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Definition

Credit Risk: The risk arising due to the possibility of default in any
financial agreement

Credit Derivatives: Instruments that allow for hedging against credit risk

ISDA: International Swaps and Derivatives Association

Total Notional: 62 trillion as of January 2008; Down to 20 trillion by
end of November 2008.
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Examples

Credit Default Swap

Forward Credit Swap

Basket CDS, Index Swaps

Credit Swaption

Collateralized Debt Obligations (CDOs)

Tranche Swaps, Options on Tranches
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Credit Default Swaps

CDS is a contract to provide insurance against default

Valid upto maturity T or default whichever is earlier

Notional Principal: Total par value

Protection Buyer: Pays premium at regular times

1 Percentage of Principal notional
2 Spread over LIBOR

Protection Seller: Pays on Default

1 R% or (100− Z)% of notional; Z− mid market recovery rate
2 Physical Delivery

Problem: What is the fair value of the premium?
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CDS: Example 1

5 yr. CDS with notional principal 100 million entered on March 1, 2002.
Buyer pays 90 basis points annually.

No Default: Buyer pays 900, 000 on March 1 of each year from 2002 to
2006.

Default event: Credit event on September 1, 2005. Buyer hands over
100 million worth of bonds and receives 100 million and pays the
accrued payment amount (approx. 450, 000).
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CDS: Example 2

CDS allow for active management of credit risk.

Bank has several million dollars loan to Enron on Jan 1, 2001.

Buy a 100 million 5 yr. CDS on Enron for 135 bps or 1.35 million per
year.

Exchange part of exposure to a company in a totally different sector: Sell
a 5 yr. 100 million CDS on Nissan for 1.25 million.

Net Cost: 100, 000 per year.
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Model Requirements

Default Probability

1 A model for investor uncertainty.
2 A model for evolution of information over time.
3 A model definition of default event.

Model for the risk-free interest rate.

Model for recovery upon default.

Model for the risk premium that investors require for taking on the risk
of default.
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Two Approaches to Pricing

Specify model under the Real world probability measure (P).

1 Derive a martingale measure equivalent to physical measure (eg. using
Girsanov’s transformation).

2 Model calibrated on historical data.

Specify the Model in a Risk-Neutral World or under an Pricing
Martingale Measure (Q)

1 All discounted traded securities are Martingales.
2 The price of any derivative is the Expected Discounted Payoff under the

risk-neutral measure.
3 Model calibrated based on liquid instruments.
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Three Categories of Models

Structural Models (eg. Merton’s approach).

Reduced Form Models (eg. Dynamic Intensity Models).

Incomplete Information Models.
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Structural Models

Fundamental approach that seeks to price all debt instruments and credit
derivatives of a firm using information from the balance sheet and the
share price. Dates back to Black and Scholes (1973), Merton (1974).
Objectives:

1 Understand the link between debt and equity and the implications thereof
to default risk.

2 Optimizing the capital structure of the firm: Endogenous default
boundaries, strategic debt service etc.

3 Pricing Convertible and Callable Bonds.
4 Pricing portfolio products using copulas and simulations.
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Reduced-Form Models

Objective is to be able to consistently price complex credit derivatives.

Model calibrated based on liquid instruments (Dai and Singleton (2003)).

Default occurs without warning according to a stochastic intensity
process.

Default dynamics are specified exogenously directly under a pricing
measure.
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Incomplete Information Models

Combines aspects of both structural and reduced form models.

Delayed information: Information available at time t is the asset price at
time t − ε.
Information on asset prices available only at fixed times, say quarterly
(Duffie and Lando(2001)).

Uncertain information about the default barrier (Kay Giesecke (2006,
2007)).
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A Simple Reduced-form Model Based Valuation

1 Assume notional to be 1.

2 Default events, interest rates and recovery rates are independent.

3 T : Life of credit default swap in years.

4 qt : Risk neutral default probability density at time t.

5 R(t) : Recovery rate when default happens at time t.

6 u(t) : present value of payments made at the rate of 1 per year on
payment dates between 0 and t.

7 v(t) : present value of 1 received at time t.

8 w : Payments per year made by CDS buyer.

