the gravitational-wave memory

Outline of this talk:

- What is the memory and why is it interesting?
- How do we calculate the memory?
- Is it observable?

Examples of memory:

Two-body scattering/hyperbolic orbits

[Turner '77, Turner & Will '78, MF '11]

Examples of memory:

Core-collapse supernovae

Examples of memory:

Binary black-hole mergers

Why is this called "memory"?

[GW propagating perpendicular to the screen]

Why is this interesting?

The nonlinear memory is unique among the many other nonlinear effects present in the gravitational-wave signal:

- it is non-oscillatory and visually distinctive in the waveform.
- it has a clear interpretation in terms of the GWs produced by GWs (more later).

Why is this interesting?

The nonlinear memory is unique among the many other nonlinear effects present in the gravitational-wave signal:

• Unlike other post-Newtonian corrections, the memory affects the waveform at leading (Newtonian) order. Its "hereditary" nature allows a small effect to build-up to a large value over time.

$$h_{+} = -2\frac{\mu}{R}v_{\rm orb}^{2}(t)\left[(1+\cos^{2}\iota)\cos[2\varphi(t)-2\Phi] + \frac{1}{96}\sin^{2}\iota(17+\cos^{2}\iota) + O(v_{\rm orb})\right]$$
[Wiseman & Will '91]

• The nonlinear memory is observable and could serve as a **test of general relativity**.

Understanding the memory: the linear memory effect [Zel'Dovich & Polnarev '74; Braginsky & Grishchuk '85; Braginsky & Thorne '87]

$$h_{jk}^{\mathrm{TT}} \approx \frac{2}{R} \ddot{\mathcal{I}}_{jk}^{\mathrm{TT}} \qquad \mathcal{I}_{jk}^{\mathrm{TT}} = \mu [x_j x_k]^{\mathrm{TT}}$$
$$\ddot{\mathcal{I}}_{jk}^{\mathrm{TT}} = \mu [x_j \ddot{x}_k + \ddot{x}_j x_k + 2\dot{x}_j \dot{x}_k]^{\mathrm{TT}}$$
$$= 2\mu \left[\dot{x}_j \dot{x}_k - \frac{M}{r^3} x_j x_k \right]^{\mathrm{TT}} \longrightarrow \Delta h_{jk}^{\mathrm{TT}} = \frac{4\mu}{R} \Delta [v^j v^k]^{\mathrm{TT}}$$

Understanding the memory: the linear memory effect [Zel'Dovich & Polnarev '74; Braginsky & Grishchuk '85;

Understanding the memory: the linear memory effect

General formula for the memory jump in a system w/ N components [Braginsky & Thorne '87, Thorne '92]

$$\Box \bar{h}_{ij} = -16\pi \sum_{A=1}^{N} T_{ij}^{\text{pp},A}$$

$$\Delta h_{ij} = \lim_{t \to +\infty} h_{ij}(t) - \lim_{t \to -\infty} h_{ij}(t)$$

$$\Delta h_{ij}^{\mathrm{TT}} = \Delta \sum_{A=1}^{N} \frac{4M_A}{R\sqrt{1-v_A^2}} \left[\frac{v_A^j v_A^k}{1-\boldsymbol{N}\cdot\boldsymbol{v}_A} \right]^{\mathrm{TT}}$$

Understanding the memory: the nonlinear memory

[Christodoulou '91; Blanchet & Damour '92]

Mathematically, the nonlinear memory arises from the contribution of the **gravitational-wave stress-energy** to Einstein's equations:

Harmonic gauge
EFE...
$$\Box \bar{h}^{\alpha\beta} = -16\pi(-g)(T^{\alpha\beta} + t^{\alpha\beta}_{LL}) - \bar{h}^{\alpha\mu}_{,\nu}\bar{h}^{\beta\nu}_{,\mu} + \bar{h}^{\mu\nu}\bar{h}^{\alpha\beta}_{,\mu\nu}$$
...has a nonlinear source from
the GW stress-energy tensor.
$$T^{gw}_{jk} = \frac{1}{R^2}\frac{dE^{gw}}{dtd\Omega}n_jn_k$$
Solve EFE:
 $\bar{h}_{jk}(t, \boldsymbol{x}) = 4\int \frac{(-g)[T_{jk}(t', \boldsymbol{x}') + t^{LL}_{jk}(t', \boldsymbol{x}') + \ldots]}{|\boldsymbol{x} - \boldsymbol{x}'|}\delta(t' - t - |\boldsymbol{x} - \boldsymbol{x}'|)d^4x'$
[Wiseman & Will '91]
 $\delta h^{TT}_{jk} = \frac{4}{R}\int_{-\infty}^{T_R} dt' \left[\int \frac{dE^{gw}}{dt'd\Omega'}\frac{n'_jn'_k}{(1 - \boldsymbol{n}' \cdot \boldsymbol{N})}d\Omega'\right]^{TT}$

