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Introduction

Credit Contagion: Propagation of economic distress among firms.

Systemic Risk or Measures of Contagion.

Network Effect: Financial Institutions are interconnected as they hold
debt claims against each other

Liquidity Channel:

1 Hold common pool of assets and thus affected by fluctuations in market
price.

2 Financial Institutions in distress selling assets in the market depress prices
of assets thereby affecting solvency of other institutions.

Goal: To understand how these two channels interact to propagate
individual defaults to a system-wide catastrophe.

Understanding how idiosyncratic risks evolve and propagate in a tightly
coupled financial system is crucial to designing regulatory tools to
measure, monitor, mitigate and manage systemic risks.
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Approaches to Modeling Credit Contagion

One of the first attempts at modeling network dependence: Systemic risk
in financial systems, Eisenberg and Noe, Management systems (2001).
Does not take into account the liquidity channel. Many works improving
and motivated by this paper. Will present the model proposed by Chen,
Liu and Yao (2014) which incorporates this aspect in the Eisenberg-Noe
framework.
Random graph models: Robust-yet-fragile feature. Probability of
contagion is low in diversified networks, but when contagion occurs
effects can be quite widespread.
Three aspects:

1 Network structure
2 Network based measures
3 Leveraging the above to reduce systemic impact of defaults

Research focussing on contagious effect of asset price due to fire sales
leading to adverse welfare consequences such as high price volatility,
more defaults and market inefficiency.
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An Optimization view of Systemic Risk Modeling

Notations:

uv: inner product of two vectors.

1, 0: vector of all 1′s and 0′s.

For two index sets I, J and matrix M, MI,J denotes the sub-matrix
consisting of the rows and columns indexed by I and J respectively.
MI,I = MI .

u > v: ui > vi for all i. u ∧ v = (u1 ∧ v1, u2 ∧ v2, ...).
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The Eisenberg-Noe Model

Financial system consisting of n banks.

Interconnectedness of balance sheets represented via a liability matrix
L = (Lij).

Lij = liability of bank i to bank j. Lij ≥ 0 if i 6= j and Lii = 0.

bi = external liabilities of bank i. bi ≥ 0.

` = (`i) : Liability vector and P = (pij) : Matrix of relative liabilities

`i = bi +
∑
j 6=i

Lij and pij =
Lij

`i
.

Assets: α = (αi) is the value of exogenous assets invested by bank i.
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Problem Statement

All creditors of a bank are assumed to have the same seniority.

Given a realization α find a repayment vector x = (xi) such that it
complies with the limited liability principle.

Bank i must pay all its liabilities `i, if it can, and if unable to pay, declare
default and pay all that it receives from external and internal sources:

Receipts of Bank i: αi +
∑

j6=i xjpji.

Limited Liability: xi = `i ∧ (αi +
∑

j 6=i xjpji).
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Alternate Formulation as an Optimization Problem

In matrix form, the problem is to find x so that

x = ` ∧ (α+ xP) : fixed point formulation. (1)

If bi > 0 then the mapping is a contraction and hence has a unique
solution.

Linear programming formulation: Let |x| = x1 =
∑n

i=1 xi.

max
x
|x|, s.t. x(I − P) ≤ α, 0 ≤ x ≤ `. (2)

For any optimal solution, either x(I − P) ≤ α or x ≤ ` is binding.

Any solution to (2) is also a solution to (1).

Solution to (2) is one in which a minimum number of banks will default.
Banks that default in the optimal solution will default in any other
equilibrium solution - consequence of the partition algorithm.
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Reformulating the Problem

D = {i : xi < `i} : Set of defaulted banks.

N = {i : xi = `i} : Set of non-defaulted banks.

P =

(
PD PD,N

PN ,D PN

)
.

