γ = Zn, H = {tv | t ∈ R}, where v ∈ Rn.

G = SL(2,R), Γ a lattice in G and H = {

(
et 0

0 e−t

)
| t ∈ R}.

This corresponds to the ’geodesic flow’ associated with the surfact H2/Γ

where H2 is the Poincaré upper half-plane. In particular when Γ = SL(n,Z)

it corresponds to the geodesic flow associated with the ’modular surface’.

’Ergodic’ properties

Let (X,µ) be a finite measure space - assume µ(X) = 1.

Let T : X → X be a measurable transformation preserving µ;

that is, µ(T−1(E) = µ(E) for all Borel subsets E.

Defn.: T is said to be ergodic if for a measurable subset E, if µ(T−1(E)\E) =

0 = µ(E\T−1(E)) then µ(E) = 0 or 1 (the latter means µ(X\E) = 0).

Exc.: T is ergodic iff for any measurable set E if T−1(E) = E, µ(E) = 0

or 1.

Similar definitions for group actions to be ergodic. Also the statement

analogous to the Excercise holds in general (more technical).

Defn.: T is said to be mixing if for any two measurable subsets

A and B, µ(T−k(A) ∩B)→ µ(A)µ(B), as k →∞.

Remark: Mixing implies ergodicity. The converse does not hold

(as we shall see).

More about mixing

The action of a noncompact locally compact group, on (X,µ)

as above, is said to be mixing if for any divergent sequence

{gk} in G and any two measurable subsets A and B,

µ(gk(A) ∩B)→ µ(A)µ(B), as k →∞.
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Remarks: For the cyclic subgroup the above definition coincides

with the previous one. Also, mixing implies ergodicity in the

general case as well.

If G-action on (X,µ) is mixing and H is a closed noncompact

subgroup of G then H-action is mixing. The analogous statement

however does not hold for ergodicity.

There are a variety of weaker and stronger forms of mixing,

for cyclic as well as general group actions, that we shall

not go into here.

Topological implications

Proposition Let X be a G-space with a G-invariant measure µ, with µ(X) =

1. Suppose that µ(Ω) > 0 for all nonempty open subset Ω. Then we have the

following:

i) if the action is ergodic then almost all G-orbits are dense in X;

that is

µ({x ∈ X | Gx not dense in X}) = 0.

ii) if the action is mixing then for any divergent sequence {gk}

µ({x ∈ X | {gkx} not dense in X} = 0.

Proof of i): Let {Ωj} be a countable basis for the topology on X. Then

each GΩj is an open G-invariant subset and hence by ergodicity µ(GΩj) = 1,

and in turn µ(∩j GΩj) = 1. The assertion now follows, since for all x ∈ ∩j GΩj

the G-orbit intersects each Ωj and hence is dense in X.

Translation flows on tori

Let v = (α1, . . . , αn)t. Then we have the following, for the flows on tori,

namely Rn/Zn.

Proposition The translation of Rn/Zn by v is ergodic if and only if 1, α1, . . . , αn
are linearly independent over Q (that is, no nontrivial linear combination∑n

1 qiαi, with qi ∈ Q, is rational).

Proof: Let T denote the translation of Rn/Zn by v and let E be a measur-

able subset such that T−1(E) = E. Let f denote the characteristic function of
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E. Consider the Fourier expansion of f in L2(Rn/Zn), say f =
∑

χ aχχ, where

the summation is over the all characters on Rn/Zn. The invariance of E under

T implies that

f ◦ T and f are equal. We see that f ◦ T =
∑

χ aχχ(v)χ and hence

by uniqueness of the Fourier expansion it follows that aχχ(v) = aχ.

The condition as in the hypothesis is seen to then imply that

aχ = 0 for all nontrivial characters χ, namely that f is constant.

Hence µ(E) = 0 or 1.

More about the translation flows

We note that every orbit of the translation action is a coset of the subgroup

of Rn/Zn generated by v + Zn. When the action is ergodic then there exists

a dense coset, and hence the subgroup is dense as well. (On the other hand

the latter statement may be proved directly and used to deduce ergodicity.)

Conversely, when the subgroup generated by v+Zn is dense in Rn/Zn all orbits

are dense - note that ergodicity assures only almost all orbits to be dense, so

what we see here is a rather special situation.

When all orbits are dense the action is said to be minimal. Thus for

translations of tori ergodicity implies minimality.

The above also means that when the translation action is ergodic the sub-

group generated by v and Zn is dense in Rn.

The flow induced by {tv | t ∈ R} is ergodic if and only if α1, . . . , αn.

