Accurate \& Efficient inspiral templates for spinning

 compact binariesAchamveedu Gopakumar, TIFR-Mumbai

July 3, 2013
 (tifr

Outline

- Introductory slides for computing time-domain inspiral templates for spinning compact binaries
- New approach to obtain $h_{\times,+}(t)$ for spinning compact binaries
- Benefits of our approach \& problems with the traditional approach

In collaboration with Ms. Anuradha Gupta, TIFR

GW phasing: I

- The response function of a laser-interferometric detector to GWs from ICBs with non-spinning components

$$
h(t) \equiv \Delta L / L=\frac{C}{d}[\omega(t)]^{2 / 3} \sin 2 \phi(t),
$$

d : the distance to the binary; $\phi(t)$: orbital phase \& $\omega=\dot{\phi}(t)$

GW phasing: I

- The response function of a laser-interferometric detector to GWs from ICBs with non-spinning components

$$
h(t) \equiv \Delta L / L=\frac{C}{d}[\omega(t)]^{2 / 3} \sin 2 \phi(t)
$$

d : the distance to the binary; $\phi(t)$: orbital phase \& $\omega=\dot{\phi}(t)$

- $h(t)$ requires PN -accurate expressions for $h_{\times,+}(t)$, the two GW polarization states, \& how ω varies with time
- The secular phase evolution via the energy balance argument $\frac{d E}{d t}=-\mathcal{L}$

$$
\frac{d \phi(t)}{d t}=\frac{c^{3}}{G m} x^{3 / 2} ; \quad \frac{d x(t)}{d t}=-\mathcal{L}(x) / \frac{d \mathcal{E}}{d x}
$$

where $\quad x(t) \equiv\left(\frac{G m \omega(t)}{c^{3}}\right)^{2 / 3}$ is the dimensionless PN expansion parameter

GW phasing: II

- To construct 'ready-to-use' $h_{\times,+}(t)$ for data analysis purposes, we need to tackle two aspects of the dynamics
- Problem of finding equations to describe the dynamics; $\ddot{X}, \dot{\mathbf{S}_{1}}, \dot{\mathbf{S}_{2}}$;
- Problem of computing GW luminosity \mathcal{L}, polarization states $h_{\times,+}$ Blanchet, Buonanno, Damour, Faye, Iyer, Jaranowski, Schäfer, Will,

How to search for GWs from ICBs: I

- Linearly project interferometric data against each member of specific template banks/families

For GWs from non-spinning ICBs, templates should belong to a two-dimensional signal manifold

How to search for GWs from ICBs: I

- Linearly project interferometric data against each member of specific template banks/families

For GWs from non-spinning ICBs, templates should belong to a two-dimensional signal manifold

- Signal manifold's dimensionality is more for spinning compact binaries spiraling along quasi-circular orbits
- The practice is to invoke 'approximate/phenomenological' template families, characterized by fewer parameters
- These templates have 'good overlaps' with $h_{\times,+}(t)$ for spinning compact binaries obtained via the 'traditional phasing prescription'

> Buonanno, Chen, Vallisneri; Ajith ; Brown et.al,.......

How to search for GWs from ICBs: II

- We are taking a closer look at traditional approach to construct $h_{\times,+}(t)$ for spinning compact binaries inspiralling along quasi-circular/eccentric orbits

How to search for GWs from ICBs: II

- We are taking a closer look at traditional approach to construct $h_{\times,+}(t)$ for spinning compact binaries inspiralling along quasi-circular/eccentric orbits
- It turns out that the traditional approach inherits few undesirable features

How to search for GWs from ICBs: II

- We are taking a closer look at traditional approach to construct $h_{\times,+}(t)$ for spinning compact binaries inspiralling along quasi-circular/eccentric orbits
- It turns out that the traditional approach inherits few undesirable features
- Kidder (1995), Buonanno, Chen, Vallisneri (2003), Arun et. al. (2009) developed the widely used $h_{\times,+}(t)$ for spinning compact binaries inspiralling quasi-circular orbits

GWs from spinning ICBs

- We want to describe binaries containing two spinning compact objects, characterized by $\left(m_{1}, m_{2}, \chi_{1}, \chi_{2}\right)$

We will invoke $\mathbf{L} \equiv \mathbf{r} \times \mathbf{p}$ to describe binary orbits [This is NOT a common practice]

- These vectors precess around the total angular momentum $\mathbf{J}=\mathbf{L}+\mathbf{S}_{1}+\mathbf{S}_{2}$
- GW emission shrinks the relative orbit \& we
 want to model resulting GW polarization states during the inspiral phase

GWs from spinning ICBs

- We want to describe binaries containing two spinning compact objects, characterized by $\left(m_{1}, m_{2}, \chi_{1}, \chi_{2}\right)$

We will invoke $\mathbf{L} \equiv \mathbf{r} \times \mathbf{p}$ to describe binary orbits [This is NOT a common practice]

- These vectors precess around the total angular momentum $\mathbf{J}=\mathbf{L}+\mathbf{S}_{1}+\mathbf{S}_{2}$
- GW emission shrinks the relative orbit \& we
 want to model resulting GW polarization states during the inspiral phase

GWs from spinning ICBs

- We want to describe binaries containing two spinning compact objects, characterized by $\left(m_{1}, m_{2}, \chi_{1}, \chi_{2}\right)$

We will invoke $\mathbf{L} \equiv \mathbf{r} \times \mathbf{p}$ to describe binary orbits [This is NOT a common practice]