Understanding the memory: the nonlinear memory

Mathematically, the nonlinear memory arises from the contribution of the **gravitational-wave stress-energy** to Einstein's equations:

Nonlinear memory can be related to the "linear" memory if we interpret the component masses as the individual radiated gravitons (Thorne'92):

_

$$\Delta h_{ij}^{\mathrm{TT}} = \Delta \sum_{A=1}^{N} \frac{4M_A}{R\sqrt{1-v_A^2}} \left[\frac{v_A^j v_A^k}{1-v_A \cdot N} \right]^{\mathrm{TT}} \qquad \Delta h_{ij}^{\mathrm{TT}} = \Delta \sum_{A=1}^{N} \frac{4E_A}{R} \left[\frac{n_A^j n_A^k}{1-n_A \cdot N} \right]^{\mathrm{TT}}$$

$$\frac{v_A^j \to c n_A^j}{\sqrt{1-v_A^2}} \to E_A$$

$$\delta h_{jk}^{\mathrm{TT}} = \frac{4}{R} \int_{-\infty}^{T_R} dt' \left[\int \frac{dE^{\mathrm{gw}}}{dt' d\Omega'} \frac{n_j' n_k'}{(1-n' \cdot N)} d\Omega' \right]^{\mathrm{TT}}$$

Understanding the memory: the nonlinear memory

[Christodoulou '91; Blanchet & Damour '92]

Can also think of it as a nonlinear correction to the multipoles:

The effect is hereditary (depends on entire past evolution).

Understanding the memory: the nonlinear memory: inspiralling binaries

Although it arises from a 2.5PN correction to the multipole moments, for inspiralling binaries the nonlinear affects the waveform at *leading* (Newtonian) order:

$$h_{+} = -2\frac{\mu}{R}v_{\rm orb}^{2} \left[(1 + \cos^{2}\Theta)\cos[2\varphi(t) - 2\Phi] + \frac{1}{96}\sin^{2}\Theta(17 + \cos^{2}\Theta) + O(v_{\rm orb}^{1/2}) \right]$$

[Wiseman & Will '91]

Why?

Computing the nonlinear memory: previous/ongoing work (inspiral only)

✓ Wiseman & Will '91: 0PN memory waveform (circular, nonspinning).

✓ Thorne '92: analogy w/ linear memory; crude detectability estimates.

✓ Kennefick '94: repeats Wiseman-Will; crude detectability estimates.

✓ Wiseman & Will '91: nonlinear memory from high-velocity scattering (e>>1).

✓ Arun , Blanchet, Iyer, et al '04, '08: compute 3PN waveform; 0.5PN memory vanishes (circular, nonspinning).

✓ MF '09a: 3PN memory waveform (circular, nonspinning).

✓ MF '11: leading-order nonlinear memory for eccentric binaries (elliptical, hyperbolic, parabolic, radial; nonspinning); crude detectability estimates.

✓ Guo & MF (in prep): 1.5PN memory waveform (spinning binaries).

Computing the nonlinear memory: previous/ongoing work (inspiral only)

- Calculation of the inspiral memory is important because it allow us to:
- obtain analytical understanding of how the memory behaves.
- complete our knowledge of PN waveforms consistently to a given order.
- provide accurate initial conditions for the memory in NR calculations.

Computing the nonlinear memory: previous/ongoing work (merging BHs)

For detectability purposes, we need to know the entire build-up and saturation value of the memory (need inspiral + merger/ringdown).

✓ MF '08, '09b: "minimal waveform model" & EOB calc; detectability estimates.

✓ MF (in prep): hybrid NR/PN calculation; improved detectability estimates.

✓ Pollney & Reisswig '11: extraction from full NR evolutions; aligned spins.