9 s : Value of w that causes the CDS to have a value of zero.

10 π : The risk neutral probability of no credit event during the life of the
swap.

11 A(t) : Accrued interest on the reference obligation at time t.
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CDS Rate

Premium Leg:

w
∫ T

0
q(t)u(t)dt + wπu(T).

Default Leg: ∫ T

0
[1− R(t) + A(t)]q(t)v(t)dt.

Credit Default Swap Spread Rate

s =

∫ T
0 [1− R(t) + A(t)]q(t)v(t)dt∫ T

0 q(t)u(t)dt + πu(T)
.
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Implying Default Probabilities from CDS Swaps

Suppose CDS spreads for maturities t1, t2, . . . , tn are s1, s2, . . . , sn

Assume default probability density q(t) satisfies

q(t) =

N∑
i=1

qi1{ti−1<t≤ti}

si =

∑i
k=1 qk

∫ tk
tk−1

[1− R(t) + Ai(t)]v(t)dt∑i
k=1 qk

∫ tk
tk−1

u(t)dt + u(ti)[1−
∑i

k=1 qk(tk − tk−1)]

δk = tk − tk−1, αk =

∫ tk

tk−1

(1− R(t))v(t)dt

βk,i =

∫ tk

tk−1

Ai(t)v(t)dt, γk =

∫ tk

tk−1

u(t)dt
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Note that si depends only on q1, . . . , qi.

So we can solve recursively for the qi:

qi =
siu(ti) +

∑i−1
k=1 qk[si(γk − u(ti)δk)− αk + βk,i]

αi − βi,i − si(γi − u(ti)δi)

The assumed structure of the default probability density depends on the
available data and is too restrictive.

Can fit a smooth curve that approximates the default probability density
estimated above.

Desirable to have a more flexible model.

Ref: Options, Futures and Other Derivatives, by John C. Hull.
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Structural Approach

Model for uncertainty: (Ω,F ,P) be a complete probability space on
which all process will be defined. W = {Wt : t ≥ 0} be a standard
Brownian motion.

V: Market value of the assets of a firm.

dVt

V
= µdt + σdWt

Vt = V0e(µ−
1
2σ

2)t+σWt .

Money-market account with constant riskless rate r.

Firm has a simple capital structure: Debt and Equity. Debt is a zero
coupon bond with face value D and maturity T . Firm is run by equity
owners.
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Corporate Liabilities as Contingent Claims

Merton’s Model (Merton 1974): Payoffs to Debt and Equity:

DT = min(D,VT) = D− (D− VT)+

ST = (VT − D)+

Think of the firm as being run by equity owners.

At maturity of the bond, equity owners pay the face value of the bond
precisely when the asset value is higher than the face value of the bond.
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Merton’s first passage model (Black and Cox 1976)

Bond has safety covenants. Bond holders take over and liquidate the firm
if asset value falls below some barrier C(t).

Default time τ is given by

τ =

{
inf{t ∈ [0,T] : Vt < C(t)} if the set is non-empty
∞ otherwise.

Payoffs at maturity

DT = D− (D− VT)+ + (VT − D)+1{τ<T}

ST = (VT − D)+1{τ≥T}
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Default Behavior

Figure: Default Behavior
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Pricing Corporate Debt

Merton’s Model (Merton 1974): Payoffs to Debt and Equity:

DT = min(D,VT) = D− (D− VT)+

ST = (VT − D)+

Equity is a call option on the firm’s assets and thus is given by the
Black-Scholes formula

C(V,D,T) = VN(d1)− De−rTN(d2)

d1 =
log(V/D) + rT + 1

2σ
2T

σ
√

T
; d2 = d1 − σ

√
T

St = C(Vt,D,T − t),

Dt = De−r(T−t) − P(Vt,D,T − t),

Put-Call Parity: C(Vt)− P(Vt) = Vt − De−r(T−t).
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Risk Neutral Probability of Default

Under the real-world probability measure P the asset price follows

Vt = V0e(µ−
1
2σ

2)t+σWt .

Under the risk-neutral probability measure Q the asset price follows

Vt = V0e(r−
1
2σ

2)t+σW̃t ,

where W̃ is a Q-Brownian motion.