Can reformulate the problem as: Find D∗,N ∗ optimal partition that
solves

max
xD,D,N

|x| s.t.

xD = αD + xNPN ,D + xDPD, (3)

xN ≤ αN + xNPN + xDPD,N , (4)

xN = `N , xD < `D. (5)
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The Partition Algorithm

Start with setting D = φ and N = {1, 2, . . . , n}. Equivalent to setting
x = `.

This satisfies (3), (5). If (4) is satisfied, then we have a feasible solution.
Since x = ` is larger than any other solution, it is optimal.

If (4) is violated for a subset of banks, then include them in D and update
N = {1, 2, . . . , n} \ D.

xD = (αD + xNPN ,D)(ID − PD)−1, xN = `N . (6)

Since (4) is violated for the banks in D we have

`D(ID − PD) > αD + `NPN ,D

and hence it follows from (6) that `D > xD.

If (4) is satisfied, then we have a feasible solution. Else repeat the above
procedure.
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Optimality of the Solution

Algorithm keeps reducing |x| of the infeasible solutions by identifying
more and more defaulting banks. When it terminates we have a feasible
solution. Algorithm takes at most n iterations.

Suppose y is any other solution. Let x = (xD, xN ) be an intermediate
solution produced by the algorithm with partition (D,N ).

yN ≤ `N = xN .

yD ≤ αD + yNPN ,D + yDPD ≤ αD + `NPN ,D + yDPD.

yD ≤ (αD + `NPN ,D)(ID − PD)−1 = xD.

This proves that the final solution obtained by the partition algorithm is
indeed optimal. Further any bank defaulting in the optimal solution will
default in any other equilibrium.
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The Network Multiplier

The matrix P captures all the information about the network.

By shadow-price interpretation of dual variables, ei(ID∗ − PD∗)−1 and
eiPN ∗,D∗(ID∗ − PD∗)−1 represent the sensitivities of the repayment
vector x∗ with respect to αi and `j for i ∈ D∗ and j ∈ N ∗.
Network Multiplier:

(ID∗ − PD∗)−1 = ID∗ + PD∗ + P2
D∗ + . . . . (7)

Captures the network effect on the payment vector x∗D∗ .
Suppose the exogenous asset of bank i ∈ D∗ is less by 1. Then

1 The payment to bank i reduces by 1.
2 Payment to immediate creditors of i receive eiPD∗ units less.
3 Creditors to the immediate creditors of i receive eiP2

D∗ units less and so on.
4 Aggregate effect of this is given by left hand side of (7).

Srikanth K Iyer (Department of Mathematics) Credit Contagion December 18, 2015 11 / 56



An aside on computation

xD = (αD + xNPN ,D)(ID − PD)−1, xN = `N .

Typical attributes of banking systems data are D large and PD sparse
(ID − PD)−1 can be computed faster using the following iterative
technique.

Let F(y) = αD + `NPN ,D + yPD. Solution to above equation is the
fixed point for F(y).

Let y(0) = `D. For n ≥ 1 let y(n) = F(y(n−1)). The sequence {y(n)} is
decreasing and hence converges.
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On Uniqueness

If P is strictly sub-stochastic, then ID −PD and all principal sub-matrices
are invertible. Consequently there is a unique solution. May not hold if
some banks do not have external liabilities or in presence of senior debts.
Example: Suppose we have three banks {1, 2, 3}. Suppose that none of
them have exogenous assets or liabilities. Assume that their nominal
liabilities are all 1(= `i) and relative liability matrix is given by

(α1, α2, α3) = (b1, b2, b3) = (0, 0, 0). P =

 0 1 0
0 0 1
1 0 0


x = (1, 1, 1) is a solution and so is any θx for any θ ∈ (0, 1). In the first
solution no bank will default while in the others all the banks default.
Example of network interdependence causing a self-fulfilling
phenomenon. Expectation of a bad equilibrium may cause every bank to
pay partially and consequently everyone may default in the equilibrium.
The partition algorithm gives the best possible solution, that is, one in
which the least number of banks will default.
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Senior Debts

Outside debts held by depositors or other senior-debt holders have
priority over inter-bank claims when a bank files for bankruptcy.
Assume all inter-bank claims have same seniority.
Modified clearing payment equation:

xi = `i ∧ (αi +
∑
j6=i

(xj − bj)
+pji),

where x+ = max(0, x) and pji =
Lji∑

Lji
.