✓ Seto '09, van Haasteren & Levin '10, Pshrikov et al '10, Cordes & Jenet '12: detectability estimates from pulsar timing arrays.

✓ Wang, Hobbs, & Wang '13: Parkes PTA search for memory.

 \checkmark Plans for memory search in LIGO.

Computing the nonlinear memory: outline of the calculation

1. Waveform can be expanded in spin-weighted spherical harmonic modes:

$$h_{+} - ih_{\times} = \sum_{l=2}^{\infty} \sum_{m=-l}^{l} h^{lm}(T_R, R) {}_{-2}Y^{lm}(\Theta, \Phi)$$

2. The nonlinear memory modes are related to the GW energy flux:

$$h_{lm}^{(\text{mem})} = \frac{16\pi}{R} \sqrt{\frac{(l-2)!}{(l+2)!}} \int_{-\infty}^{T_R} dt \int d\Omega \, \frac{dE_{\text{gw}}}{dt d\Omega} (\Omega) Y_{lm}^*(\Omega)$$

3. The energy flux is related to the oscillating (non-memory) h_{lm} modes:

$$\frac{dE_{\rm gw}}{dtd\Omega} = \frac{R^2}{16\pi} \langle \dot{h}_+^2 + \dot{h}_\times^2 \rangle = \frac{R^2}{16\pi} \sum_{l',l'',m',m''} \langle \dot{h}_{l'm'} \dot{h}_{l''m''}^* \rangle_{-2} Y^{l'm'}{}_{-2} Y^{l'm''}{}_{+2} Y^{l''m''}{}_{+2} Y^{l'm''}{}_{+2} Y^{l'm'''}{}_{+2} Y^{l'm'''}{}_{+2} Y^{l'm''}{}_{+2} Y^{l'm'''}{}_{+2} Y^{l$$

4. Compute time-derivative of $h_{lm}[v(t), L(t), S_1(t), S_2(t), e(t)]$, substitute equations of motion, plug in and integrate.

Computing the nonlinear memory: result: 3PN h_{lm} modes and polarization

$$\begin{split} h_{+,\times} &= \frac{2\eta Mx}{R} H_{+,\times} + O\left(\frac{1}{R^2}\right), \text{ where } H_{+,\times} = \sum_{n=0}^{\infty} x^{n/2} H_{+,\times}^{(n/2)}. \\ &\qquad H_{+}^{(0,\text{mem})} = \alpha \frac{1}{96} s_{\Theta}^2 (17 + c_{\Theta}^2), \\ &\qquad H_{+}^{(0,\text{smem})} = 0, \\ H_{+}^{(1,\text{mem})} &= \alpha s_{\Theta}^2 \left[-\frac{354\,241}{2064\,384} - \frac{62\,059}{1032\,192} c_{\Theta}^2 - \frac{4195}{688\,128} c_{\Theta}^4 + \left(\frac{15\,607}{73\,728} + \frac{9373}{93,14}, \frac{34}{94,14}, \frac{143}{94,15}, \frac{143}{96,0}, \eta \right) \right], \\ H_{+}^{(1,\text{mem})} &= \alpha s_{\Theta}^2 \left[-\frac{3968\,456\,539}{9\,364\,67\,88} + \frac{52}{1032\,192} c_{\Theta}^2 + \frac{122}{34,34}, \frac{122}{94,34}, \frac{143}{94,14}, \frac{143}{94,1$$

Computing the nonlinear memory: result: 3PN h_{lm} modes and polarization

Computing the nonlinear memory: result: precessing spins (small inclination approx.)