PDrn = Q (VT < D)

= Q

(
W̃T <

log(D/V0)− (r − 1
2σ

2)T
σ

)

= N

(
log(D/V0)− (r − 1

2σ
2)T

σ
√

T

)
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Advantages

Treats the entire firm and its liabilities in one single consistent model.

Provides a hedge based link between debt and equity.
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Drawbacks

Asset price is not traded, not observed and parameters are unknown.

Specification of default barrier.

Spread: s(t,T) = − 1
T − t

log
B(t,T)

D(t,T)
; B(t,T) = De−r(T−t)

Short Spreads: s(t,T)→ 0 as t→ T . Motivation for including jump risk.

Company’s balance sheet is typically more complicated; bonds may have
covenants and may for example be callable etc.

How to define the default point. Often it is due to drying up of refinance
or liquidity issues.

Measuring liabilities, including off-balancing sheet commitments
accurately is difficult.
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Extensions

Discrete coupons

Stationary Leverage Ratios

Optimal capital structure

Liquidity-driven default vs Barrier-driven default

Game-theoretic approaches

Models with strategic debt service
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From Default Probabilities to Portfolios

Modeling dependences between default events and between credit
quality changes is one of the biggest challenges in credit risk models.
All mechanisms for modeling dependences are mixtures of the following
three themes:

1 Factor Models: Default probabilities are influenced by a set of common
background variables which are observable.

2 Default probabilities depend on unobservable latent variables. In the event
of a default, latent variables are updated which results in reassessment of
default probabilities of other instruments in the portfolio.

3 Direct contagion in which the actual default event causes a direct default
of another firm or a deterioration of credit quality as a consequence of the
default event.

Most models use simulations to obtain the loss distribution (eg. Copulas,
CPV, dynamic intensity models). Always desirable to have analytic
solutions (CreditRisk+, Top-Down Approach) since simulation is
expensive, especially for large portfolios.
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Copulas

Technique for creating families of multivariate distributions with given
marginals. Very popular for creating correlated defaults.
Key idea: If Y is a continuous random variable with distribution
G(x) = P(Y ≤ x), then U = G(Y) has a uniform distribution.
An n-dimensional copula function is a multivariate distribution function
C defined on the unit cube [0, 1]n with the additional requirement that all
the marginals are uniform, that is,

C(1, . . . , 1, ui, 1, . . . , 1) = ui, ui ∈ [0, 1].

Suppose we are given n univariate distribution functions F1,F2, . . . ,Fn

and a copula function C. Then

F(x) = C(F1(x1), . . .Fn(xn)),

is a n-dimensional distribution function with marginals Fi.
Sklar’s Theorem: Any joint distribution which has F1,F2, . . . ,Fn as
marginal distributions can be obtained by a suitable choice of copula
function.
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Simulations using Copulas

Suppose U1,U2, . . . ,Un are uniform random variables with distribution
function C.

Then the random variables

X1 = F−1
1 (U1),X2 = F−1

2 (U2), . . . ,Xn = F−1
n (Un)

have distribution function F.

Example: Gaussian Copula. Suppose the random variables (Y1, . . .Yn)
have a multivariate normal distribution with mean vector
µ = (µ1, . . . , µn) and variance-covariance matrix Σ = (σij)1≤i,j≤n.

Then U1 = N
(

Yi−µi
σi

)
is uniformly distributed and the Ui’s are

dependent.

Then X1 = F−1
1 (U1), . . . ,Xn = F−1

n (Un) gives us a collection of random
variables (Default Times) which are dependent and have the desired
marginals Fi.
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Disadvantages of Copulas

A quick and dirty method of simulating joint default times.

No clear connection between the asset correlations and the correlations
obtained between the default times.

Very little mathematical underpinning of this approach.
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Credit Portfolio View (CPV)

Each obligor in the portfolio belongs to one of S categories. Defaults are
explained by a macroeconomic regression model. Macroeconomic
model is calibrated by means of times series of empirical data.

Ys,t = ws,0 +

M∑
j=1

ws,jXj,t + εs,t, εs,t ∼ N(0, σ2
s ).