Change variable to x̃i = xi − bi, ˜̀i = `i − bi and α̃i = αi − bi to get

x̃i =

(`i − bi) ∧ (αi − bi +
∑
j6=i

(xj − bj)
+pji)

+

= ˜̀∧ (α̃i +
∑
j 6=i

x̃jpji)
+.
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The Full Model: Incorporating Market Liquidity

Assets Liabilities and owner’s equity
External Investments: βi External debt claims: bi

Inter-bank Loans Lki for k 6= i Interbank liabilities: Lij for j 6= i
Liquid Securities: ȳi Equity: ei

Illiquid Securities: s̄i

Bank first tries to meet its liabilities from selling external investments,
liquid securities and payments received from other banks.
Further shortfall is met by liquidating part or whole of illiquid assets.
Suppose bank i decides to sell face value si ∈ [0, s̄i] of its illiquid
holdings, then it receives siq where

q = Q

 n∑
j=1

sj

 ,

where Q is the inverse demand function and
∑

j sj is the aggregate
liquidation amount from the banking system.
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The inverse demand function

Assumption: Q(0) = 1, Q(s) ≥ 0, and Q is decreasing.

γ := −Q
′
(s)

Q(s)
.

γ is the relative price change at the supply level s in response to the
increment in the liquidation amount. Large γ implies a high degree of
illiquidity.

αi = βi + ȳi.

Assumption: No short sale is allowed. Bank allowed to sell illiquid assets
until all holdings are exhausted after it has sold all its liquid holdings.
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Market Equilibrium Condition

xi = `i ∧ (αi +
∑
j6=i

xjpji + siq). (8)

yi = αi ∧ (`i −
∑
j6=i

xjpji)
+. (9)

si = s̄i ∧

{
[`i − (yi +

∑
j 6=i xjpji)]

+

q

}
(10)

q = Q(|s|). (11)

Remark: Capital Adequacy requirements are not incorporated. These could
put further pressure on the price resulting in additional spillover effects.
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Multiple Equilibria due to Illiquidity

Example: Consider two banks 1, 2 with s̄ = (1, 2). External debt
b1 = b2 = 1. Q(s) = e−s. α = (0.1, 0.9).

No network effect. Interbank liabilities are zero.

Both banks will have to liquidate part or all of their illiquid holdings to
pay off debts.

s1 = 1 ∧ 0.9
q
, s2 = 2 ∧ 0.1

q
, q = e−(s1+s2),

where 0.9 and 0.1 are the respective shortfalls for the two banks.
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No Interior Solution

Total shortfall is 0.9 + 0.1 = 1.

Suppose both s1 < 1 and s2 < 2. Then

s1q = 0.9, s2q = 0.1,

⇒ (s1 + s2)q = (s1 + s2)e−(s1+s2) = 1,

leading to a contradiction because

max
0≤s1≤1,0≤s2≤2

(s1 + s2)e−(s1+s2) < 1.

Therefore either s1 = 1 or s2 = 1 must hold in any equilibrium. Total
shortfall exceeds the maximum liquidity that market can provide.
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Two Solutions

s = (1, 0.4092) is a solution with q = 0.2443 and x1 = 0.3443 < 1 and
x2 = 1. So bank 1 defaults whereas bank 2 does not.

s = (1, 2) is a solution with q = 0.0498 and x1 = 0.1498 < 1 and
x2 = 0.9996 < 1. So both banks default.

Order of liquidation is important.