$$\begin{aligned} h_{+}^{(\text{mem})} &= \frac{2\eta M v^2}{R} \sum_{n=0}^{\infty} v^n H_{+}^{(n/2,\text{mem})}. \\ H_{+}^{(0,\text{mem})} &= \frac{1}{96} s_{\Theta}^2 (17 + c_{\Theta}^2), \qquad H_{+}^{(0.5,\text{mem})} = 0, \\ H_{+}^{(1,\text{mem,nonspin})} &= s_{\Theta}^2 \left[-\frac{354\,241}{2\,064\,384} - \frac{62\,059}{1\,032\,192} c_{\Theta}^2 - \frac{4195}{688\,128} c_{\Theta}^4 + \left(\frac{15\,607}{73\,728} + \frac{9373}{36\,864} c_{\Theta}^2 + \frac{215}{8192} c_{\Theta}^4\right) \eta \right] \\ H_{+}^{(1,\text{mem,spin})} &= -s_{\Theta}^2 \sum_{i=1,2} \chi_i^2 (1 - \kappa_i^2) \frac{m_i^4}{M^4} \left(\frac{25 + 5c_{\Theta}^2}{192\eta^2}\right) \\ H_{+}^{(1.5,\text{mem,nonspin})} &= 0, \qquad H_{+}^{(1.5,\text{mem,spin})} = \frac{s_{\Theta}^2}{768} \sum_{i=1,2} \chi_i \kappa_i \left[369 \frac{m_i^2}{M^2} + 351\eta + c_{\Theta}^2 \left(23 \frac{m_i^2}{M^2} + 57\eta \right) \right], \\ \chi_i &= |\mathbf{S}_i|/m_i \\ \kappa_i &= |\mathbf{\hat{s}}_i| \cdot \hat{L} \\ s_{\Theta} &= \sin \Theta \\ c_{\Theta} &= \cos \Theta \\ M &= m_1 + m_2 \\ \eta &= \frac{m_1 m_2}{M^2} \end{aligned} \qquad \mathbf{I} \ll \mathbf{I} \rightarrow |\mathbf{L}| \gg |\mathbf{S}|$$
 [Guo & MF (in prep)]

Computing the nonlinear memory: result: arbitrary spins

- Need to solve spin equations numerically.
- Simple precession case: memory monotonically increases as before.
- Transitional precession (preliminary): mostly monotonic increase, except for a single oscillation during the "transition"

Computing the nonlinear memory: eccentric binaries: motivation

- elliptical orbit (e<1) waveforms:
 - ✓ OPN (Peters-Mathews '63)
 - ✓ 1PN (Junker-Schafer '91)
 - ✓ 2PN (Gopakumar-Iyer '02)

Inonlinear memory correction unknown

- hyperbolic/parabolic orbit (e≥1) waveforms:
 - ✓ OPN (Mike Turner '77)
 - ✓ 1PN (Junker-Schafer '91)

nonlinear memory only computed for e>>1 case (Wiseman-Will '91)

• Circularized binaries were eccentric (even hyperbolic) in the past:

□ Since the nonlinear memory is hereditary, effects of the (past-growing) eccentricity could potentially have an effect on the value of the (late-time) memory.

Computing the nonlinear memory: eccentric binaries: outline of calculation

1. We want the leading-order nonlinear memory terms: these rely on only the leading-order mass-quadrupole moments for Keplerian orbits:

$$h_{2m}^{\rm N} \approx \frac{\ddot{I}_{2m}}{R\sqrt{2}}$$

2. These leading-order modes are substituted into an expression for the nonlinear memory modes:

$$h_{lm}^{(\text{mem})} = \frac{16\pi}{R} \sqrt{\frac{(l-2)!}{(l+2)!}} \int_{-\infty}^{T_R} dt \int d\Omega \, \frac{dE_{\text{gw}}}{dt d\Omega} (\Omega) Y_{lm}^*(\Omega)$$
$$h_{20}^{(\text{mem})} = \int_{-\infty}^{T_R} dt \, \frac{R}{42} \sqrt{\frac{15}{2\pi}} \left\langle 2|\dot{h}_{22}^{\text{N}}|^2 - |\dot{h}_{20}^{\text{N}}|^2 \right\rangle$$

3. To compute the time integral, use a Keplerian model for the orbit (including radiation-reaction in the elliptical case). Transform time-integral to an integral over the true-anomaly or the eccentricity.