Equivalently the flow is ergodic if and only if there exists t ∈ R such that the

translation action of tv is ergodic.

For one-parameter translation flows also ergodicity implies minimality.

Unitary representations

H a (separable) Hilbert space.

U(H) the group of all unitary operators on H.

A unitary representation π of G over H is a homomorphism

of G into U(H) which is continuous with respct to the strong operator
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topology; that is g 7→ π(g)ξ is continuous for all ξ ∈ H.

Let (X,µ) be a measure space with µ(X) = 1 equipped with a

G-action and let H = L∈(X , µ). The action induces

a unitary representation of G over H, by

π(g)f(x) = f(g−1x) for all g ∈ G, f ∈ H and x ∈ X

(following standard abuse of notation we view elements of H as

pointwise functions - while this does involves some technical

issues, in the final analysis there is no ambiguity).

Applying the associated unitary representation

The ergodicity and mixing conditions can be translated to the

following in terms of the associated unitary representation.

Proposition: i) The G-action on X is ergodic if and only if there

is no nonconstant function in H fixed under the action of π(g) for

all g ∈ G.

ii) The G-action on X is mixing if and only if for any divergent

sequence {gk} in G and all φ, ψ ∈ H,

〈π(gk)φ〉 → 〈φ, 1〉〈1, ψ〉 as k →∞.

It is convenient to consider the restriction of π to the orthocomplement of

constants, H0 = {φ ∈ H | φ ⊥ 1} (which is an invariant subspace).

Proposition If π(g)(φ)→ 0 as g →∞ for all φ ∈ H0 then the action

is mixing.

Mautner phenomenon

Let e denote the identity element in G and for g ∈ G let

H+
g = {x ∈ G | gkxg−k → e as k →∞}

and

H−g = {x ∈ G | gkxg−k → e as k → −∞}
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There are called the contracting and expanding horospherical subsgroups cor-

responding to g.

The following simple observation, known as Mautner phenomenon is very

useful in proving ergodicity and mixing properties.

Theorem Let π be a unitary representation of G over a Hilbert space H. Let

g ∈ G and φ ∈ H be such that π(g)(φ) = φ. Then π(x)(φ) = φ for all x in the

subgroup generated by H+
g ∪H−g .

Proof of Mautner phenomenon

We may assume ||φ|| = 1.

Let x ∈ H+
g be arbitrary. We have

〈π(x)φ, φ〉 = 〈π(g)π(x)φ, π(g)φ〉 = 〈π(g)π(x)π(g−1)φ, φ〉,

under the given condition. Thus

〈π(x)φ, φ〉 = 〈π(g)π(x)π(g−1)φ, φ〉

and by successive application of the same it equals 〈π(gk)π(x)π(g−k)φ, φ〉 for

all k.

As the latter converges to 〈φ, φ〉 = 1 we get that 〈π(x)φ, φ〉 = 1.

But then ||π(x)φ−φ||2 = 2−<〈π(x)φ, φ〉 = 0, which shows that π(x)(φ) = φ.

Similarly the same holds for x ∈ H−g and hence for the subgroup generated

by H+
g ∪H−g .

Ergodicity of the geodesic flow

Let G = SL(2,R) and g = {

(
λ 0

0 λ−1

)
, with 0 < λ < 1. Then it

can be seen that

H+
g = {{

(
1 t

0 1

)
| t ∈ R}

and

H−g = {{

(
1 0

t 1

)
| t ∈ R}.
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We note also that the subgroups H+
g and H−g as above generate

the whole of SL(2,R). Hence we have

Corollary Let φ be a unitary representation of SL(2,R) over a

Hilbert space H. If φ ∈ H is fixed by g as above then it is fixed

by the SL(2,R) action.

Corollary Let Γ be a lattice in SL(2,R). Then the action of g on

G/Γ is ergodic.

Ergodicity of the Horocycle flow

The action of the subgroup {{ht =

(
1 t

0 1

)
(which played a role in the

proof of ergodicity of the geodesic flow) is called the horocycle flow.

(The other (lower trianglular) subgroup is conjugate to this one, and need

not be considered separately, with regard to its properties - only in dealing

with the geodesic flow we need both, in which case we talk of the contracting

and expanding horocycle flows.)

Theorem The horocycle flow on G/Γ is ergodic.

Proof. Let H = L2(G/Γ), π the associated representation, and φ ∈ H be

fixed by π(ht) for all t. We assume ||φ|| = 1.

Let F be the function on G defined by F (g) = 〈π(g)φ, φ〉. It is a continuous

function and F (hsght) = F (g) for all s, t ∈ R.

