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The Ideal Fluid

The most popular EOS in relativistic fluid dynamics has been the ideal
fluid EOS, but that is changing as more realistic models are desired.
However, this is still the place to begin.

The ideal fluid EOS is for a degenerate or near-degenerate classical gas.
The pressure is simply

P = (Γ− 1)ρ0εint (1)

where Γ is a constant.
ideal gas = systems of noninteracting particles. In practice this means
viscosity is negligible. energy of particle interactions is much smaller than
the kinetic energy
Perfect gasses are ideal gasses obeying Maxwell-Boltzmann statistics.
Perfect gas = nondegenerate ideal gas
Completely degenerate gases are ideal gases but not perfect gases.
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First Law of Thermodynamics

The particles in each fluid volume are described using thermodynamics.
Their random motions and energies are averaged, and described by a few
state variables.
In a comoving reference frame O, the First law of thermodynamics is

dU = dQ− dW (2)

dW represents a change in mechanical or chemical work, and dQ
represents difference in heat energy. dQ and dW are not perfect
differentials because they depend on how work is done or heat flows.
The general work term could include

dW = PdV − JdL− σdA−E · dP−H · dM− φde−
∑
j

µjdNj (3)

We simplify and write the First Law as

dU = dQ+ PdV +
∑
j

µjdNj (4)
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The Second Law of Thermodynamics

The entropy S plays a central role in thermodynamics. It can be thought
of as a measure of disorder in a system. For an isolated system, the
entropy is the logarithm of the number of available states. Entropy is
related to heat energy

dS ≥ 1

T
dQ, (5)

however, for a reversible process

dS ≡ 1

T
dQ (reversible process only) (6)

The combined First and Second Laws of thermodynamics give the

Thermodynamic Identity

dU = T dS − P dV +
∑
j

µj dNj (7)
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Intensive and Extensive Variables

When the size of the system changes, some state variables are modified
proportionally, while others are constant. The former are extensive
variables, and the latter are intensive variables. Consider two systems, only
larger (or smaller) than the other by a factor λ

Extensive variables

Internal Energy, Ũ = λU
Volume, Ṽ = λV
Entropy, S̃ = λS

Intensive variables

Pressure, P̃ = P
Temperature, T̃ = T
Chemical Potential, µ̃ = µ
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The Fundamental Equation

We write
S(λU, λV, λNj) = λS(U, V,Nj) (8)

Differentiate (λS) w.r.t. λ

d

dλ
(λS) =

(
∂S

∂λU

)
V,Nj

d

dλ
(λU) +

(
∂S

∂λV

)
U,Nj

d

dλ
(λV )

+
∑
j

(
∂S

∂λNj

)
U,V,Nk 6=j

d

dλ
(λNj) (9)
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Fundamental Equation II

From the Thermodynamic Identity(
∂S

∂U

)
V,Nj

=
1

T
, (10)(

∂S

∂V

)
U,Nj

= −P
T
, (11)(

∂S

∂Nj

)
U,Nk 6=j

= −µj
T
. (12)

These are the thermal, mechanical, and chemical Equations of State.
Combined with the previous slide, we obtain

Fundamental Equation of Thermodynamics

U = TS + PV +
∑
j

µjNj . (13)
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Relativistic Considerations

Note that in relativity, e as the total energy also contains the mass energy.
We write

ε =
∑
j

mjnjc
2 + εint (14)

where mj is the rest mass of single particle of species j and ε is the
internal energy. ε contains the thermal energy, kinetic energy of random,
thermal motion, energies of any internal states.
µj is the relativistic chemical potential for particles of species j, and it also
contains the rest mass energy. We can express this in terms of the classical
chemical potential, µ′j as

µj = µ′j +mj . (15)
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XXX

For a system with a single particle species, we can simplify the equations
by using densities. Let λ = 1/V . Then

S̃ = s, Ṽ = 1, Ñ = n, Ũ = ε (16)

where

s is the entropy per unit volume
n is the number density
ε is the total energy per unit volume.

ε = Ũ(S̃, Ṽ , Ñ) = Ũ(s, 1, n) = Ũ(s, n). (17)

The Thermodynamic Identity becomes

dŨ = T̃ dS̃ − P̃ dṼ +
∑
j

µ̃j dÑ = T ds+
∑
j

µj dnj (18)

which becomes
dε = T ds+

∑
j

µj dnj . (19)

David Neilsen (Brigham Young University) Relativistic Fluids June 2013 11 / 29



XXX

We identify

T =

(
∂ε

∂s

)
nj

, µj =

(
∂ε

∂nj

)
s,nk 6=j

(20)

Combining with the Fundamental Equation

P = −ε+ s

(
∂ε

∂s

)
nj

+
∑
j

nj

(
∂ε

∂nj

)
s,nk 6=j

(21)
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The Ideal Fluid

The perfect gas is valid for both relativistic and non-relativistic,
non-degenerate, non-interacting particles. Consider a system of N
particles with mass m. Each particle has f degrees of freedom, which
includes translational, and any rotational or other internal degrees of
freedom. The ideal gas law is

