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1. Introduction

Hyperbolic geometry was created in the first half of the nineteenth century in order to prove

the dependence of Euclid’s fifth postulate on the first four. Euclid wrote his famous Elements

around 300 B. C. In this thirteen volume work he brilliantly organized and presented the

fundamental propositions of Greek geometry and number theory. In the first book of elements

Euclid develops plane geometry starting with basic geometric terms, five “common notions”

concerning with magnitudes and five postulates. In modern language those can be stated as

follows.

Let X be a set. L and C are sets of certain subsets of X. We call the elements of X as

points, the elements of L as lines and the elements of C as circles. Then E = (X,L, C) satisfies
the following postulates.

(1) For all A,B ∈ X,A 6= B there exists a unique l ∈ L such that A ∈ l, B ∈ l.

(2) Given a l ∈ L there exists at least three points which do not belong to l.

(3) For all l,m ∈ L, we have either l ∩ m = a single point or, l ∩ m = φ. If l ∩ m = φ,

then l and m are called parallel lines.

(4) For a ordered pair (A,B) of points, there exists a unique C ∈ C with center A and

passing through B.

(5) There is an intuitive notion of angle between two lines. Euclid’s classical fourth

postulate says that all right angles are equal.

(6) (Modern version of Euclid’s classical Fifth postulate) For all l ∈ L and P ∈ X such

that P does not belong to l, there exists a unique m ∈ L such that P ∈ m and l is

parallel to m.

In other words Euclid’s classical fifth postulate can be stated as follows:

Through a point outside a given line there is one and only one line parallel to the given

line.

For two thousand years mathematicians attempted to establish Euclid’s fifth postulate

from the other simple postulates. In each case one reduced the proof of the fifth postulate

to the conjunction of the other postulates with an additional natural postulate which proved

to be equivalent to the fifth. As an incidence how much people tried it we note the reference
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of Göttingen Mathematician Kästner (1719–1800) who directed a thesis of student Klügel

(1739–1812) which considered approximately thirty proof attempts for the parallel postulate!

Decisive progress came in the 19th century, when mathematicians abandoned the effort

to find a contradiction in the denial of the fifth postulate and instead workout carefully and

completely the consequence of such a denial. It was found that a coherent theory arises if

instead one assumes that:

Given a line and a point not on it, there is more than one line going through the given point

that is parallel to the given line.

Unusual consequences of this change came to be recognized as fundamental and surprising

properties of non-Euclidean geometry: geodesics were not straight lines, but curved; the sum

of the angles of a triangle were not equal to π and so forth.

History has associated five names with this enterprise, those of three professionals and two

amateurs. The amateurs were jurist Schweikart and his nephew Taurins. The professionals

were Carl Freidrich Gauss (1777–1855), Nikolai Lobachevskii (1793–1856) and Johann Bolyai

(1802-1860).

Gauss began his meditation on the theory of parallels about 1792. After trying to prove

the fifth postulate over twenty years, Gauss discovered that the denial of the fifth postulate

leads to a new strange geometry which he called ‘non-Euclidean geometry’. After investing

its properties for over ten years and discovering no inconsistencies, Gauss was fully convinced

of its consistency. In a letter to F. A. Taurinus in 1824, he wrote:

“The assumption that the sum of three angles of a triangle is smaller that 180 degrees leads

to a geometry which is quiet different from our (Euclidean) geometry, but which is in itself

completely consistence. ”

Gauss’s assumption that the sum of the angles of a triangle is less than 180 degrees is

equivalent to the denial of Euclid’s fifth postulate. Unfortunately, Gauss never published his

results on non-Euclidean geometry.

Only a few years passed before non-Euclidean geometry was rediscovered independently by

Nikolai Lobachevsky and J. Bolyai. Lobachevsky published the first account of non-Euclidean

geometry in 1829 in a paper entitled “on the principles of geometry”. A few years later, in

1932, Bolyai published an independent account of non-Euclidean geometry in a paper entitled

“the absolute science in space”.