Now let f be the function on R2\(0) defined by f(ge1) = F (g) for all

g ∈ G. Then f is a well-defined continuous function and f(hsv) = f(v) for all

v ∈ R2\(0).

Proof contd.

For all v ∈ R2 which are not on the x-axis the orbits of {hs | x ∈ R}
consist of horizontal lines; the points on the x-axis are fixed points of the flow.

Thus the invariance property of f as above implies that it is constant along

horizontal lines, except perhaps the x-axis. But then

by continuity it must be constant also along the x-axis (that is, f(te1) = f(e1)

for all t 6= 0.
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We thus get that for g =

(
λ t

0 λ−1

)
, F (g) = f(ge1) = f(λe1) = f(e1) =

F (e) = 1. Arguing as before we

see that this implies that φ is fixed by π(g).

Since the action of g is ergodic it follows that φ is a constant function.

Hence the action of {ht} on G/Γ is ergodic.

Flows on SL(n,R)/Γ

Let me now mention the stronger results with regard to ergodicity and

mixing on homogeneous spaces of SL(n,R)), modulo a lattice.

Theorem Let H be a closed noncompact subgroup of SL(n,R). Then its

action on G/Γ is mixing. In particular it is ergodic.

The action on SL(n,R)/Γ by a compact subgroup of SL(n,R) can not be

ergodic; by the result on density of orbits such an action would have to be

transitive, which is not possible for a proper subgroup. Thus the action of

a closed subgroup H on SL(n,R)/Γ is ergodic if and only if the subgroup is

noncompact.

In particular, for G = SL(2,R) for almost all x ∈ G/Γ the trajecto-

ries {gjx | j ∈ Z} are dense in G/Γ, if g =

(
et/2 0

0 e−t/2

)
,

(
1 t

0 1

)
or(

1 0

t 1

)
, for any t 6= 0.

Orbits of individual points

It is however a nontrivial matter in general to determine for which par-

ticular x the trajectory is dense under a flow. The horocycle flows are well

behaved in this respect.

Theorem: Let G = SL(2,R) and Γ be a lattice in G. Let {ht} be

a horocycle flow. Then we have the following:

i) if G/Γ is compact then for any t 6= 0 all trajectories of ht are

dense in Γ\G; that is, the horocycle flow is minimal.
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ii) for any x, either htx = x for some t 6= 0 or the trajectory of x

under ht is dense for all t 6= 0.

If g is any element normalising {ht} (which applies to the elements “con-

tracting” or “expanding” the subgroup as seen before) and x is a periodic

point of {ht} then gx is also a periodic point of {ht}. The periodic points thus

form “cylindars”. The number of such cylindars is the same as the number of

“cusps” of the associated surface.

Uniformly distributed orbits

Apart from being dense the non-periodic orbits are also “uniformly dis-

tributed”: Let x be a point with a non-periodic orbit and let t 6= 0. Then we

have the following:

if Ω is an open subset of G/Γ such that µ(∂Ω) = 0 then as k →∞

|{0 ≤ j ≤ k − 1 | hjtx ∈ Ω}|
k

−→ µ(Ω)

µ(X)

This means that the trajectory visits “good” set with frequency

equal to their proportion in the space (with respect to µ).

For Γ = SL(2,Z), {

(
1 n

0 1

)(
a b

c d

)
Γ | n ∈ Z+} is dense if and only if(

a b

c d

)
∈ PΓ, where P is the subgroup consisting of all

upper triangular matrices.

Diophantine approximation

Here is a consequence of the above to Diophantine approximation.

Corollary: Let Γ = SL(2,Z) and consider the natural Γ-action

on R2. Then for v =

(
v1

v2

)
, Γ(v) is dense in R if and only if

v1 6= 0 and v2/v1 is irrational.

Thus given an irrational α, given any w1, w2 ∈ R, and ε > 0 there

exist p, q, r, s ∈ Z, with ps− qr = 1 such that

|pα + q − w1| < ε and |rα + s− w2| < ε.
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Note in particular that we can get solution (p, q) to the first

inequality consisting of a primitive pair (having gcd 1).

A similar question arose for quadratic forms, in Oppenheim

conjecture, which was settled by Margulis in mid 1980’s.

Oppenheim conjecture

Theorem: Let n ≥ 3 and Q(x1, . . . , xn) =
∑
aijxixj, such that

aij = aji for all i, j, det(aij) 6= 0. Suppose that

i) there exists a nonzero (v1, . . . , vn) such that Q(v1, . . . , vn) = 0 and

ii) aij/akl is irrational for some i, j, k, l.