Xj,t = θj,0 +

t0∑
k=1

θj,kXj,t−k + ηj,t, ηj,t ∼ N(0, σ̃2
j ).

ps,t =
1

1 + exp(−Ys,t)
.

Generate a realization of ps,T for a future time T based on a realization of
Ys,T . For each obligor in sector s generate a Bernoulli random variable
(representing default) with parameter ps,t.
This gives a realization of the portfolio loss. Repeat large number of
times to obtain loss distribution.
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Reduced-Form Models

Objective is to be able to consistently price complex credit derivatives.

Model calibrated based on liquid instruments.

Default occurs without warning according to a stochastic intensity
process.

Default dynamics are specified exogenously directly under a pricing
measure, which we will denote by P.
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Dynamic Intensity Models

A Poisson process N(t) with intensity λ > 0 is a counting process
satisfying the following properties:

1 N(0) = 0
2 Process has Stationary and Independent Increments
3 P[N(h) = 1] = λh + o(h).
4 P[N(h) = 2] = o(h).
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Poisson Process Model for Default Timing

The number of arrivals in any time interval of length T is Poisson
distributed with mean λT:

P[N(T + S)− N(S) = k] = e−λT (λT)k

k!
, k = 0, 1, 2, . . . .

If default is modelled as the first arrival epoch of the process N(t), then
probability that no default happens by time t equals

p(t) = e−λt.
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Non-homogenous Poisson Process

If λ is not constant, but a function of t, then the above probability
becomes

p(t) = e−
∫ t

0 λ(u) du

The Conditional Probability that the firm survives till time s given that it
has survived till time t < s is

p(s|t) =
e−

∫ s
0 λ(u) du

e−
∫ t

0 λ(u) du
= e−

∫ s
t λ(u) du
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Doubly Stochastic Poisson Process

Market conditions do not change in a deterministic manner.

The intensity process λ is itself stochastic.

Conditional on the path of the process λ, the process N is a
non-homogenous Poisson process.

In this case, the survival probability is given by

p(t) = P[N(t) = 0]

= E[P[N(t) = 0|λ(u), 0 ≤ u ≤ t]]

= E[e−
∫ t

0 λ(u) du]

Question: What kind of intensity processes can we handle?
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Affine Process

A process X of state variables or risk factor process.

Let λ be a non-negative function.

Let Nt be the default counting process with intensity λ(Xt).

A function h is said to be affine if h(x) = a + bx.

A Markov process X is said to be an affine process if for any affine
function h we have

Et

[
e−

∫ T
t h(Xs)dsg(XT)

]
= eα(t,T)+β(t,T)·Xt
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Examples of Affine Processes

Vasicek and CIR processes (Used extensively in modeling interest-rate
derivatives)

dXt = κ(µ− Xt)dt + σdWt

dXt = κ(µ− Xt)dt + σ
√

Xt dWt

Affine Jump Diffusion process

dXt = µ(Xt)dt + σ(Xt)dWt + dJt

Jt is a pure jump process whose jump counting process Mt has a intensity
γ and jump size distribution ν.

For an affine jump diffusion, the functions α(t,T) and β(t,T) are
solutions of ordinary differential equations called the Ricatti equations.
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Pricing a Defaultable Bond

Suppose the short rate process is r(Xt). Then the price of a default-free
bond is

B(T) = E
[
e−

∫ T
0 r(Xs)ds

∣∣X0

]
Let τ = τ1 be the first arrival time of the default arrival process Nt with
intensity process λ(Xt).
Then 1{τ>T} is the indicator function that no default occurs.
The price of a zero-coupon zero-recovery risky bond is

D(T) = E
[
e−

∫ T
0 r(Xs)ds1{τ>T}

∣∣X0

]
= E

[
e−

∫ T
0 r(Xs)dsE

[
1{τ>T}

∣∣Xs, 0 ≤ s ≤ T
] ∣∣X0

]
= E

[
e−

∫ T
0 (r+λ)(Xs)ds

∣∣X0

]
p(t) = E

[
e−

∫ T
0 λ(Xs)ds

∣∣X0

]
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Pricing Formula

Suppose h(x) = (r + λ)(x) = a + bx.
X is the affine jump diffusion

dXt = µ(Xt)dt + σ(Xt)dWt + dJt

with jump transform

θ(c) =

∫
ecZν(dz).