If we liquidate bank 1 first, i.e., set s1 = 1. Then we need to find s2 such
that s2 exp(−(1 + s2) = 0.1 and this yields s2 = 0.4092.

If we set s2 = 2, then there is no s1 ∈ [0, 1] for which
s1 exp(−(s1 + 2)) = 0.9. So system will end in second equilibrium.
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Market Clearing Vector

The partition algorithm along with the iterative procedure for finding a
fixed point can be adapted to find an optimal market clearing vector.

The algorithm represents an approximation to describe the process of fire
sales.

In each iteration, the set of defaulting banks is augmented. The asset
price falls as a result of more banks selling their illiquid assets.

For those banks that enter the default set at an earlier stage, the
feasibility condition is checked at a higher price. But algorithm does not
to take this fact into account of locking in a higher price. So in this sense
perhaps yields a sub-optimal solution. But a solution that takes that into
account will satisfy a more complex set of equations.

A bank that fails in the solution of this algorithm will also fail in any
other equilibrium.
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The Liquidity Amplifier

Suppose (D∗,N ∗) is the optimal partition obtained from the algorithm
and (x∗, y∗, s∗, q∗) be the optimal solution.

Let L∗ := {i ∈ N ∗ : s∗i > 0}. This is the set of non-defaulted banks that
had to dip into their illiquid assets to meet their liabilities.

∂q∗

∂αi
=

γei(ID∗ − PD∗)−1PD∗,L∗1
1− γ(|s∗L∗ |+ s̄D∗(ID∗ − PD∗)−1PD∗,L∗1)

, i ∈ D∗,

LA :=
∂q∗

∂αi
=

γ

1− γ(|s∗L∗ |+ s̄D∗(ID∗ − PD∗)−1PD∗,L∗1)
, i ∈ L∗,

where γ = −Q
′
(s)

Q(s) .
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The First Order Liquidity Effect

Suppose for some i ∈ L∗, αi is reduced by 1. Thus bank i will have to
sell an additional 1/q amount at unit price q to make up for this shortfall.

This will reduce the price by

Q(·)− Q(·+ 1
q

) ≈ −Q
′
(·)

Q(·)
= γ.
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Second Order Liquidity Effect

Price Effect on banks in L∗: Since banks in L∗ sell s∗L∗ the impact of the
above sale reduces the amount they receive by γs∗L∗ .

Price effect on banks in D∗: Banks in D∗ sell off all their assets to meet
their liabilities. When price reduces by γ, the income of these banks
shrink by γs̄∗D∗ . This effect cascades via the network and its final effect
is captured by the network multiplier and results in a reduction of
γs̄∗D∗(ID∗ − PD∗)−1PD∗,L∗1). So the second order effect from the two
channels to banks in group L∗ aggregates to

(γs∗L∗ + γs̄∗D∗(ID∗ − PD∗)−1PD∗,L∗)1,

causing a further price reduction of γ times the above quantity.
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Higher Order Liquidity Effects

Continuing this way we get a geometric series

γ + γ[γ(|s∗L∗ |+ s̄∗D∗(ID∗ − PD∗)−1PD∗,L∗1)]+

γ[γ2(|s∗L∗ |+ s̄∗D∗(ID∗ − PD∗)−1PD∗,L∗1)2] + . . .

which is precisely the expression given by

LA :=
∂q∗

∂αi
=

γ

1− γ(|s∗L∗ |+ s̄D∗(ID∗ − PD∗)−1PD∗,L∗1)
, i ∈ L∗.
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Intervention Policies

Two Policies will be considered
1 Direct purchase of illiquid asset by an external player, eg. the government
2 Capital injection

Federal Reserve purchased nearly $1.25 trillion of mortgage-backed
securities from August 2007 to August 2009.

US Treasury injected $205 billion in the form of preferred stock to the
financial industry through a capital purchase program.

Suppose the government injects ∆ units of cash to one of the banks to
mitigate its systematic impact.