Then given a ∈ R and ε > 0 there exist x1, . . . xn ∈ Z such that

|Q(x1, . . . xn)− a| < ε.

Moreover the n-tuple (x1, . . . xn) can be chosen to be primitive.

One can be reduce in a routine way to the case of n = 3.

Let H be the subgroup of SL(3,R) consisting of the elements leaving the

quadratic form Q fixed, that is {g ∈ G | Q(gv) = Q(v) ∀v ∈ R3}. Then

Q(Z3) = Q(HΓZ3) and hence if HΓ is dense then it follows that Q(Z3) is

dense in R. One shows that under condition (ii) HΓ is not closed. Thus the

task is to show that every H-orbit on G/Γ which

is not closed is dense. This is analogous to what we saw for the

horocycle flows, but more intricate.

Quantitative version

While existence of solutions can be dealt with via consideration of density

of orbits, uniform distribution of orbits enables to get asymptotic results on

the number of solutions in large balls.

Uniform distribution in the general case is studied via classification of in-

variant measures.

Using some results of Marina Ratner analogous on classificaiton of invari-

ant measures of unipotent flows, quantitative results are obtained// (D. &

Margulis)
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In particular, for any a, b ∈ R, there exists a c > 0 such that

#{x ∈ Zn | a < Q(x) < b, ||x|| ≤ r} ≈ crn−2.

This is achieved by comparing the number on the left hand side with the

volume of the region {v ∈ Rn | a < Q(v) < b, ||v|| ≤ r}.
For n ≥ 5, the two sequences of numbers turn out to be asymptotic to each

other. For n = 3, 4 there are some interesting situations when

the solutions can be more than that “expected value”.

Geodesic flows

The orbit structure of the geodesic flow is much more complicated.

To describe the situation in this respect we recal the geometric form.

The Poincaré upper half plane is

H = {z = x+ iy ∈ C | y > 0},

equipped with the Riemannian metric, called the Poincare metric,

ds2 =
dx2 + dy2

y2

The distance between any two points z1, z2 is given by

d(z1, z2) = inf

∫
y(t)−1

√
(
dx

dt
(t))2 + (

dy

dt
(t))2dt,

with inf taken over piecewise C1 curves (x(t), y(t) joining z1 and z2.

The geodesics in this metric are vertical lines over points of the

x-axis, or semicircles orthogonal to the x-axis; the x-axis is not in H
but at its “boundary”. We denote by S(H) the “unit tangent bundle”, viz.

the set of

pairs (z, ξ) where z ∈ H and ξ is tangent direction at the point z.

The “geodesic flow” corresponding to H is the flow {ϕt}t∈R

defined on S(H) as follows: let (z, ξ) ∈ S(H) be given

and let γ(t) be the geodesic (parametrized by the length
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parameter) starting at z and pointing in the direction ξ; then

we choose ϕt(z, ξ) = (zt, ξt), where zt = γ(t) and ξ = γ′(t).

The group PSL(2,R) = SL(2,R)/{±I} has an action on H,

where g ≈

(
a b

c d

)
∈ PSL(2,R) acts by

g(z) =
az + b

cz + d
for all z ∈ H.

This action leaves invariant the Poincaré metric, and hence

the action of each g ∈ PSL(2,R) is an isometry. (These isometries

form a subgroup of index 2 in the group of all isometries with

respect to the Poincaré metric.

The action on H induces also, canonically, an action

of PSL(2,R) on S(H).

Using the action PSL(2,R)-action we can identify S(H) with

PSL(2,R), via the correspondence

g ∈ PSL(2,R)↔ g(i, v),

where v is the direction at i pointing upward.

Under the identification the geodesic flow corresponds to ψt : PSL(2,R)→
PSL(2,R) given, for all t ∈ R, by

ψt(g) = g

(
et/2 0

0 e−t/2

)
(the product of matrices, viewed modulo {±I}).

Geodesic flow of the modular surface

We now consider images of the geodesics in H
in the quotient PSL(2,Z)\H.

Recall that a geodesic in H is determined by two (distinct) points in R ∪
{∞}, which we call its “endpoints”; the end points constitute an ordered pair,

as the geodesics are considered oriented.
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For α, β ∈ R let g(α, β) be the geodesic in H with endpoints (α, β),

and g(α, β) be its image in PSL(2,Z)\H.

i) g(α, β) is a closed subset if and only if α and β are rational.

ii) g(α, β) is periodic if and only if α and β are conjugate quadratic numbers.

iii) g(α, β) is contained in a compact subset of PSL(2,Z)\H if and

only if α and β are badly approximable.