Computing the nonlinear memory: result: eccentric binaries

linear memory case:

Hyperbolic orbits:
$$\Delta h^{(\text{lin. mem})} \propto \eta \left(\frac{M}{R}\right) \left(\frac{M}{p}\right) \frac{(e^2 - 1)^{3/2}}{e^2}$$

Parabolic orbits: no linear memory

Elliptical orbits: no linear memory

Nonlinear memory case:

Hyperbolic/parabolic orbits: $\Delta h^{(\text{mem})} \propto \eta^2 \left(\frac{M}{R}\right) \left(\frac{M}{p}\right)^7$

Elliptical orbits:

F(e)

2.5PN

Computing the nonlinear memory: result: eccentric binaries

$$\Delta h^{(\text{mem})} = \int_{-\infty}^{T_R} \dot{h}^{(\text{mem})} dt$$

$$\Delta h^{(\text{mem}),\text{hyper.}} \sim \dot{h}^{(\text{mem})} T_{\text{orb}}$$

 $\Delta h^{(\text{mem}),\text{ellip.}} \sim \dot{h}^{(\text{mem})} T_{\text{rr}}$

Nonlinear memory case:

Hyperbolic/parabolic orbits: $\Delta h^{(\text{mem})} \propto \eta^2 \left(\frac{M}{R}\right) \left(\frac{M}{p}\right)^{7/2}$

Elliptical orbits:

$$\begin{split} h_{20}^{(\text{mem})} &= -\frac{2}{7} \sqrt{\frac{10\pi}{3}} \frac{\eta M^2}{R p_0} e_0^{12/19} (304 + 121 e_0^2)^{870/2299} \int_{e_0}^{e(t)} de \frac{1}{e^{31/19}} \frac{(192 + 580 e^2 + 73 e^4)}{(304 + 121 e^2)^{3169/2299}} \\ \Delta h^{(\text{mem})} \propto \eta \left(\frac{M}{R}\right) \left(\frac{M}{p_0}\right) \left[1 - \left(\frac{e_0}{e(t)}\right)^{12/19}\right] \\ \text{OPN} \end{split}$$
 [MF PRD'11]

 $T_{\rm orb} \sim M \left(\frac{p}{M}\right)^{3/2}$

 $T_{\rm rr} \sim \frac{M}{n} \left(\frac{p}{M}\right)^5$

 $\frac{T_{\rm orb}}{T_{\rm rr}} \sim \eta \left(\frac{M}{n}\right)^{5/2}$

F(e)

2.5PN

Computing the nonlinear memory: result: sensitivity to early-time eccentricity

[MF PRD'11]

 Hereditary nature of memory implies dependence on past orbital evolution.

- BH binaries usually assumed to be circularized.
- Does the binary's past-growing eccentricity affect memory calculations that assume quasi-circular orbits?

Summary of results in eccentric case:

• The nonlinear memory is a non-oscillatory component of the gravitationalwave signal; it is due to *gravitational waves produced by gravitational waves*.

- Previous calculations considered only quasi-circular binaries.
- Nonlinear memory waveforms have been computed for binaries with any eccentricity (elliptical, hyperbolic, parabolic, and radial orbits).
- In the hyperbolic/parabolic case, nonlinear memory enters at 2.5PN order.
- In the elliptic case, nonlinear memory enters at the same order as the Peters-Mathews waveforms (OPN order, as in the circular case).
- While the nonlinear memory depends on the past-history of the binary, the past-growing eccentricity is only a small correction to the memory for nearly-circularized binaries.

Calculating the nonlinear memory from BH mergers: limitations of numerical relativity

- **No memory in (2,2) mode!** Shows up in m=0 modes in quasi-circular case.
- In Ψ_4 memory is a 5PN order effect; in h_+ it is a 0PN effect.

(2,2), (4,4), (3,2), (4,2) modes are much larger than the memory modes (2,0), (4, 0), etc..

[MF PRD'09]

Calculating the nonlinear memory from BH mergers: limitations of numerical relativity

Other problems with NR computations of the memory:

– Need to choose two integration constants to go from curvature to metric perturbation $\psi_{lm}=\ddot{h}_{lm}$

Choosing these incorrectly leads to "artificial" memory (Berti et al. '07).

- Memory is sensitive to the past-history of the source; need large initial separation:
 - Consider leading-order (2,0) memory mode, with a finite separation r_0

$$h_{20}^{\mathrm{NR}}(T_R) = \frac{4}{7} \sqrt{\frac{5\pi}{6}} \frac{\eta M}{R} \left(\frac{M}{r(t)} - \frac{M}{r_0}\right)$$
$$\frac{|\delta h_{20}^{\mathrm{NR}}|}{h_{20}} \approx \frac{r(t)}{r_0}$$

 Errors from gauge effects and finite extraction radius can further contaminate NR waveforms and swamp a small memory signal.

