Numerical Relativity Workshop at ICTS 4 July 2013

Neutrino Astronomy and its Synergies with GW Astronomy

Basudeb Dasgupta ICTP, Trieste

The Neutrino Sky

Anatomy of IceCube

The IceCube Neutrino Observatory

(not to scale)

Two Types of Events

Good Directionality Mostly muon neutrinos

Good Calorimetry Mostly electron nus + all NC

• Tae has a basiety as festiges, the sender pendinte entregenergy

Physics Universe of IceCube

		Lostopic flace of Zenith 0 0 0 0 0 Zenith 2 cristin 0			
Energy	~MeV	GeV - TeV	TeV - PeV	PeV - EeV	>EeV
Sources	Supernova	Atmospheric v DM GRB	Atm Prompt GRB AGN Galaxies Clusters	GZK GRB AGN Galaxies Clusters	?
Signature	Increase in noise rate	Tracks (Up) Cascades	Tracks (Down) Cascades		

MeV Neutrino Astronomy

Timing and GW Coincidence

SN neutrino-curve is an excellent probe of the bounce time. This can be used to great advantage for coincidence measurement with gravitational wave detectors

Pagliaroni, Vissani, Coccia and Fulgione, arXiv:0903:1191 (PRL) Halzen and Raffelt, arXiv:0908.2317 (PRD)

QCD Burst

Sagert, Fischer, Hempel, Pagliara, Schaffner-Bielich, Mezzacappa, Thielemann, and Liebendoerfer, arXiv:0809.4225 (PRL)

Dasgupta, Fischer, Horiuchi, Liebendorfer, Mirizzi, Sagert and Schaffner-Bielich arXiv:0912.2568 (PRD)

Probing Dense Matter

⁴ July 2013, NR Workshop at ICTS, Basudeb Dasgupta

GeV - PeV Neutrino Astronomy

GRB Tomography

What can we say if we see only 1 or 2 events?

Razzaque, Meszaros, Waxman (many papers) Bartos, Dasgupta, Marka, arXiv:1206.0764 (PRD)

TeV - PeV Neutrino Astronomy

Two Events

Results (2.8 σ)

Appearance of $\sim 1~\text{PeV}$ neutrinos at lower energy threshold

 $\sim 1050 \; {
m TeV}$

~ 1150 TeV arXiv:1304.5356

Run119316-Event36556705 Jan 3rd 2012 NPE 9.628x10⁴ Number of Optical Sensors 312 Run118545-Event63733662 August 9th 2011 NPE 6.9928x10⁴ Number of Optical Sensors 354

What are we seeing?

We have two cascade events with ~1.04 PeV and ~1.14 PeV

Demystifying the PeV Cascades in IceCube: Less (Energy) is More (Events)

Ranjan Laha,^{1,2} John F. Beacom,^{1,2,3} Basudeb Dasgupta,⁴ Shunsaku Horiuchi,⁵ and Kohta Murase⁶

¹Center for Cosmology and AstroParticle Physics (CCAPP), Ohio State University, Columbus, OH 43210

²Department of Physics, Ohio State University, Columbus, OH 43210

³Department of Astronomy, Ohio State University, Columbus, OH 43210

⁴Abdus Salam International Center for Theoretical Physics, 34014 Trieste, Italy

⁵Center for Cosmology, Department of Physics and Astronomy, University of California, Irvine, CA 92697

⁶Hubble Fellow, School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540

laha.1@osu.edu, beacom.7@osu.edu, bdasgupta@ictp.it, s.horiuchi@uci.edu, murase@ias.edu

(Dated: June 2, 2013)

The IceCube neutrino telescope recently detected two cascade events with energies near 1 PeV. Without invoking new physics in the neutrino sector, we analyze the source of these neutrinos. We show that atmospheric conventional neutrinos and cosmogenic neutrinos (those produced in the propagation of ultra-high-energy cosmic rays) are strongly disfavored. For atmospheric prompt neutrinos or a diffuse background of neutrinos produced in astrophysical objects, the situation is less clear. We show that there are tensions with observed data, but that the details depend on the least-known aspects of the IceCube analysis. Likely, prompt neutrinos are disfavored and astrophysical neutrinos are plausible. We demonstrate that the fastest way to reveal the origin of the observed PeV neutrinos is to search for neutrino cascades in the range below 1 PeV, for which dedicated analyses with high sensitivity have yet to appear, and where many more events could be found.

arXiv:1306.2309 (submitted to PRD)

What are the relevant fluxes?

⁴ July 2013, NR Workshop at ICTS, Basudeb Dasgupta

Atmospheric Neutrinos

Prompt Atmospheric Neutrinos

Cosmogenic Neutrinos

Theory vs Experiment

How many events were expected?

TABLE I. Expected numbers of cascade events in the two energy bins, obtained by integrating the curves in the right panel (the realistic approach using the effective area) of Fig. 3. These numbers are typically a factor of ~ 10 below those for the left panel (the ideal case or "theorist's approach").

Possible Source	N(1 - 2 PeV)	N(2-10 PeV)
Atm. Conv. [48]	0.0002	0.0002
Cosmogenic–Takami [36]	0.007	0.07
Cosmogenic–Ahlers [35]	0.001	0.03
Atm. Prompt [49]	0.01	0.01
Astrophysical E^{-2}	0.1	0.5
Astrophysical $E^{-2.5}$	0.04	0.13
Astrophysical E^{-3}	0.02	0.03

What the spectrum must be

⁴ July 2013, NR Workshop at ICTS, Basudeb Dasgupta

Predictions at lower energies

TABLE II. Expected numbers of track and cascade events (ideal case or "theorist's approach"), obtained by integrating the curves in each panel of Fig. 5 over the range 0.1–1 PeV.

Possible Source	N_{track}	N_{casc}
Atm. Conv. [45]	11	1
Atm. Prompt [46]	3	4
Astrophysical E^{-2}	11	19
Astrophysical $E^{-2.5}$	10	20
Astrophysical E^{-3}	9	20

More data for contained events

Results of Contained Vertex Event Search (4.3σ)

Deposited EM-Equivalent Energy in Detector (TeV)

28 events (7 with visible muons, 21 without) on background of $10.6^{+4.5}_{-3.9}$ (12.1 \pm 3.4 with reference charm model)

IceCube Talk at IPA

Energy Spectrum

- Harder than any expected atmospheric background
- Merges well into expected backgrounds at low energies
- Potential cutoff at 1.6^{+1.5}_{-0.4} PeV

IceCube Talk at IPA

Directionality

- Compatible with Isotropic
 Flux
- Events from
 North absorbed
 in Earth
- Minor excess in south compared to isotropic, but not significant

IceCube Talk at IPA

What the astro sources could be

Source	Mechanism	Comments	
AGN Jets	Proton-gamma	Peaks at 10-1000 PeV.	
AGN Core	Proton-gamma	ОК	
GRB prompt	Proton-gamma	OK, but violates IC limit	
GRB afterglow	Proton-gamma	Peaks at 10-1000 PeV	
Starburst Galaxies	Proton-Proton	OK. Cutoff possible	
Galaxy Clusters	Proton-Proton	OK. Break possible	

Partners in Crime

Ranjan Laha

Shunsaku Horiuchi

John F. Beacom

Kenny Ng

Kohta Murase