PV = NkBT (22)

and the internal energy is

U =
f

2
NkBT. (23)

Here we only need to know that U ∝ T , so that dU/dT = U/T .
The fluid temperature T does not appear explicitly in our fluid equations,
so we cannot use the EOS in this form. We therefore rewrite this EOS in
terms of other variables.
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Ideal Fluid: Heat Capacity at Constant Volume

The heat capacities at constant volume and pressure are

CV =

(
dQ

dT

)
V

, CP =

(
dQ

dT

)
P

(24)

From the first law of thermodynamics

dQ = dU + P dV (25)

we have that

CV =

(
dQ

dT

)
V

=

(
dU

dT

)
V

(26)

As U = U(T ), this becomes simply

CV =
dU

dT
=
U

T
. (27)
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Ideal Fluid: Heat Capacity at Constant Pressure

The heat capacity at constant pressure can be calculated by differentiating
the equation of state

P dV + V dP = NkB dT (28)

and combining with the first law

CP =

(
dQ

dT

)
P

=
dU

dT
+NkB (29)

= CV +NkB (30)

We often use the specific heat capacities, cV and cP , which are the heat
capacities divided by the total mass, Nm. This gives

cP − cV =
kB
m
. (31)

The ratio of specific heat capacities is the adiabatic exponent

Γ =
cP
cV
. (32)
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The Ideal Fluid EOS

The equation of state can be written in terms of ρ0 = Nm/V as

P =
kB
m
ρ0T. (33)

Writing this in terms of adiabatic exponent gives

P = (cP − cV )ρ0T = (Γ− 1)cV ρ0T. (34)

We have

cV =
1

Nm

dU

dT
=

1

Nm

U

T
=

1

Nm/V

U/V

T
=
εint

T
, (35)

where we used ρ0 = mN/V , the internal energy ε = U/V , and the specific
internal energy density εint = ε/ρ0. Finally(!) we have

Ideal Fluid EOS

P = (Γ− 1)ρ0εint. (36)
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The Ideal Fluid and Isentropic Processes

An adiabatic process satisfies

dU = T dS − P dV (37)

If the process is also reversible, dS = 0, then dU = −P dV . Using
U = εV and the EOS P = (Γ− 1)ρ0εint, we write

d
(
(ρ0c

2 + ρ0εint)V
)

= −P dV

c2 d(ρ0V ) +
1

Γ− 1
d(PV ) = −P dV

V dP + P dV = (1− Γ)P dV. (38)

In going from the second to third lines we used

V ∝ 1

ρ0
and dV ∝ − 1

ρ2
0

dρ0, (39)

so d(ρ0V ) = 0.
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The Ideal Fluid EOS in Polytropic Form

Now change variables from V to ρ0 to obtain

dP

ρ0
=

ΓP

ρ2
0

dρ0, (40)

which integrates to
lnP = Γ ln ρ0 + lnK(S) (41)

with the integration constant lnK(S). I write explicitly K(S) to
emphasize that we assumed S = constant.

The ideal fluid EOS in polytropic form

P = K(S)ρΓ
0 . (42)

This form of the EOS is valid for reversible processes only, and cannot be
used for fluids with shocks, which are irreversible. We commonly use the
polytropic form of the EOS for generating initial data.
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Simple Model for Nuclear Matter

The simplest model for cold nuclear matter is the degenerate Fermi gas.
The Pauli Exclusion Prinicple gives rise to a pressure in the gas, as
Fermions must occupy unique states. This nonthermal pressure is
important in astrophysics because it is the primary source of pressure in
cold stars. White Dwarfs are supported by electron pressure, and neutron
stars by the Fermi pressure of the neutrons.
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Degenerate Fermi Gas

As an example of a degenerate Fermi gas, consider the matter in a cold
white dwarf. The pressure comes from the electron gas, while most of the
mass comes from the baryons. We assume:

T = 0, so that the electrons are in their lowest energy state. This is a
degenerate Fermi gas.

The proton and neutron masses are equal to the average baryon mass,
mp ' mn = mB.

The matter is electrically neutral, so ne = np.