In direct asset purchase, cash is paid in exchange for some amount of
illiquid securities. So assets of the bank increases to αi + ∆ and its
illiquid assets decreases by ∆

q∗ .

In case of capital injection, liquid holdings increase to αi + ∆.
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Policy Effectiveness

PEI
policy := lim

∆→0

q∗policy(∆)− q∗

∆
PEII

policy := lim
∆→0

x∗policy(∆)− x∗

∆

PEI
DAP = LA, PEII

DAP = LA · s̄D∗(ID∗ − PD∗)−1.

PEI
Capital = LA · ei(ID∗ − PD∗)−1PD∗,L∗1,

PEII
Capital = ei(ID∗ − PD∗)−1 + PEI

Capital · s̄D∗(ID∗ − PD∗)−1.
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Policy Effectiveness

It can be shown that ei(ID∗ − PD∗)−1PD∗,L∗1 < 1 and hence
PEI

DAP > PEI
Capital. The effect of the direct asset purchase on the

market price exceeds that due to capital injection.
However PEII

Capital can exceed PEII
DAP if the network multiplier

ei(ID∗ − PD∗)−1 is sufficiently large.
The asset purchase program focuses mainly on the liquidity channel
whereas the capital injection program mainly uses the network channel.
The direct asset purchase program does not change the asset value of the
bank and hence does not alter the probability that it will default. The
capital injection program increases the asset value of the bank by ∆ and
in a highly leveraged banking system will impact the total payments in
the equilibrium.
The liquidity ratio under the direct asset purchase program is larger than
that under capital injection.

αi + ∆

TAV + ∆
<
αi + ∆

TAV
.
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Numerical Results and Some Questions

Three types of networks are considered, viz., complete, ring-type and
core-periphery.

Market or liquidity channel presents a far greater threat to contagion as
compared to the network effect, especially since the

Need to extend the model to capture incomplete information. Though
interbank liabilities are relatively small compared to external liabilities,
the interbank lending mechanism is not static. It can freeze in the face of
uncertainties arising from incomplete information and heightened
counter-party risk, which in turn can affect the liquidity in the market.

Need to build a dynamic model to endogenize the decision process of
network formation and illiquid asset holdings. Enable monitoring the
accumulation of systemic risk within the system.
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Statistical Models

Seek to understand behavior of financial networks having certain
statistical properties.
Results are statements about networks belonging to a particular class and
not any particular network as network links may keep changing but
overall statistical properties are retained.
Interested in phase transition behavior, identifying critical nodes etc.
One of the early theoretical works in this direction was the work of Gai
and Kapadia titled “Contagion in financial networks”, Proc. of the Royal
Soc., 2010 and a subsequent paper in 2011. The aggregate exposure is
distributed equally among its counterparties.
Recent work by Amini, Cont and Minca titled “Resilience to contagion
in financial networks”, Mathematical Finance, 2013.
An earlier work by Cont, Moussa, and Santos titled “Network Structure
and Systemic Risk in Banking Systems”, 2010, derived various network
based measures to study the problem of contagion and applied it to the
Brazilian financial network.
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Contagion in Financial Networks

Will consider a simple random graph model to demonstrate the presence
of a phase transition behavior in financial networks.

Random networks have been used extensively to model transmission of
shocks, epidemics, rumors, information flow etc.

Random network theory provide a parsimonious way of modeling a
complex network.

Simulations show that the insights gained from the theoretical analysis
hold under liquidity shock due to fire sales etc.

Gai and Kapadia (2010) show a surprising double phase transition that
has not been reported in any other application of random network theory.
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Model Description

Financial network is modeled as a weighted directed graph, the weights
and direction representing interbank liabilities.

Each node of the network represents a financial institution.

Each node has an in-degree which is the number of links pointing into
the node and an out-degree. Incoming links represent interbank
assets/exposures. Outgoing links correspond to inter-bank liabilities.