µ(x) = µ0 + µ1x; σ(x) =
√
σ0 + σ1x.

D(T) = E
[
e−

∫ T
0 (r+λ)(Xs)ds

∣∣X0

]
= eα(0)+β(0)X0

dβ(s)
ds

= b− µ1β(s)− 1
2
σ1β(s)2; β(T) = 0.

dα(s)
ds

= a− µ0β(s)− 1
2
σ0β

2
s − γ(θ(β(s))− 1), α(T) = 0.
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Modeling Dependent Defaults in the Reduced Form
Framework: Bottom-up Approach

Suppose there are N firms in the portfolio, and S sectors in the economy.

Let s(i) be the sector to which firm i belongs.

Let Xi,Xs(i),Xc be independent Basic Affine Processes representing the
idiosyncratic risk, sectoral risk and common risk factors.

Correlated Defaults:

λi(t) = (Xi + aiXs(i) + biXc)(t)

P(τi > T) = E[e−
∫ T

0 Xi(s)ds]E[e−ai
∫ T

0 Xs(i)(s)ds]E[e−bi
∫ T

0 Xc(s)ds]

Contagion Effect: If Nc is the arrival process with intensity Xc, then the
arrival of a systematic shock can cause several firms to default
simultaneously.
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Computing the Loss Distribution

Simulate a path of the basic affine processes Xi,Xs(i),Xc.

Compute λi for each firm i.

Simulate Ei ∼ exp(1) independent realizations for each i.

If Ei <
∫ T

0 λi(s)ds, then firm i defaults.

Based on this we can compute the total portfolio loss.

Repeat large number of times to obtain the loss distribution.

Works well for small N. For large N we take the top-down approach.
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Collateralized Debt Obligations (CDOs)

CDO is an asset backed security whose underlying collateral is typically
a portfolio of corporate bonds or commercial loans

It is a way of packaging credit risk

Bank transfers the portfolio to an SPV and receives cash

SPV issues fixed/floating rate notes to investors

Notes are divided by order of seniority into tranches called equity
tranche, mezzanine tranche(s) and senior tranche

Investors receive the principal and interest from the portfolio in order of
seniority

Srikanth K Iyer (Department of Mathematics) Credit Derivatives December 28, 2015 45 / 64



Types of CDOs

Cash Flow CDOs: Collateral portfolio is not subject to active trading.
All uncertainty regarding interest and principal payments is determined
by timing of defaults

Market Value CDO: Payments based on mark-to-market returns.

Economics of CDOs
CDOs become attractive due to market imperfections arising due to regulatory
capital requirements, low valuations due to lack of liquidity, etc.
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Two classes of CDOs

Balance-sheet CDOs:
Collateralized Loan Obligations (CLO) – removes loans from the banks
balance sheet providing capital relief and improve valuations.
Synthetic balance sheet CLO – No actual transfer of ownership due to
client secrecy obligations or cost arising due to contractual restrictions.
Use credit derivatives to transfer risk to the SPV.

Arbitrage CDOs: Capture the difference in price due to lower cost of
acquiring the collateral pool in the secondary market and the value
received from management fees and sale of the CDO.
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Example

Tranche % Notional Yield SoL Rating
Senior 15 6 100 Aa2

Mezzanine-I 40 7.5 250 Baa3
Mezzanine-II 40 15 550 Ba1

Equity 5 35 - NR
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Pricing: Bottom-up approach

Model the correlated default process of individual securities comprising
the portfolio:

Copulas – Static.
Dynamic intensity models – Simulation.

Model calibrated based on market data.
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Pricing: Top-Down approach

Copula based approaches found highly inadequate.

Need models to capture the dynamics in a more meaningful way that are
also analytically tractable.

Model the index on which options are to be priced.
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Top-down Approach to Pricing CDOs

Aim: To price a Tranche of the CDO.

CDO/Portfolio has n firms.

Let X be the risk factor process.

Let λ be a non-negative function.

Let Nt be the default counting process with intensity λ(Xt).