- These vectors precess around the total angular momentum $\mathbf{J}=\mathbf{L}+\mathbf{S}_{1}+\mathbf{S}_{2}$
- GW emission shrinks the relative orbit \& we want to model resulting GW polarization states during the inspiral phase

GWs from spinning ICBs

- We want to describe binaries containing two spinning compact objects, characterized by $\left(m_{1}, m_{2}, \chi_{1}, \chi_{2}\right)$

We will invoke $\mathbf{L} \equiv \mathbf{r} \times \mathbf{p}$ to describe binary orbits [This is NOT a common practice]

- These vectors precess around the total angular momentum $\mathbf{J}=\mathbf{L}+\mathbf{S}_{1}+\mathbf{S}_{2}$
- GW emission shrinks the relative orbit \& we want to model resulting GW polarization states during the inspiral phase

- The precessional dynamics arises due to spin-orbit and spin-spin interactions
They spiral along quasi-circular orbits

Traditional way of constructing $h_{\times,+}(t)$: I

Kidder (1995), Buonanno, Chen, Vallisneri (2003), Arun et. al. (2009)

- The traditional approach begins by computing PN-accurate expressions for $h_{\times,+}$in terms of dynamical variables $\Phi^{\prime}, \iota^{\prime}, \alpha^{\prime}, \Phi^{\prime} \&$ few constant angles
- Φ^{\prime} describes how \mathbf{r} varies in an orbital triad, defined by $\mathbf{L}_{N}=\mu \mathbf{r} \times \mathbf{v}$ $\mathbf{r}=r\left(\cos \Phi^{\prime} \mathbf{i}^{\prime}+\sin \Phi^{\prime} \mathbf{j}^{\prime}\right) \quad\left[\mathbf{i}^{\prime}, \mathbf{j}^{\prime}, \mathbf{l}\right]:$ an orbital triad based on $\mathbf{L}_{N}=L_{N} \mathbf{l}$
- ($\left.\iota^{\prime}, \alpha^{\prime}\right)$ specify \mathbf{L}_{N} in an invariant frame associated with \mathbf{J} at the initial epoch
- The two spins are initially specified by four angles in the orbital triad $\left[\mathbf{i}^{\prime}, \mathbf{j}^{\prime}, \mathbf{l}\right]$

Traditional way of constructing $h_{\times,+}(t)$: I

Kidder (1995), Buonanno, Chen, Vallisneri (2003), Arun et. al. (2009)

- The traditional approach begins by computing PN-accurate expressions for $h_{\times,+}$in terms of dynamical variables $\Phi^{\prime}, \iota^{\prime}, \alpha^{\prime}, \Phi^{\prime} \&$ few constant angles
- Φ^{\prime} describes how \mathbf{r} varies in an orbital triad, defined by $\mathbf{L}_{N}=\mu \mathbf{r} \times \mathbf{v}$ $\mathbf{r}=r\left(\cos \phi^{\prime} \mathbf{i}^{\prime}+\sin \phi^{\prime} \mathbf{j}^{\prime}\right) \quad\left[\mathbf{i}^{\prime}, \mathbf{j}^{\prime}, \mathbf{1}\right]:$ an orbital triad based on $\mathbf{L}_{N}=L_{N} \mathbf{l}$
- ($\left.\iota^{\prime}, \alpha^{\prime}\right)$ specify \mathbf{L}_{N} in an invariant frame associated with \mathbf{J} at the initial epoch
- The two spins are initially specified by four angles in the orbital triad $\left[\mathbf{i}^{\prime}, \mathbf{j}^{\prime}, \mathbf{l}\right]$

Therefore, TEN parameters are required to specify generic spinning binary $\left(m_{1}, m_{2}, \chi_{1}, \chi_{2}\right) ;\left(\iota^{\prime}, \alpha^{\prime}, \theta_{1}^{\prime}, \phi_{1}^{\prime}, \theta_{2}^{\prime}, \phi_{2}^{\prime}\right)$

Source frame

L_{N}-based triad

Traditional way of constructing $h_{\times,+}(t)$: II

Kidder (1995), Buonanno, Chen, Vallisneri (2003), Arun et. al. (2009)

- Precessional Eqs. for $\mathbf{L}_{N}, \mathbf{S}_{1} \& \mathbf{S}_{2}$ are due to general relativistic spin-orbit \& spin-spin interactions
- These Eqs. provide how ($\left.\iota^{\prime}, \alpha^{\prime}\right)$, appearing in $h_{\times,+}(t)$, vary due to the precessional dynamics (their amplitudes are defined in terms of $\dot{\Phi}^{\prime}$)

Traditional way of constructing $h_{\times,+}(t)$: II

Kidder (1995), Buonanno, Chen, Vallisneri (2003), Arun et. al. (2009)

- Precessional Eqs. for $\mathbf{L}_{N}, \mathbf{S}_{1} \& \mathbf{S}_{2}$ are due to general relativistic spin-orbit \& spin-spin interactions
- These Eqs. provide how ($\left.\iota^{\prime}, \alpha^{\prime}\right)$, appearing in $h_{\times,+}(t)$, vary due to the precessional dynamics (their amplitudes are defined in terms of $\dot{\Phi}^{\prime}$)
- A co-moving triad $[\mathbf{n}, \boldsymbol{\lambda} \propto \mathbf{I} \times \mathbf{n}, \mathbf{I}]$ is invoked to obtain PN-accurate differential equation for $d \Phi^{\prime} / d t ; \mathbf{L}_{N}=L_{N} \mathbf{I}$ while $\mathbf{r}=r \mathbf{n}$