αi: Interbank assets of bank i. s̄i: Illiquid external assets.

`i: Interbank liabilities. Di: Customer deposits.

Assumption: Total inter-bank asset position is distributed uniformly
among all the incoming links.
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Default Criterion

Let φ be the fraction of banks with obligations to bank i that have
defaulted.

Let q be the resale price of illiquid assets.

Condition for bank i to be solvent is

(1− φ)αi + qs̄i − `i − Di > 0,

This can be rewritten as

φ <
Ki − (1− q)s̄i

αi
,

where Ki = αi + s̄i − `i − Di is the bank’s capital buffer (difference
between book value of assets and liabilities.
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Contagion Dynamics

Suppose initially all banks are solvent. Then suppose a bank fails due to
a purely idiosyncratic shock or as a result of an aggregate shock that has
particularly adverse effect for this bank.
A bank is said to be vulnerable if it will default even if one of its
neighbors default.
Our networks will locally tree-like, that is, there are no short cycles.
Hence contagion spreads via vulnerable banks.
Let ji be the in-degree of bank i. The condition for a bank to be
vulnerable is

Ki − (1− q)s̄i

αi
<

1
ji
.

So if we treat the capital buffer as a random variable, the probability that
a bank with in-degree j is vulnerable is

vj = P
(

Ki − (1− q)s̄i

αi
<

1
j

)
, ∀ j ≥ 1.
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Generating function for a Vulnerable Node

Let pjk be the probability that a node in the network has in-degree j and
out-degree k.
Since every in-coming link is an out-going link for some other node, the
average degree z is given by

z =
∑
j,k

j pjk =
∑
j,k

k pjk.

G0(y) be the generating function for the number of links leaving a
randomly chosen vulnerable node.

G0(y) =
∑

k

P(bank is vulnerable and has k outgoing links)yk

=
∑

jk

P(bank vulnerable, has j incoming, k outgoing links)yk

=
∑
j,k

vj pjk yk.

G0(1) is the fraction of banks that are vulnerable.
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Generating function for Second and Subsequent
Generations

Interest is in the propagation of shocks from one bank to another.

We need the degree distribution of the number of links leaving a
vulnerable bank reached by following a randomly chosen link going out
of a vulnerable bank.

Size Biasing: A bank with j incoming links is j times as likely to be
chosen as a bank with 1 incoming link. So the generating function for
the second and subsequent generations is given by

G1(y) =
∑

jk

vj rjk yk =

∑
j,k vj j pjk yk∑

j,k j pjk

G1(1) is the probability that the bank reached by following the random
link is vulnerable.
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Vulnerable Cluster

Start with a vulnerable bank. Follow a randomly chosen outgoing link to
its end and from there to every other vulnerable bank that can be reached
from that end.

This set of banks will be called the vulnerable cluster at the end of the
randomly chosen link of the vulnerable bank.

We need the generating function for the size of the vulnerable cluster.
This will help us characterize how default spreads.
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Generating Function of a Second Generation Vulnerable
Cluster

When we follow a random link out of a vulnerable bank the bank at the
end of this link may

1 be safe.
2 have one, two, ... outgoing links to further clusters.

Assume that the network is infinite and is tree-like and does not contain
any closed loops or cycles.
Let Z be the size of the vulnerable cluster. Then the generating function
of Z is

H1(y) = E[yZ] = P(bank is safe) +
∑

jk

vj rjkE[y1+Z1+···+Zk ],

where Z1,Z2, . . . are i.i.d. copies of Z. Hence

H1(y) = 1− G1(1) + y
∑

jk

vj rjk(H1(y))k.

= 1− G1(1) + yG1(H1(y)).
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Generating Function of a Vulnerable Cluster

The Generating function H0 of the size of a vulnerable cluster to which a
randomly chosen bank belongs to, is given by

H0(y) = P(bank is safe) + y
∑

jk

vj pjk(H1(y))k

= 1− G0(1) + yG0(H1(y))

In principle, we can compute the complete distribution of the size of a
vulnerable cluster from the above equation for H0 and H1.