Gauss, Bolyai and Lobachevskii developed non-Euclidean geometry axiomatically on a syn-

thetic basis. They didn’t prove the consistency of their geometries. The basis necessary for an

analytic study of hyperbolic non-Euclidean geometry was laid by Leonhard Euler, Gaspard

Monge, and Gauss in their investigation of curved surfaces. Later on many people tried to

find an analytic model of hyperbolic geometry where these five postulates can be proved and

mathematicians found several of them. We shall consider in this exposition two of the most

famous analytic models of the hyperbolic geometry which are known as Poincaré models in

the name of its inventor, the one and only H. Poincaré.
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Models serve primarily a logical purpose. They are useful when exploring the geometric

properties of the hyperbolic plane. The same object may ‘look’ differently in each of the

models, but its geometric properties (such as lengths, angles, area) will be the same. In the

Poincaré disk model, a hyperbolic line is an arc of a circle that is orthogonal to the unit

(boundary) circle. In the upper-half plane model, a hyperbolic line is a semicircle with center

on the x-axis. We can choose any model and can define ‘points’, ‘lines’, ‘distance’ and ‘angles’

as anything we want. If we can prove that the relations that exist among these ‘points’,

‘lines’, ‘distance’ and ‘angles’ satisfy all the axioms of the hyperbolic geometry, then we have

a model of the hyperbolic plane. Using the respective hyperbolic distance in each model,

we identify these models up to isometry. This gives us a coherent approach to hyperbolic

geometry independent of the choice of a model.

2. Inversion in a circle

2.1. Reflections in C. Identify C with the Euclidean space. Let ℑ denote the imaginary axis.

A complex number z = x+ iy represents a vector (x, y) in R
2. For z = x1+ iy1, w = x2+ iy2,

the Euclidean inner product on R
2 is given by

〈z, w〉e = x1x2 + y1y2.

The Euclidean distance is given by d(z, w) = |z−w|. Two vectors z = (x1, y1) and w = (x2, y2)

are orthogonal if 〈z, w〉e = 0. A line on R
2 is an one-dimensional vector subspace spanned by

a vector. The notion of orthogonality may be extended naturally to define orthogonal lines.

Recall that a line in R
2 is given by the equation:

l : ax+ by + c = 0, (a, b) 6= (0, 0).

Writing x = 1
2(z + z̄), y = 1

2i(z − z̄), the line l is represented by the complex numbers as

l : ᾱz + αz̄ + c = 0,

where α = 1
2(a + ib), i.e. |α| 6= 0. Thus the complex number α corresponds to the normal

vector vl = (a, b) to the line l. This normal vector is determined up to a real multiple.

Definition 2.1. Let l be a line in C. A map σl : C → C is said to be the reflection in l if

(i) σl(z) = z whenever z ∈ l.

(ii) If z does not belong to l, then the segment joining z to σl(z) is orthogonal to l and is

bisected by l.

Proposition 2.2. Given a line l : ᾱz + αz̄ + c = 0, |α| 6= 0, the reflection in l, σl : C → C is

given by

σl(z) =
−α

ᾱ
z̄ − c

ᾱ
.

Proof. Let z0 ∈ l. Then

σl(z0) =
−α

ᾱ
z̄0 −

c

ᾱ
=

−αz̄0 − c

ᾱ
= z0,
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since ᾱz0 = −αz̄0 − c. If z0 does not belong to l, then σl(z0) 6= z0 and we have

z0 − σl(z0) = z0 +
α

ᾱ
z0 +

c

ᾱ
=

ᾱz0 + αz̄0 + c

ᾱ
= α

{
1

αᾱ
(ᾱz0 + αz̄0 + c)

}
.

Thus z0−σl(z0) is a non-zero real multiple of α. Since α corresponds to the normal vector to

the line l, z0 − σl(z0) is orthogonal to l. Hence the line joining z0 to σl(z0) is orthogonal to l.

The mid-point of the segment joining z0 to σl(z0) is

ξ =
1

2
(z0 −

α

ᾱ
z̄0 −

c

ᾱ
) =

1

2ᾱ
(ᾱz0 − αz̄0 − c).