Traditional way of constructing $h_{\times,+}(t)$: II

Kidder (1995), Buonanno, Chen, Vallisneri (2003), Arun et. al. (2009)

- Precessional Eqs. for $\mathbf{L}_{N}, \mathbf{S}_{1} \& \mathbf{S}_{2}$ are due to general relativistic spin-orbit \& spin-spin interactions
- These Eqs. provide how ($\left.\iota^{\prime}, \alpha^{\prime}\right)$, appearing in $h_{\times,+}(t)$, vary due to the precessional dynamics (their amplitudes are defined in terms of $\dot{\Phi}^{\prime}$)
- A co-moving triad $[\mathbf{n}, \boldsymbol{\lambda} \propto \mathbf{I} \times \mathbf{n}, \mathbf{I}]$ is invoked to obtain PN-accurate differential equation for $d \Phi^{\prime} / d t ; \mathbf{L}_{N}=L_{N} \mathbf{I}$ while $\mathbf{r}=r \mathbf{n}$
- It is possible to show $\mathbf{v}=r\left(\frac{d \Phi^{\prime}}{d t}+\frac{d \alpha^{\prime}}{d t} \cos \iota^{\prime}\right) \boldsymbol{\lambda}$
- We have $\mathbf{v} \equiv r \omega \boldsymbol{\lambda}$ for non-spinning Newtonian (\& PN-accurate) circular orbits
- Equating these two expressions for $\mathbf{v} \Longrightarrow \frac{d \phi^{\prime}}{d t}=\left(\omega-\frac{d \alpha^{\prime}}{d t} \cos \iota^{\prime}\right)$

Traditional way of constructing $h_{\times,+}(t)$: III

Kidder (1995), Buonanno, Chen, Vallisneri (2003), Arun et. al. (2009)

- The effect of GW emission is incorporated via the energy balance arguments

$$
\frac{d \omega(t)}{d t}=-\mathcal{L} / \frac{d \mathcal{E}}{d \omega}
$$

PN accurate expressions for $\mathcal{L} \& \mathcal{E}$ that incorporate spin effects

Traditional way of constructing $h_{\times,+}(t)$: III

Kidder (1995), Buonanno, Chen, Vallisneri (2003), Arun et. al. (2009)

- The effect of GW emission is incorporated via the energy balance arguments

$$
\frac{d \omega(t)}{d t}=-\mathcal{L} / \frac{d \mathcal{E}}{d \omega}
$$

PN accurate expressions for $\mathcal{L} \& \mathcal{E}$ that incorporate spin effects

- Solve numerically differential equations for $\left[\dot{\mathbf{L}}_{N}, \dot{\mathbf{S}_{1}}, \dot{\mathbf{S}_{2}}, \dot{\Phi}\left(\omega, \iota^{\prime}, \alpha^{\prime}\right), \dot{\omega}\right]$ to obtain temporal variations to $\dot{\Phi}^{\prime}, \Phi, \iota^{\prime}$ and α^{\prime}
- Numerically implement these variations in PN -accurate expressions for $h_{\times,+}\left(\Phi^{\prime}, \iota^{\prime}, \alpha^{\prime}, \dot{\Phi}^{\prime}, \ldots\right)$

Traditional way of constructing $h_{\times,+}(t)$: III

Kidder (1995), Buonanno, Chen, Vallisneri (2003), Arun et. al. (2009)

- The effect of GW emission is incorporated via the energy balance arguments

$$
\frac{d \omega(t)}{d t}=-\mathcal{L} / \frac{d \mathcal{E}}{d \omega}
$$

PN accurate expressions for $\mathcal{L} \& \mathcal{E}$ that incorporate spin effects

- Solve numerically differential equations for $\left[\dot{\mathbf{L}_{N}}, \dot{\mathbf{S}_{1}}, \dot{\mathbf{S}_{2}}, \dot{\Phi}\left(\omega, \iota^{\prime}, \alpha^{\prime}\right), \dot{\omega}\right]$ to obtain temporal variations to $\dot{\Phi}^{\prime}, \Phi, \iota^{\prime}$ and α^{\prime}
- Numerically implement these variations in PN -accurate expressions for $h_{\times,+}\left(\Phi^{\prime}, \iota^{\prime}, \alpha^{\prime}, \dot{\Phi}^{\prime}, \ldots\right)$

This is how GW phasing for spinning compact binaries done traditionally

$h_{\times,+}(t)$ for spinning ICBs: I

Gupta \& Gopakumar, Submitted to Phys. Rev. D

- An accurate \& efficient prescription to compute time-domain $h_{\times,+}(t)$ for spinning compact binaries spiraling along quasi-circular orbits

We need to specify only EIGHT independent parameters

$h_{\times,+}(t)$ for spinning ICBs: I

Gupta \& Gopakumar, Submitted to Phys. Rev. D

- An accurate \& efficient prescription to compute time-domain $h_{\times,+}(t)$ for spinning compact binaries spiraling along quasi-circular orbits

We need to specify only EIGHT independent parameters

- We invoke the orbital angular momentum $\mathbf{L} \equiv \mathbf{r} \times \mathbf{p}$ to describe the orbit (NOT its Newtonian version N \mathbf{L}_{N})
- We construct an invariant frame such that the total angular momentum vector at the initial epoch is along the z -axis (A Standard practice)

- Further, we specify \mathbf{L} as well as \mathbf{S}_{1} and \mathbf{S}_{2} in such an invariant (source) frame (NO orbital triad is invoked)