P(size of cluster is m) =
H(m)

0 (0)

m!
.
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Phase Transitions

Average Size of the Vulnerable Cluster S is given by

S = H′0(1)

= G0(H1(1)) + G′0(H1(1))H′1(1).

H′1(1) = G1(H1(1)) + G′1(H1(1))H′1(1).

Since H1(1) = 1 we get

H′1(1) =
G1(1)

1− G′1(1)
.

S = G0(1) +
G′0(1)G1(1)

1− G′1(1)
.

Phase Transition at G′1(1) = 1.∑
jk

j k vj pjk = z.
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Implications of the Phase Transitions

G′1(1) is the average out-degree of a vulnerable first neighbor.

If G′1(1) < 1 then all vulnerable clusters are small and contagion dies out
quickly.

If G′1(1) > 1 then a giant vulnerable cluster whose size scales linearly
with the size of the whole network exists.∑

jk

j k vj pjk = z.

As the average degree z increases, more of the mass pjk shifts towards
higher values of j, k. This increases the jk term on the left, but vj is lower
for higher j.

So above equation will either have two solutions or none at all!
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Double Phase Transition

In case there are two solutions there is a window of values of z in which
contagion occurs.

For values of z below the lower phase transition, the jkpjk terms are small.
That is the network is insufficiently connected for contagion to spread.

For values of z above the upper end point of the window, vj is too small
and so contagion cannot spread as there are too many safe banks.
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Numerical Simulation

Edge between any two pair of nodes present in a particular direction
present with probability p. Degree distribution then is approximately
Poisson.

Network of 1000 nodes with identical capital buffer and asset positons.

Draw 1000 realizations of the network for each value of z. Assets of one
bank wiped out for each draw. Failed bank and all subsequent failures
default on all liabilities. Process continues until no new banks are pushed
into default.

Contagion: Over 5% of banks default.

Extent of Contagion: The fraction of banks that default conditional on
Contagion.
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Source: Gai and Kapadia (2010).



Network Structure and Systemic Risk in Banking
Systems

R. Cont, A, Moussa, E. Santos, 2011.

Quantitative methodology for analyzing contagion and systemic risk.

Apply it to the Brazilian Financial system.
Three aspects:

1 Network Structure
2 Network-based measures
3 Leveraging the above to reduce systemic impact of defaults.
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Network Structure and Representation

Complex heterogenous network structure: the distribution of in-degrees,
out-degrees and mutual exposures are heavy tailed, exhibiting Pareto
tails with exponents between 2 and 3.

Qualitatively different from a small world network: many nodes with
arbitrarily small clustering coefficient.

The clustering coefficient of a node is the ratio of the number of links in
the graph between the neighbors of that node to the total possible
number of links.

For a complete graph, the clustering coefficient is 1, whereas for the star
graph, the clustering coefficient of the internal node is 0.
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Network Structure Representation

Network: I = (V,E, c), where
1 V is the set of financial institutions, |V| = n.
2 E is a matrix of bilateral exposures; Eij is the exposure of node i to node j,

i.e. the value of all liabilities of firm j to firm i or maximal short-term loss
of i if j defaults.

3 c = (ci, i ∈ V) where ci is the capital of firm i, or capacity to absorb losses.

Interbank Assets: Ai =
∑

j Eij.

Interbank Liabilities: Li =
∑

j Eji.
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Network Structure Statistics

Statistics In(Out)-Degree Exposure (Relative) Distance
Mean 8 (8) 0.08 (0.05) 2.35

Std. Dev. 11 (9) 0.54 (0.21) 0.78
5% quantile 0 (0) 0 (0) 1
95% quantile 31 (27) 0.35 (0.18) 4

Max. 62 (44) 16 (6) 6

Nodes with widely differing connectivity

Most financial institutions hold more capital than exposures. Some have
exposures more than 100 times their capital.