The average number of baryons per electron is A/Z, where Z is the
atomic number and A is the mass number, the sum of neutrons and
protons for an atom. The inverse ratio is the electron fraction
Ye = Z/A, or the number of electrons per baryon.
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Degenerate Fermi Gas: Electrons

We can analyze the degenerate Fermi gas using simple ideas from
statistical mechanics. The number of free electrons states with a wave
vector between k and k + dk per unit volume is

dn =
4πk2

(2π~)3
dk (43)

At T = 0, the number density of electrons is

n = 2
4π

(2π~)3

∫ kF

0
k2 dk =

1

3π2~3
k3
F , (44)

where kF is the Fermi momentum. The initial factor of 2 accounts for the
electron spin. While electrons supply the pressure, baryons contribue the
mass. The rest mass density is

ρ0 =
mBn

Ye
. (45)
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Degenerate Fermi Gas: Electrons

The Fermi momentum can now be written

kF = ~
(

3π2ρ0

YemB

)1/3

. (46)

For a given momentum, the energy is E2 = m2c4 + k2c2. The electron
energy is

εelec(kF ) =
8π

(2π~)3

∫ kF

0
(k2c2 +m2

ec
4)1/2k2 dk (47)

This integrates to

εelec(kF ) =
m4

ec
5

8π2~3

[
x(2x2 + 1)(1 + x2)1/2 − sinh−1 x

]
, (48)

where x ≡ kF /(mec). The total energy density is

ε =
mBnc

2

Ye
+ εelec(kF ). (49)
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Degenerate Fermi Gas: Electrons

From the first law of thermodynamics, it can be shown that at T = 0

P = n
dε

dn
− ε. (50)

The pressure is then

P =
m4

ec
5

24π2~3

[
x(2x2 − 3)(1 + x2)1/2 + 3 sinh−1 x

]
. (51)

We now have parametric equations for ε(ρ0) and P (ρ0). Alternatively, the
pressure can be calculated directly using statistical mechanics

P =
1

3

∫ kF

0
kv (2dn), (52)

where the factor of 1/3 accounts for isotropy of space, and the factor 2
accounts for electron spin. To integrate this equation, write v = kc2/E.
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Degenerate Fermi Gas: Electrons

The equations for ε and P are complicated, and it is helpful to look at the
limiting cases of non-relativistic and relativistic electrons. In both cases we
will be able to write the EOS in a particularly simply form

P = KρΓ
0 (53)

called a polytrope, where K and Γ are constants.

For relativistic electrons, kF � mec, and we find

Prel = Krel ρ
4/3
0 , Krel =

~c
12π2

(
3π2Ye
mB

)4/3

(54)

For nonrelativistic electrons, kF � mec,

Pnon = Knon ρ
5/3
0 , Knon =

~2

15π2me

(
3π2Ye
mB

)5/3

. (55)

(To calculate these limiting expressions, it is may be easier to re-evaluate the

integrals in the appropriate limits, rather do a Taylor expansion of the final result.)
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Energy

The electron energy can be calculated in the same limits. We get

εelec,non =
Yeme

mB
ρ0c

2 (56)

It may seem strange that Ye appears in this expression for the electron
energy, but this is because it is written in terms of the baryon rest mass
density, ρ0. For relativistic electrons, we get the expected result

εelec,rel = 3Prel. (57)

The total energy is, again,

ε = ρ0c
2 + εelec. (58)

For non-relativistic electrons, and often even for relativistic electrons,
εelec � ρ0c

2, and we have
ε ' ρ0c

2. (59)
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Degenerate Fermi Gas: Neutrons

The simplest model for a neutron star consists of a degenerate pure
neutron gas. The analysis of the neutron gas follows the electron case
exactly, except that me → mB, we drop Ye, and ε = εn.

The limiting cases are

For relativistic neutrons

Prel = Krel ρ
4/3
0 , Krel =

~c
12π2

(
3π2

mB

)4/3

(60)

εrel = 3Prel

For nonrelativistic neutrons

Pnon = Knon ρ
5/3
0 , Knon =

~2

15π2mB

(
3π2

mB

)5/3

. (61)

εnon = ρ0c
2
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Common Equations of State in Relativistic CFD

Different approximations for the equation of state are used depending on
the system being modeled, the focus of the research, and the desired level
of complexity. The most commonly used equations of state are:

Ideal Fluid or Gamma-Law EOS. This is the classical ideal gas
EOS. It is commonly used for (relatively) diffuse gases, such as
accretion disks. This EOS is also widely used for nuclear matter
because of its simple analytical description.

Cold Nuclear EOS. Nuclear matter at T = 0 is degenerate and has a
relatively simple EOS. Many cold nuclear equations of state exist, and
have been used to study questions of neutron star structure, the
neutron star maximum mass, and constructing neutron star initial
data.
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Common Equations of State in Relativistic CFD II

Hybrid EOS. is a simple heuristic approach for simulating nuclear
matter, where a cold nuclear EOS is combined with a simple thermal
EOS

P = Pcold + Pthermal (62)

The cold nuclear EOS more accurately represents stellar matter, while
the thermal EOS allows for shock heating. The ideal fluid is often
used for the thermal EOS.

Finite-temperature nuclear EOS. These equations of state do it
all—they accurately represent nuclear matter and allow for physical
heating. They are derived from sophisticated models for nuclear
matter, and are tablulated for use in evolution codes (see
http://stellarcollapse.org). Examples include the
Lattimer-Swesty EOS, the H. Shen EOS, etc.
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