$h_{\times,+}(t)$ for spinning ICBs :II

- The expression for h_{+}at the dominant (quadrupolar order):

$$
\begin{aligned}
&\left.h_{+}\right|_{Q}(t)= \frac{2 G \mu v^{2}}{c^{4} R^{\prime}}\left\{\left(\frac{3}{2} \cos ^{2} \iota-\frac{3}{2}\right)\left(1-C_{\theta}^{2}\right) \cos 2 \Phi-(1+\cos \iota) S_{\theta} C_{\theta} \sin \iota \cos (2 \Phi+\alpha)\right. \\
&-\frac{1}{4}\left(\cos ^{2} \iota+2 \cos \iota+1\right)\left(1+C_{\theta}^{2}\right) \cos (2 \alpha+2 \Phi)-\frac{1}{4}\left(\cos ^{2} \iota-2 \cos \iota+1\right)\left(1+C_{\theta}^{2}\right) \cos (2 \alpha-2 \Phi) \\
&\left.-S_{\theta} C_{\theta} \sin \iota \cos \iota \cos (\alpha-2 \Phi)+S_{\theta} C_{\theta} \sin \iota \cos (\alpha-2 \Phi)\right\} \\
& v^{2} / c^{2}=\left(G m \dot{\Phi} / c^{3}\right)^{2 / 3} \sim x ; \quad \cos \theta=\mathbf{N} \cdot \mathbf{j}_{0} \cdot .
\end{aligned}
$$

Note that $h_{\times,+}$NOT $\propto \sin 2 \Phi$ or $\cos 2 \Phi$

- ($\iota, \alpha)$ specify \mathbf{k}, the unit vector along \mathbf{L}, in the invariant frame
Φ via $\mathbf{r}=r(\cos \Phi \mathbf{i}+\sin \Phi \mathbf{j})$
[i, j, k] L-based orbital triad
- We need to specify how these angles vary

$h_{\times,+}(t)$ for spinning ICBs: III

- $\iota \& \alpha$ evolutions via

$$
\begin{aligned}
\dot{\mathbf{k}} & =\frac{c^{3}}{G m} x^{3}\left\{\delta_{1} q \chi_{1}\left(\mathbf{s}_{1} \times \mathbf{k}\right)+\frac{\delta_{2}}{q} \chi_{2}\left(\mathbf{s}_{2} \times \mathbf{k}\right)\right\} \\
\dot{\mathbf{s}}_{1} & =\frac{c^{3}}{G m} x^{5 / 2} \delta_{1}\left(\mathbf{k} \times \mathbf{s}_{1}\right) \\
\dot{\mathbf{s}}_{2} & =\frac{c^{3}}{G m} x^{5 / 2} \delta_{2}\left(\mathbf{k} \times \mathbf{s}_{2}\right)
\end{aligned}
$$

- Variations in $\Phi \& \omega$ are via

$$
\begin{aligned}
\dot{\phi} & =\frac{x^{3 / 2}}{\left(G m / c^{3}\right)}-\cos \iota \dot{\alpha} \\
\dot{x} & =\frac{64}{5} \frac{c^{3}}{G m} \eta x^{5}\left\{1+x(. .)+x^{1.5}(. .)+x^{2}(. .)\right\} \\
x=\left(G m \omega / c^{3}\right)^{2 / 3} & : \text { the usual dimensionless PN expansion parameter }
\end{aligned}
$$

$h_{\times,+}(t)$ for spinning ICBs: IV

- We numerically solve these PN-accurate d-equations for $\left[\dot{\mathbf{k}}, \dot{\mathbf{s}_{1}}, \dot{\boldsymbol{s}_{2}}\right]$ and $[\dot{\phi}, \dot{x}]$
- We invoke Cartesian components of $\left[\dot{\mathbf{k}}, \dot{\mathbf{s}}_{1}, \dot{\mathbf{s}_{2}}\right]$
- \Longrightarrow we have eleven Eqs to solve (The same as the \# of Eqs in the traditional approach)

$h_{\times,+}(t)$ for spinning ICBs: IV

- We numerically solve these PN-accurate d-equations for $\left[\dot{\mathbf{k}}, \dot{\mathbf{s}_{1}}, \dot{\mathbf{s}_{2}}\right]$ and $[\dot{\Phi}, \dot{x}]$
- We invoke Cartesian components of $\left[\dot{\mathbf{k}}, \dot{\mathbf{s}_{1}}, \dot{\mathbf{s}_{2}}\right]$
- \Longrightarrow we have eleven Eqs to solve (The same as the \# of Eqs in the traditional approach)
- At the initial epoch, we freely choose $\left(\theta_{1}, \phi_{1}\right)$ and $\left(\theta_{2}, \phi_{2}\right)$ \Longrightarrow freely specify the initial Cartesian components of the two spin vectors

$h_{\times,+}(t)$ for spinning ICBs: IV

- We numerically solve these PN-accurate d-equations for $\left[\dot{\mathbf{k}}, \dot{\mathbf{s}_{1}}, \dot{\mathbf{s}_{2}}\right]$ and $[\dot{\Phi}, \dot{x}]$
- We invoke Cartesian components of $\left[\dot{\mathbf{k}}, \dot{\mathbf{s}_{1}}, \dot{\mathbf{s}_{2}}\right]$
- \Longrightarrow we have eleven Eqs to solve (The same as the \# of Eqs in the traditional approach)
- At the initial epoch, we freely choose $\left(\theta_{1}, \phi_{1}\right)$ and $\left(\theta_{2}, \phi_{2}\right)$ \Longrightarrow freely specify the initial Cartesian components of the two spin vectors
- We DO NOT freely specify initial orientation of \mathbf{k} (or \mathbf{L})
- Recall that at the initial epoch J points along the z-axis of the source frame
- $\Longrightarrow \mathbf{J}$ can not have components along the x - \& y-axes of the invariant frame at $t=0$
- This fixes the initial orientation of \mathbf{k}