A real number θ is said to be “badly approximable” if there exists

a δ > 0 such that for all p, q ∈ Z, q 6= 0, |θ− p
q
| > δ/q2. Continued fractions

Every real number θ has a “continued fraction” expansion as

θ = a0 +
1

a1 + 1
a2+···

,

where a0 ∈ Z and ak ∈ N for all k ∈ N.

The expansion terminates if θ is rational and is infinite if θ is irrational.

The ak’s are called the partial quotients of the continued fraction expansion.

The above properties have the following analogues:

θ is a quadratic number if and only if the partial quotients are eventually

periodic; i.e. there exist m and l such that ak+l = ak for all k ≥ m.

θ is badly approximable if and only if the partial quotients are

bounded; i.e. there exists M such that ak ≤M for all k.

The last statement in particular tells us that badly approximable numbers

exist. They form a set of Lebesgue measure 0, but nevertheless constitute a

large set in other ways: the Hausdorff dimension of the set is 1, the maximal

possible for a subset of R.

Generic numbers

A real number θ to be generic if in the continued fraction expansion (a0, a1, . . . , ak, . . . )

every finite block of positive integers occurs;

that is given (b1, . . . , bl), bk ∈ N, there exists m such that am = b1, . . . am+l−1 =

bl. With this we can to the above list,

iv) g(α, β) is dense in PSL(2,Z)\H if and only if at least one

of α and β is generic.
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The set of generic numbers is a set of full Lesbegue measure. The

ergodicity result mentioned earlier tells us that the set of pairs

for which the conclusion as in (iv) holds must correspond to the

endpoints being from a set of full measure. The point of (iv) however

is that it gives a specific set of numbers, in terms of their continued fraction

expansions, for which it holds. Also historically this result

was proved, by E. Artin, before the ergodicity result came up.

Recently in a paper with Nogueira a strengthening of the result

was obtained with a different method.

Binary quadratic forms

For binary quadratic forms Q(x, y) = (x− αy)(x− βy),

where α, β ∈ R we have the following:

If α, β are badly approximable then there exists δ > 0 such that Q(Z2) ∩
(−δ, δ) = {0}, so in particular Q(Z2) is not dense in R.

(this may contrasted with the Oppenheim “conjecture” for n ≥ 3).

If one of α and β is generic then Q(Z2) is dense in R.

With our alternative method we proved also the following strengthening.

If one of α and β is a positive generic number then Q(N2) is

dense in R.

Recently we (D. & Nogueira) studied continued fractions for

complex numbers, in terms of the Gaussian integers, and

proved analogues of the density result for complex binary forms.

In this case also this contrasts the analogue of Oppenheim

conjecture, which is known (A. Borel & Gopal Prasad).

Higher dimensional situations

Theorem (Ratner): Let G = SL(n,R) (or more generally a Lie group) and

Γ be a lattice in G. Let {ut} be a unipotent one-parameter subgroup of G.

Then for any g ∈ G there exists a closed subgroup

F of G such that the following holds:

i) ΓgF is closed, Γ\ΓgF admits a F -invariant probability measure µ, and
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ii) {Γgut | t ≥ 0} is dense and uniformly distributed with respect to µ.

Subsets as seen above are called “homogeneous subsets”. For the horocycle

flow, where G = SL(2,R), and ut =

(
1 t

0 1

)
,

only G and {g−1utg | t ∈ R} turn out to be the possible candidates

for the subgroup F as above; correspondingly the {ut}-orbits are

either uniformly distributed in Γ\G or periodic.

This theorem has found a variety of applications in diophantine approxima-

tion and geometry that we shall not go into. Actions of diagonal subgroups

Even though the orbit structure of the geodesic flows is rather intricate as

discussed, for n ≥ 3 the orbit structure of the corresponding subgroup Dn on

Γ\SL(n,R), Γ a lattice in SL(n,R) is expected to be good, in a way similar

to the unipotent case.

In particular, Margulis has conjectured that all orbits of Dn having compact

closure are homogeneous.

This Margulis conjecture implies a well-known conjecture in diophantine

approximation called Littlewood conjecture:

Let α, β be irrational real numbers. Then

lim inf
n

n{nα}{nβ} > 0

where for any θ ∈ R, {θ} denotes the “fractional part” of θ.

Landmark work is done by Einsiedler, Katok and Lindenstrauss on these

questions, but in its full form the question remains open. It has been shown

in particular that the set of pairs (α, β) for which the Littlewood conjecture

does not hold has Hausdorff dimension 0.

Thanks for your interest.
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