[MF PRD'09]

Calculating the nonlinear memory from BH mergers: an analytic hybrid scheme

Recall that the nonlinear memory contributes a piece to the h_{lm} modes that depends on integrals over the gravitational-wave energy flux...

$$h_{lm}^{(\text{mem})} = \frac{32\pi}{R\sqrt{2}} \sqrt{\frac{(l-2)!}{2(l+2)!}} \int_{-\infty}^{T_R} dt \int d\Omega \, \frac{dE_{\text{gw}}}{dt d\Omega}(\Omega) Y_{lm}^*(\Omega)$$

...where this flux is itself a sum over the h^{lm} modes :

$$\frac{dE_{\rm gw}}{dtd\Omega} = \frac{R^2}{16\pi} \langle \dot{h}_+^2 + \dot{h}_\times^2 \rangle = \frac{R^2}{16\pi} \sum_{l',l'',m',m''} \langle \dot{h}_{l'm'} \dot{h}_{l''m''}^* \rangle_{-2} Y^{l'm'}{}_{-2} Y^{l'm''}{}_{+2} Y^{l'm'''}{}_{+2} Y^{l'm''''}{}_{+2} Y^{l'm''''}{}_{+2} Y^{l'm''''}{}_{+2} Y^{l'm''''}{}_{+2} Y^{l'm'''''}{}_{+2} Y^{l'm''''}{}_{+2} Y^{l'm'''''}{}_{+2} Y^{l'm'''''''''''''''$$

The nonlinear memory only appears in the m=0 modes, which can be expanded in terms of the m \neq 0 modes:

$$h_{20}^{(\text{mem})} = \frac{R}{21} \sqrt{\frac{5}{2\pi}} \int_{-\infty}^{T_R} dt \left[|\dot{h}_{22}|^2 + \frac{\sqrt{35}}{4} \left(\dot{h}_{22} \dot{h}_{32}^* + \dot{h}_{22}^* \dot{h}_{32} \right) + \text{ higher order modes} \right]$$

Plug in merger/ringdown description for h_{22} , etc...and then match to 3PN inspiral calculation of h_{20} .

Calculating the nonlinear memory from BH mergers: an analytic hybrid scheme: minimal waveform model

Only consider leading-order (2,2) contribution to the memory...

$$h_{20}^{(\text{mem})} = \frac{R}{21} \sqrt{\frac{5}{2\pi}} \int_{-\infty}^{T_R} dt \, |\dot{h}_{22}|^2$$

...and use a simple model for the inspiral and ringdown (2,2) modes...

$$h_{22}^{\rm insp} = -\frac{8}{R} \sqrt{\frac{\pi}{5}} \frac{\eta m^2}{r} e^{-2i\phi(t)} \qquad h_{22}^{\rm ring} = \frac{1}{R} \sum_{n=0}^2 A_{22n} e^{-\sigma_{22n}t} \sigma_{lmn} = i\omega_{lmn} + \tau_{lmn}^{-1}$$

...matching the multipoles and 2 derivatives at the light-ring (r/m \approx 3) to get A_{22n} .

r(t) and $\phi(t)$ evolve via the standard leading-order formulas:

$$r(t) = r_m (1 - t/\tau_{rr})^{1/4} \quad \phi(t) = \sqrt{m/r^3} t + \phi_0$$

Use NR results to determine the final mass and spin (as a function of η) that enter the quasi-normal mode (QNM) frequencies and damping times.

Get a fully analytic time-domain solution for the full memory:

$$\hat{h}_{\text{MWM}}^{\text{mem}} = \frac{8\pi M}{r(T)} H(-T) + H(T) \left\{ \frac{8\pi M}{r_m} + \frac{1}{\eta M} \sum_{n,n'=0}^{n_{\text{max}}} \frac{\sigma_{22n} \sigma_{22n'}^* A_{22n} A_{22n'}^*}{\sigma_{22n} + \sigma_{22n'}^*} \begin{bmatrix} 1 - e^{-(\sigma_{22n} + \sigma_{22n'}^*)T} \end{bmatrix} \right\}$$
[MF ApJL '09]

Calculating the nonlinear memory from BH mergers: an analytic hybrid scheme: EOB model

Only consider leading-order (2,2) contribution to the memory...

$$h_{20}^{(\text{mem})} = \frac{R}{21} \sqrt{\frac{5}{2\pi}} \int_{-\infty}^{T_R} dt \, |\dot{h}_{22}|^2$$

Or use an EOB model calibrated to NR simulations:

$$h_{22}^{\rm EOB,insp} = -\frac{8M}{R} \sqrt{\frac{\pi}{5}} (r_{\omega}\Omega)^2 e^{\mp 2i\varphi} F_{22} f_{22}^{\rm NQC}$$

[MF, ApJL, '09]

Solve EOB Hamilton's equation for particle motion, and match inspiral modes to 5 QNMs.