Initial Conditions

- $J_{x}=0 ; J_{y}=0$
$k_{\mathrm{x}, 0}=-\frac{G m^{2}}{c L_{2 \mathrm{PN}} \mathrm{x}_{\mathrm{x}} \chi_{0}}\left\{X_{1}^{2} \chi_{1} \sin \theta_{10} \cos \phi_{10}+X_{2}^{2} \chi_{2} \sin \theta_{20} \cos \phi_{20}\right\}$
$k_{\mathrm{y}, 0}=-\frac{G m^{2}}{\left.c L_{2 \mathrm{PN}}\right|_{x=x_{0}}}\left\{X_{1}^{2} \chi_{1} \sin \theta_{10} \sin \phi_{10}+X_{2}^{2} \chi_{2} \sin \theta_{20} \sin \phi_{20}\right\}$
$L_{2 \mathrm{PN}}$ provides 2 PN -accurate orbital angular momentum in terms ($x, .$.)
- IC for $x: x_{0} \sim 2.9 \times 10^{-4}\left(m \omega_{0}\right)^{2 / 3}$ ω_{0} is the initial frequency of aLIGO (a slight subtlety exists)
- Presently, we terminate the numerical integration when $x \sim 1 / 6$ (further refinements are possible)

Initial Conditions

- $J_{x}=0 ; J_{y}=0$
$k_{\mathrm{x}, 0}=-\frac{G m^{2}}{c L_{2 \mathrm{PN}} \mathrm{x}_{\mathrm{x}} \chi_{0}}\left\{X_{1}^{2} \chi_{1} \sin \theta_{10} \cos \phi_{10}+X_{2}^{2} \chi_{2} \sin \theta_{20} \cos \phi_{20}\right\}$
$k_{\mathrm{y}, 0}=-\frac{G m^{2}}{\left.c L_{2 \mathrm{PN}}\right|_{x=x_{0}}}\left\{X_{1}^{2} \chi_{1} \sin \theta_{10} \sin \phi_{10}+X_{2}^{2} \chi_{2} \sin \theta_{20} \sin \phi_{20}\right\}$
$L_{2 \mathrm{PN}}$ provides 2 PN -accurate orbital angular momentum in terms ($x, .$.)
- IC for $x: x_{0} \sim 2.9 \times 10^{-4}\left(m \omega_{0}\right)^{2 / 3}$ ω_{0} is the initial frequency of aLIGO (a slight subtlety exists)
- Presently, we terminate the numerical integration when $x \sim 1 / 6$ (further refinements are possible)

This is how we obtain $h_{\times,+}(t)$ in our approach Our signal manifold is essentially EIGHT dimensional ($m_{1}, m_{2}, \chi_{1}, \chi_{2}$); $\left(\theta_{1}, \phi_{1}, \theta_{2}, \phi_{2}\right)$

Temporal evolution of $h_{+, \times}$and $\iota: q=1$

Temporal evolution of $h_{+, \times}$and $\iota: q=4$

Why our approach ?: I

- The initial values of the angular variables, (α, ι), that explicitly appear in $h_{\times,+}(t)$ are dependent variables in our approach
These two angles are also uniquely estimated
- There are a number of undesirable features present in the traditional way of obtaining $h_{\times,+}(t)$ spinning ICBs

Why our approach ?: I

- The initial values of the angular variables, (α, ι), that explicitly appear in $h_{\times,+}(t)$ are dependent variables in our approach
These two angles are also uniquely estimated
- There are a number of undesirable features present in the traditional way of obtaining $h_{\times,+}(t)$ spinning ICBs
- It is customary to invoke precessional equation appropriate for \mathbf{L} to describe \mathbf{L}_{N}
- Detailed computations show that it leads to a feature that \mathbf{v} will have components along $\mathbf{L}_{\mathrm{N}} \equiv \mu \mathbf{r} \times \mathbf{v}$ at 1.5 PN order This is easily observed while expressing \mathbf{v} in the co-moving triad ($\mathbf{n}, \mathbf{n} \times \mathbf{L}_{N}, \mathbf{L} N$)
- Non-vanishing components of \mathbf{V} along L_{N} lead to unphysical 3PN order terms in the evolution equation for Φ^{\prime}

Why our approach ?:

- The initial values of the angular variables, (α, ι), that explicitly appear in $h_{\times,+}(t)$ are dependent variables in our approach
These two angles are also uniquely estimated
- There are a number of undesirable features present in the traditional way of obtaining $h_{\times,+}(t)$ spinning ICBs
- It is customary to invoke precessional equation appropriate for \mathbf{L} to describe \mathbf{L}_{N}
- Detailed computations show that it leads to a feature that \mathbf{v} will have components along $\mathbf{L}_{\mathrm{N}} \equiv \mu \mathbf{r} \times \mathbf{v}$ at 1.5 PN order This is easily observed while expressing \mathbf{v} in the co-moving triad ($\mathbf{n}, \mathbf{n} \times \mathbf{L}_{N}, \mathbf{L} N$)
- Non-vanishing components of \mathbf{V} along L_{N} lead to unphysical 3PN order terms in the evolution equation for Φ^{\prime}
- Φ^{\prime} evolution should be 3.5PN-accurate for aLIGO templates