The following observation implies that ξ is a point on l:

αξ̄ + ᾱξ + c =
1

2
(ᾱz0 − αz̄0 − c) +

1

2
(αz̄0 − ᾱz0 − c) + c = 0.

Hence σl is indeed the reflection in the line l. �

Remark 2.3. The above proposition gives us a mnemonic rule for determining the formula of

a reflection σl in a line l in terms of complex variables. First write down the complex equation

of the line l : ᾱz + αz̄ + c = 0. Solve this equation for z. We get after solving :

z =
−α

ᾱ
z̄ − c

ᾱ
.

Now replacing the equality by an arrow we get the required formula for σl as in the proposition.

2.2. Inversion in a circle. Let S(a, r) be the circle in C given by:

S(a, r) = {z ∈ C : |z − a| = r}

Definition 2.4. An Inversion σ of C with respect to the circle S(a, r) is defined by

σ(z) = a+

(
r

|z − a|

)2

(z − a).

It is clear from the definition that σ satisfies the following two properties:

(i) σ(z) = z if and only if z is in S(a, r)

(ii) σ2(z) = z for all z 6= a in C.

There is a nice geometric construction of the point σ(z). Assume first that z is inside

S(a, r). Erect a chord of S(a, r) passing through z perpendicular to the line joining a to z.

Let u and v be the endpoints of the chord. Then σ(z) is the point z′ of intersection of the

lines tangent to S(a, r) at the points u and v, see Figure 1. Observe that the right triangles

T (a, z, v) and T (a, v, z′) are similar. Consequently, we have

|z′ − a|
r

=
r

|z − a| .

Therefore z′ = σ(z) as claimed.

Now assume that z is outside S(a, r). Let y be the midpoint of the line segment [a, z] and

let C be the circle centered at y of radius |zy|. Then C intersects S(a, r) in two points u, v,

and σ(z) is the point z′ of intersection of the line segments [a, z] and [u, v], as in Figure 2.
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Figure 1. when z is inside S(a, r)
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Figure 2. when z is outside S(a, r)
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    The inversion of a point z outside the circle S(a, r)

Let Ĉ = C ∪ {∞} be the extended complex plane, called the Riemann sphere. We can

extend σ continuously to Ĉ by defining σ(a) = ∞ and σ(∞) = a. The extension of σ to Ĉ is

denoted by σ again. The map σ is a homeomorphism of Ĉ. An inversion with respect to a

circle S(a, r) sometimes also refer to as the reflection of Ĉ in the circle S(a, r).
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Lemma 2.5. If σ is a reflection of Ĉ in the circle S(a, r) and σ1 is the reflection in S(0, 1),

and φ : Ĉ → Ĉ is defined by φ(z) = a+ rz, then σ(z) = φσ1φ
−1.

Proof. Observe that for σ1(z) =
z

|z|2 and φ(z) = a+ rz we have,

σ(z) = φ(
r(z − a)

|z − a|2 ) = φσ1(
z − a

r
) = φσ1φ

−1(z).

�

Lemma 2.6. Any inversion of C in a circle maps circles and lines onto circles or lines.

Hence inversions in circles in Ĉ always maps circles onto circles.

Proof. The lines and circles in C are represented by the following general equation:

(2.1) E(z) = a|z|2 + bz + b̄z̄ + c = 0, a, c ∈ R, b ∈ C.

If a = 0 then (2.1) represents a line in C, otherwise, a circle. Let σ be a reflection in a circle

in Ĉ. Then σ = φσ1φ
−1, where φ, σ1 as in Lemma 2.5. Since E(φ(z)) and E(σ1(z)) again

represent a circle in Ĉ, hence σ maps circles onto circles in Ĉ. �

For example, the circle with diameter [a, b] on the real line can be obtained from the line

x = a by the inversion in the circle S(b, |a− b|).

3. Elements of Arc-length

Let U be a path-connected subspace in the plane R
2. A path in U is a differentiable

function f : [a, b] → U such that f ′(t) is continuous on (a, b). In coordinates, we can write

f(t) = (x(t), y(t)) where x(t) and y(t) are continuous on [a, b] and differentiable on (a, b) with

continuous derivative. The image of an interval (either open, closed, or semi-open) under a

path is a curve in R
2.