More connected institutions have larger exposures.

Clustering coefficient and Small Worlds: Financial institutions with few
connections (small degree) have counterparties that have high clustering
coefficient.

Srikanth K Iyer (Department of Mathematics) Credit Contagion December 18, 2015 48 / 56



Market Shock Model

Initial Capital: c(j), j ∈ V .

Bank j hit by a market shock εj, j ∈ V .

{εj, j ∈ V} is a correlated collection of negative random variables.

This leads to a Loss Cascade:

c0(j) = (c(j) + εj)+.

ck+1(j) = max(c0(j)−
∑

i:ck(i)=0

(1− Ri)Eji, 0)
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Model for Correlated Market Shocks

System subject to correlated market shocks

εi = σiF−1 ◦ G(ρS + (1− ρ)Zi)

F cdf of a negative r.v., G is cdf of a standard Cauchy and σi is calibrated
to the p.d. of firm i:

P [εi < −ci] = F
(
− ci

σi

)
.

σi = − c(i)
F−1(pi)

Fundamental Defaults vs Defaults by Contagion

D(c,E) = {j : c0(j) = 0} ∪ {j : c0(j) > 0, cn−1(j) = 0}
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Measures of Contagion

Default Impact:

DI(i, c,E) =
∑
j∈V

(c0(j)− cn−1(j)) , given c0(i) = 0.

Contagion Index: How much would system suffer if i fails

CI(i, c,E) = E
[
DI(i, c0,E)

∣∣c0(i) = 0
]

Default Cascade: How many would fail if i does? Expected number of
defaults due to contagion conditional on failure of firm i: κ(i, c,E).

κ(i, c,E) = E

 n∑
j=1

1{c(j)+εj>0,cn−1(j)=0}|c(i) + εi < 0
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Some Conclusions

Most institutions do not generate other defaults. However some
institutions can trigger up to 4 defaults which is about 3% of the financial
system.

A contagion index that significantly exceeds the size of an institution’s
inter-bank liability is a signature of contagion. Contagion index can be
up to forty times the size of inter-bank liability.
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What makes an Institution Systemically Important: The
Role of Balance Sheet

Regression of the logarithm of the Contagion Index on the logarithm of
the inter-bank liability size reveals the following.

Interbank liabilities explain 96% of the variability of the Contagion
Index. So size of balance sheet does matter.

However size does not entirely explain the variations in the Contagion
Index.

Ranking of institutions according to their liabilities does not match their
rankings according to their systemic impact.
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What makes an Institution Systemically Important: The
Role of Network Structure

Ranking CI Creditors Liability
1 20.77 8 23.27
2 4.95 32 1.57
3 4.58 13 2.96
4 3.85 14 1.95
5 3.40 21 0.97

Median 0.10 5 0.07
90% Quantile 2.45 21 1.11

The five most systemic nodes are not very connected, but their creditors
are heavily connected and many of their cross exposures are are
contagious.
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Determinants of High Contagion Index

Counterparty Susceptibility

CS(i) = max
j:Eji>0

Eji

c(j)

Local Network Frailty

f (i) = max
j:Eji>0

Eji

c(j)
L(j)

Institutions with a high Contagion Index tend to have large interbank
liability, local network frailty and counterparty susceptibility.
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Does One Size Fit All?

Consider two capital requirement policies:

1 Minimum capital-to-exposure ratio:

c̄(i) = max(c(i), θA(i))

2 Cap on susceptibility:

c̄(i) = max(c(i),
maxj 6=i Eij

γ
)

Apply the above policies to all institutions vs apply to the creditors of the
5% most systemic institutions.

Targeted Capital Requirements achieve the same reduction in systemic
risk, with same amount of capital, differently distributed across the
network.
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