Why our approach ?: II

It is impossible to constrain initial orientation of \mathbf{L}_{N} or \mathbf{L} in the traditional approach by demanding that \mathbf{J} at the initial epoch should point along the z-axis

- This is mainly because of specifying freely the two spins in orbital triad $\left[\mathbf{i}^{\prime}, \mathbf{j}^{\prime}, \mathbf{I}\right]$, at the initial epoch

Why our approach ?: II

It is impossible to constrain initial orientation of \mathbf{L}_{N} or \mathbf{L} in the traditional approach by demanding that \mathbf{J} at the initial epoch should point along the z-axis

- This is mainly because of specifying freely the two spins in orbital triad $\left[\mathbf{i}^{\prime}, \mathbf{j}^{\prime}, \mathbf{I}\right]$, at the initial epoch
- In the traditional approach $J_{x}=0 ; J_{y}=0$ at initial epoch \Longrightarrow

$$
\begin{aligned}
k_{\mathrm{x}}\left(x_{0}\right)=\sin \iota^{\prime} \cos \alpha^{\prime}= & -\frac{G m^{2}}{c L_{0}}\left\{X_{1}^{2} \chi_{1}\left(\sin \tilde{\theta}_{1} \cos \tilde{\phi}_{1} \sin \alpha^{\prime}+\sin \tilde{\theta}_{1} \sin \tilde{\phi}_{1} \cos \alpha^{\prime} \cos \iota^{\prime}+\cos \tilde{\theta}_{1} \sin \iota^{\prime} \cos \alpha^{\prime}\right)\right. \\
& \left.+X_{2}^{2} \chi_{2}\left(\sin \tilde{\theta}_{2} \cos \tilde{\phi}_{2} \sin \alpha^{\prime}+\sin \tilde{\theta}_{2} \sin \tilde{\phi}_{2} \cos \alpha^{\prime} \cos \iota^{\prime}+\cos \tilde{\theta}_{2} \sin \iota^{\prime} \cos \alpha^{\prime}\right)\right\} \\
k_{\mathrm{y}}\left(x_{0}\right)=\sin \iota^{\prime} \sin \alpha^{\prime}= & -\frac{G m^{2}}{c L_{0}}\left\{x_{1}^{2} \chi_{1}\left(-\sin \tilde{\theta}_{1} \cos \tilde{\phi}_{1} \cos \alpha^{\prime}+\sin \tilde{\theta}_{1} \sin \tilde{\phi}_{1} \sin \alpha^{\prime} \cos \iota^{\prime}+\cos \tilde{\theta}_{1} \sin \iota^{\prime} \sin \alpha^{\prime}\right)\right. \\
& \left.+x_{2}^{2} \chi_{2}\left(-\sin \tilde{\theta}_{2} \cos \tilde{\phi}_{2} \cos \alpha^{\prime}+\sin \tilde{\theta}_{2} \sin \tilde{\phi}_{2} \sin \alpha^{\prime} \cos \iota^{\prime}+\cos \tilde{\theta}_{2} \sin \iota^{\prime} \sin \alpha^{\prime}\right)\right\}
\end{aligned}
$$

- ι^{\prime} and α^{\prime} are present on both sides of the above two equations \Longrightarrow impossible to find a solution for ι^{\prime} and α^{\prime} at the initial epoch

Why our approach ?: III

- We may obtain the initial estimate for ι^{\prime} via $\iota^{\prime}=\cos ^{-1}\left(\mathbf{j}\left(x_{0}\right) \cdot \mathbf{l}\left(x_{0}\right)\right)$
These unit vectors are along \mathbf{J} and \mathbf{L}_{N} at the initial epoch
- We can plot the x and y components of $\mathbf{j}\left(x_{0}\right)$ at the initial epoch as function of α These plots do NOT cross each other (together) at zero !!
- This leads to an undesirable
 inconsistency that J will not point along the z-axis of the invariant frame at $t=0$

Slight changes in the initial ι or α values can lead to substantially different looking $h_{\times,+}(t)$ for unequal mass binaries

$\iota:$

Why our approach ?: IV

- Additionally, the traditional approach contains another inconsistency Recall that the two spins are specified in an orbital triad $\left[\mathbf{i}^{\prime}, \mathbf{j}^{\prime}, \mathbf{l}\right]$

Why our approach ?: IV

- Additionally, the traditional approach contains another inconsistency Recall that the two spins are specified in an orbital triad $\left[\mathbf{i}^{\prime}, \mathbf{j}^{\prime}, \mathbf{l}\right]$
- The definition of these units vectors are $\mathbf{i}^{\prime}=\left(\mathbf{I} \times \mathbf{j}_{0}\right) /\left|\mathbf{I} \times \mathbf{j}_{0}\right| \& \mathbf{j}^{\prime}=\mathbf{I} \times \mathbf{i}^{\prime}$ Note that by construction, $\mathbf{j}_{0} \cdot \mathbf{i}^{\prime} \equiv 0$
- In the literature, spins are freely specified at the initial epoch by FOUR angles ($\mathbf{S}_{1}=S_{1} \mathbf{s}_{1}, \mathbf{S}_{2}=S_{2} \mathbf{s}_{2}$)

$$
\begin{aligned}
& \mathbf{s}_{1}=\sin \theta_{1}^{\prime} \cos \phi_{1}^{\prime} \mathbf{i}^{\prime}+\sin \theta_{1}^{\prime} \sin \phi_{1}^{\prime} \mathbf{j}^{\prime}+\cos \theta_{1}^{\prime} \mathbf{\prime}, \\
& \mathbf{s}_{2}=\sin \theta_{2}^{\prime} \cos \phi_{2}^{\prime} \mathbf{i}^{\prime}+\sin \theta_{2}^{\prime} \sin \phi_{2}^{\prime} \mathbf{j}^{\prime}+\cos \theta_{2}^{\prime} \mathbf{I}
\end{aligned}
$$

- We observe that $\mathbf{J}_{0} \cdot \mathbf{i}^{\prime} \neq 0$ while evaluating $\mathbf{J}=L \mathbf{k}+S_{1} \mathbf{s}_{1}+S_{2} \mathbf{s}_{2}$ $\mathbf{J}_{0} \cdot \mathbf{i}^{\prime}=S_{1} \sin \theta_{1}^{\prime} \cos \phi_{1}^{\prime}+S_{2} \sin \theta_{2}^{\prime} \cos \phi_{2}^{\prime}$.