Loss Process:

L(t) =

N(t)∑
n=1

`(n)

`(n) are independent of one another and drawn from a distribution η on
R+, that has no mass at zero.
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Top-down Approach to Pricing CDOs

Risk Factor Process Xt is Self Affecting

dXt = µ(Xt)dt + σ(Xt)dWt + δdLt.

Default Probability Density:

q(t) = E
[
e−

∫ t
0 λ(Xs)dsλ(Xt)

]
.
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Tranche Swap

A Tranche is referenced on a portfolio and is specified by

1 A lower attachment point L(low) ∈ [0, 1].
2 An upper attachment point L(up) ∈ (L(low), 1].

Default Leg: The protection seller covers tranche losses as they occur,
i.e., the increments of the tranch loss process

Ut = (Lt − nL(low))+ − (Lt − nL(up))+.

Tranche Notional: K = L(up) − L(low). Upfront Rate: G.

Premium Leg: The protection buyer pays GKn at inception and
SCk(Kn− Utk) at each date tk.
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Pricing Tranche Swap

The value of the tranche swap default leg is given by

D = E
[ ∫ T

0
e−

∫ s
0 r(Xs)ds dUs

]
.

The value of the premium leg is given by

P = GKn + S
∑
tk≥t

E
[
e−

∫ tk
0 r(Xs)ds

(
Kn− Utk

)]
.

For a fixed upfront payment rate G, the fair tranche spread S is the
solution to the equation

D = P.

For the affine self-affecting process D,P can be obtained as solutions of
system of ODEs.
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Spread Behavior for Single-Name Credit Derivatives



Spread Behavior for Multi-Name Credit Derivatives

We observed that Index and Tranche spreads are :

decreasing in the parameter κ.

increasing in the parameter δ.



Example II (Business Cycle Effects)

P2 =


0 0.2 0.8 0

0.8 0 0.2 0
0 0.2 0 0.8
0 0.8 0.2 0

 .
ν1 = 2, ν2 = 6, ν3 = 6, ν4 = 2.

[
r0(k), σ0(k),Λ0(k), c(k)

]
=


(0.08, 0.6, 0.06, 0.8), if k = 1
(0.07, 0.3, 0.03, 0.3), if k = 2
(0.07, 0.4, 0.04, 0.6), if k = 3
(0.06, 0.1, 0.01, 0.1), if k = 4.



Business Cycle Effects



Example III (Rare state effects)

P3 =



0 0.2 0.8 0 0 0
0.8 0 0.18 0 0.02 0
0 0.2 0 0.8 0 0
0 0.8 0.2 0 0 0
0 0.8 0 0 0 0.2
0 0 0 0 1 0

 .

νk = 6, k = 1, 2, 3, 4, ν5 = ν6 = 2.

Rare states:- State 5 and 6.



Example III (Contd.)

Stationary distribution

π =
[
0.219, 0.274, 0.268, 0.214, 0.021, 0.004

]
.

[
r0(k), σ0(k),Λ0(k), c(k)

]
=



(0.08, 0.6, 0.6, 0.8), if k = 1
(0.06, 0.3, 0.3, 0.3), if k = 2
(0.06, 0.4, 0.4, 0.6), if k = 3
(0.04, 0.1, 0.1, 0.1), if k = 4
(0.02, 0.7, 0.9, 0.7), if k = 5
(0.01, 0.8, 1.0, 0.8), if k = 6.



Rare state effects



Example IV (Firm Restructuring Effects)

With restructuring :

P4 =


0 0.8 0.2 0

0.4 0 0.6 0
0 0.4 0 0.6
0 0.5 0.5 0

 .
ν1 = 2, ν2 = 2, ν3 = 2, ν4 = 2.

[
r0(k), σ0(k),Λ0(k), c(k)

]
=


(0.05, 0, 0, 0.1), if k = 1
(0.05, 0, 0, 0.5), if k = 2
(0.05, 0, 0, 2.0), if k = 3
(0.05, 0, 0, 0.05), if k = 4.

Without restructuring :

P5 =

 0 0.8 0.2
0.4 0 0.6
0 1 0

 .



Effects of Firm Restructuring
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