Calculating the nonlinear memory from BH mergers: an analytic hybrid scheme: direct NR-hybrid

Only consider leading-order (2,2) contribution to the memory...

$$h_{20}^{(\text{mem})} = \frac{R}{21} \sqrt{\frac{5}{2\pi}} \int_{-\infty}^{T_R} dt \, |\dot{h}_{22}|^2$$

Or directly use the numerical NR (2,2) mode [Caltech/Cornell/CITA]:

>~27% smaller than previous EOB calculation.

> smooth matching to 3PN order inspiral allows evaluation to arbitrarily early times.

Memory during the merger/ringdown: NR results

Pollney & Reissweg [arXiv:1004.4209] extract memory directly from NR simulation:

- causally-disconnected outer boundary
- Cauchy characteristic extraction to compute GWs at Scri+

• equal-mass, equal spins aligned or anti-aligned.

• excitation of (2,0) QNM.

• accurate 3PN inspiral memory crucial to getting correct magnitude.

Detectability of the nonlinear memory: interferometers

Detectability of the nonlinear memory: LISA

[MF, 0902.3660, ApJL, 696, 159]

Detectability of the nonlinear memory: pulsar timing

$$\Delta T_{\text{resid.}} = \int_0^{T_{\text{obs}}} dt' \, \frac{\Delta \nu(t')}{\nu_0}$$
$$\frac{\Delta \nu(t)}{\nu_0} \propto h(t)$$

• Memory burst detectable out to z \sim 0.1 for M=10⁸ M_{\odot} (observable universe for M=10¹⁰ M_{\odot}).

• But rates are low: 0.1 – 0.01 detections in 10 yrs w/ near-term Pulsar-Timing-Arrays.

Seto, MNRAS '09 Pshirkov, Baskaran, Postnov, MNRAS, '10 van Haasteren & Levin, MNRAS '10

Additional DC contributions to the waveform:

Arun et al '04 found a nonlinear, non-hereditary DC contribution to the "×" polarization at 2.5PN order; it originates from nonlinear corrections to the radiative current octupole moment V^{3m}:

$$H_{\times}^{(2.5,\text{mem})} = -\alpha \frac{6}{5} s_{\Theta}^2 c_{\Theta} \eta$$

 In addition, there are linear, zero-frequency terms that arise from the m=0 pieces of the source mass and current moments. For example:

$$I_{lm} \propto \eta M r^{l}(t) e^{-im\varphi(t)} [1 + O(2)]$$
$$I_{2\pm 2}^{(2)} \propto \eta M x e^{\mp 2i\varphi(t)} [1 + O(2)]$$
$$I_{20}^{(2)} \propto \eta^{3} M x^{6} [1 + O(2)]$$

...which leads to a 5PN, non-oscillatory correction to the waveform.

• Not clear if these effects produce a memory that continues to build up during the merger/ringdown.

[MF PRD'09]

Summary:

- 1. The linear memory arises from systems w/ unbound masses (hyperbolic orbits, explosions).
- 2. The nonlinear memory arises from the GWs produced by GWs, and is a generic feature of *all* GW sources.
- 3. For quasi-circular and elliptical inspiraling binaries, the nonlinear memory causes a slowly-growing, non-oscillatory amplitude correction to the waveform at *leading-(Newtonian)-order*.
- 4. Modeling the memory in BH mergers is difficult for most NR codes, but can be accomplished using quasi-analytic techniques.
- 5. The memory is detectable by LISA for large SNR mergers. Detection prospects are poor for the upcoming generation of ground-based detectors, but not substantially worse than other classes of sources that we routinely try to detect.
- 6. Observation of the nonlinear memory provides a means to confirm an interesting strong-field prediction of GR.