Why our approach ?: IV

- Additionally, the traditional approach contains another inconsistency Recall that the two spins are specified in an orbital triad $\left[\mathbf{i}^{\prime}, \mathbf{j}^{\prime}, \mathbf{l}\right]$
- The definition of these units vectors are $\mathbf{i}^{\prime}=\left(\mathbf{I} \times \mathbf{j}_{0}\right) /\left|\mathbf{I} \times \mathbf{j}_{0}\right| \& \mathbf{j}^{\prime}=\mathbf{I} \times \mathbf{i}^{\prime}$ Note that by construction, $\mathbf{j}_{0} \cdot \mathbf{i}^{\prime} \equiv 0$
- In the literature, spins are freely specified at the initial epoch by FOUR angles ($\mathbf{S}_{1}=S_{1} \mathbf{s}_{1}, \mathbf{S}_{2}=S_{2} \mathbf{s}_{2}$)

$$
\begin{aligned}
& \mathbf{s}_{1}=\sin \theta_{1}^{\prime} \cos \phi_{1}^{\prime} \mathbf{i}^{\prime}+\sin \theta_{1}^{\prime} \sin \phi_{1}^{\prime} \mathbf{j}^{\prime}+\cos \theta_{1}^{\prime} \mathbf{\prime}, \\
& \mathbf{s}_{2}=\sin \theta_{2}^{\prime} \cos \phi_{2}^{\prime} \mathbf{i}^{\prime}+\sin \theta_{2}^{\prime} \sin \phi_{2}^{\prime} \mathbf{j}^{\prime}+\cos \theta_{2}^{\prime} \mathbf{I}
\end{aligned}
$$

- We observe that $\mathbf{J}_{0} \cdot \mathbf{i}^{\prime} \neq 0$ while evaluating $\mathbf{J}=L \mathbf{k}+S_{1} \mathbf{s}_{1}+S_{2} \mathbf{s}_{2}$ $\mathbf{J}_{0} \cdot \mathbf{i}^{\prime}=S_{1} \sin \theta_{1}^{\prime} \cos \phi_{1}^{\prime}+S_{2} \sin \theta_{2}^{\prime} \cos \phi_{2}^{\prime}$.
- $\mathbf{J}_{0} \cdot \mathbf{i}^{\prime} \equiv 0$ is a necessary but NOT a sufficient condition to extract the initial estimate for α by equating the x and y components of \mathbf{J}_{0} to zero

Why our approach ?: V

- The dominant spin orientation at the initial aLIGO frequency should be $\leq \pi / 4$ for spin-dominated binaries in our approach
- The above statement requires that the astrophysically produced spin-orbit misalignment should be $\leq 160^{\circ}$ This is a very reasonable assumption
- In our approach, we can uniquely compute inspiral templates for binaries experiencing spin-orbit resonances in the aLIGO frequency window

- This is because of our ability to uniquely fix the initial value for α
- There are few prescriptions to estimate α at x_{0}

Let $\mathbf{N}=(\sin \theta, 0, \cos \theta) \& \mathbf{j}$ at x_{0} to be $(0,0,1)$
Invoke these identities
$\cos \alpha^{\prime}=\left(\left(\mathbf{j}_{0} \times \mathbf{N}\right) \cdot\left(\mathbf{j}_{0} \times \mathbf{k}\right)\right) /\left(\left|\mathbf{j}_{0} \times \mathbf{N}\right|\left|\mathbf{j}_{0} \times \mathbf{k}\right|\right)$
$\sin \alpha^{\prime}=\left(\left(\mathbf{k} \times \mathbf{j}_{0}\right) \cdot \hat{\mathbf{x}}\right) /\left|\mathbf{k} \times \mathbf{j}_{0}\right|$.
to estimate the initial value for α
These estimates leads to scenarios where \mathbf{j}_{0} will not point along the z-axis of the invariant frame

- There are few prescriptions to estimate α at x_{0}

Let $\mathbf{N}=(\sin \theta, 0, \cos \theta) \& \mathbf{j}$ at x_{0} to be $(0,0,1)$
Invoke these identities
$\cos \alpha^{\prime}=\left(\left(\mathbf{j}_{0} \times \mathbf{N}\right) \cdot\left(\mathbf{j}_{0} \times \mathbf{k}\right)\right) /\left(\left|\mathbf{j}_{0} \times \mathbf{N}\right|\left|\mathbf{j}_{0} \times \mathbf{k}\right|\right)$
$\sin \alpha^{\prime}=\left(\left(\mathbf{k} \times \mathbf{j}_{0}\right) \cdot \hat{\mathbf{x}}\right) /\left|\mathbf{k} \times \mathbf{j}_{0}\right|$.
to estimate the initial value for α
These estimates leads to scenarios where \mathbf{j}_{0} will not point along the z-axis of the invariant frame

- Does there exist a prescription to compute $h_{\times,+}(t)$ where \mathbf{j}_{0} will be along the z-axis of the invariant frame?
- There are few prescriptions to estimate α at x_{0}

Let $\mathbf{N}=(\sin \theta, 0, \cos \theta) \& \mathbf{j}$ at x_{0} to be $(0,0,1)$
Invoke these identities
$\cos \alpha^{\prime}=\left(\left(\mathbf{j}_{0} \times \mathbf{N}\right) \cdot\left(\mathbf{j}_{0} \times \mathbf{k}\right)\right) /\left(\left|\mathbf{j}_{0} \times \mathbf{N}\right|\left|\mathbf{j}_{0} \times \mathbf{k}\right|\right)$
$\sin \alpha^{\prime}=\left(\left(\mathbf{k} \times \mathbf{j}_{0}\right) \cdot \hat{\mathbf{x}}\right) /\left|\mathbf{k} \times \mathbf{j}_{0}\right|$.
to estimate the initial value for α
These estimates leads to scenarios where \mathbf{j}_{0} will not point along the z-axis of the invariant frame

- Does there exist a prescription to compute $h_{\times,+}(t)$ where \mathbf{j}_{0} will be along the z-axis of the invariant frame?
- Can you force \mathbf{j}_{0} to be along z-axis \& obtain $h_{\times,+}(t)$ while specifying the two spins in an orbital triad ?

Ajith's SpinTaylorT5: I

- Ajith implemented SpinTaylorT5 in LAL. It provides $h_{\times,+}(t)$ for inspiraling spinning compact binaries
- The \mathbf{L}_{N}-based orbital triad is invoked to freely specify the two spins at the initial epoch
- Let me denote such an orbital triad by $(\mathbf{a}, \mathbf{b}, \mathbf{k})$ [ignore that $\mathbf{I} \neq \mathbf{k}$] $\mathbf{a}=\left(\mathbf{k} \times \mathbf{j}_{0}\right) /\left|\mathbf{k} \times \mathbf{j}_{0}\right|$ and $\mathbf{b}=\mathbf{k} \times \mathbf{a}$
- He computed θ_{J} and ϕ_{J} from the Cartesian components of \boldsymbol{J} in the ($\mathbf{a}, \mathbf{b}, \mathbf{k}$) frame
$\rightarrow \mathbf{j}_{0}$ can take the form $\left(\sin \theta_{J} \cos \phi_{J}, \sin \theta_{J} \sin \phi_{J}, \cos \theta_{J}\right)$ in the $(\mathbf{a}, \mathbf{b}, \mathbf{k})$ orbital triad
- Note that $\theta_{J}=\iota$ by the definition

Ajith's SpinTaylorT5: II

- All the four vectors $\mathbf{s}_{1}, \mathbf{s}_{2}, \mathbf{k}$ and \mathbf{j}_{0} were rotated by a proper rotational matrix that involves θ_{J} and ϕ_{J}
- It is easy to numerically verify that in the rotated frame $\mathbf{j}_{0}=(0,0,1)$
- Additionally, it is not difficult to show analytically that at the initial epoch $\mathbf{k}=\left(\sin \theta_{J}, 0, \cos \theta_{J}\right)$ for any spin configurations specified freely in the orbital triad!!

Ajith's SpinTaylorT5: II

- All the four vectors $\mathbf{s}_{1}, \mathbf{s}_{2}, \mathbf{k}$ and \mathbf{j}_{0} were rotated by a proper rotational matrix that involves θ_{J} and ϕ_{J}
- It is easy to numerically verify that in the rotated frame $\mathbf{j}_{0}=(0,0,1)$
- Additionally, it is not difficult to show analytically that at the initial epoch $\mathbf{k}=\left(\sin \theta_{J}, 0, \cos \theta_{J}\right)$ for any spin configurations specified freely in the orbital triad!!
- Note that the expressions for $h_{\times,+}(t)$ require that $\mathbf{k}=(\sin \iota \cos \alpha, \sin \iota \sin \alpha, \cos \iota)$ in the invariant frame associated with \mathbf{j}_{0} \& N
- We know that $\theta_{J}=\iota$. However, $\phi_{J} \neq \alpha$
- What are its implications ?

Is it possible that the expressions for $h_{\times,+}(t)(\iota, \alpha)$ are written in a frame \& the orbital evolution is done in a slightly different frame?

Ajith's SpinTaylorT5: III

An orbital triad with \mathbf{k} for \mathbf{I}

Note that \mathbf{k} has no projection onto the $x-y$ plane

- We can show that $h_{\times,+}(t)$ via our approach is unique \& no internal inconsistency exists at the initial epoch..
- Can we develop a way to compare $\Phi+\alpha$ in our $\&$ the traditional approaches to compute $h_{\times,+}(t)$?
- We can show that $h_{\times,+}(t)$ via our approach is unique \& no internal inconsistency exists at the initial epoch..
- Can we develop a way to compare $\Phi+\alpha$ in our $\&$ the traditional approaches to compute $h_{\times,+}(t)$?
- It will be nice to explore DA implications of our approach, if any !
- We can show that $h_{\times,+}(t)$ via our approach is unique \& no internal inconsistency exists at the initial epoch..
- Can we develop a way to compare $\Phi+\alpha$ in our $\&$ the traditional approaches to compute $h_{\times,+}(t)$?
- It will be nice to explore DA implications of our approach, if any !
- Can we compare with secular orbital evolutions arising from full general relativity?