The Euclidean length of f is given by the integral

length(f) =

∫ b

a

√
(x′(t)2 + y′(t)2)dt,

where
√
(x′(t)2 + y′(t)2) is the element of arc length in R

2. If we identify R
2 with C, write

f(t) = x(t) + iy(t), then f ′(t) = x′(t) + iy′(t) and |f ′(t)| =
√
x′(t)2 + y′(t)2. In particular,

the integral for the length of f becomes

length(f) =

∫ b

a

√
(x′(t)2 + y′(t)2)dt =

∫ b

a

|f ′(t)|dt.

At this point, introduce a new notation and abbreviate the integral as
∫ b

a

|f ′(t)|dt =
∫

f

|dz|,

where we write the standard Euclidean element of arc-length in C as

|dz| = |f ′(t)|dt.
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Using this notation, one may write any path integral. That is, let ρ be a continuous function

ρ : C → R. The path integral of ρ along a path f : [a, b] → C is the integral

∫

f

ρ(z)|dz| =
∫ b

a

ρ(f(t))|f ′(t)|dt.

This path integral can be interpreted as a new element of arc-length, denoted ds = ρ(z)|dz|,
obtained by scaling the Euclidean element of arc-length |dz| at every point z ∈ C, where the

amount of scaling is described by the function ρ. This gives us the following definition.

Definition 3.1. For a path f : [a, b] → C the length of f with respect to the element of

arc-length ds = ρ(z)|dz| is defined to be the integral

lengthρ(f) =

∫

f

ds =

∫

f

ρ(z)|dz| =
∫ b

a

ρ(f(t))|f ′(t)|dt.

Example 3.2. Let ρ(z) = 1
1+|z|2 , and consider the element of arc length ρ(z)|dz| on C. For

r > 0, consider the path f : [0, 2π] → C given by f(t) = reit, which parametrizes the Euclidean

circle with center 0 and radius r. The length of f with respect to the element of arc-length

ρ(z)|dz| is

lengthρ(f) =

∫

f

1

1 + |z|2 |dz| =
∫ 2π

0

1

1 + |f(t)|2 |f
′(t)|dt = 2πr

1 + r2
.

Remark 3.3. The above notions also hold for piecewise C1 path. A path f : [a, b] →
C is piecewise C1 if f is continuous and if there is a partition of [a, b] into subintervals

[a0, a1], [a1, a2], ..., [an−1, an], a = a0, b = an, such that f is a path when restricted to each

subinterval [ai, ai+1]. Any calculation or operation that we can perform on a path, we can

also perform on a piecewise C1 path, by expressing it as the concatenation of the appropriate

number of C1 paths. From now on, by a path we shall mean a piecewise C1 path.

Let U be a path-connected subset of C which is equipped with an element of arc-length

ρ(z)|dz|. Let x, y ∈ U , and let P (x, y) be the set of paths joining x and y. Define the function

d : U × U → R by

d(x, y) = inf{lengthρ(f) | f ∈ P (x, y)}.

It can be proved that d satisfies the conditions to be a metric on U , and hence (U, d) is a metric

space. If x, y are two points on U , then the geodesic segment joining x and y is the shortest

path between x and y. Thus a geodesic segment between x and y is a path f ∈ P (x, y) such

that lengthρ(f) = d(x, y). It is not necessary that there always exists a geodesic segment

joining two points in U . The length space (U, ρ) is called a geodesic metric space if any

two points can be joined by a geodesic segment. The Hopf-Renow theorem states that (U, ρ)

is a geodesic metric space if and only if (U, d) is a complete metric space, i.e. every Cauchy

sequence in (U, d) is convergent.
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4. The hyperbolic Space

4.1. The Upper-Half Space Model. The complex upper-half space is given by

H = {z = x+ iy | ℑz = y > 0}.

The complex upper-half space H equipped with the element of arc-length ds = |dz|
ℑz

is the

upper-half space model of the hyperbolic space, and is denoted by H2. Note that the boundary

of H2 in Ĉ is the circle R̂ = R ∪ {∞}. It is often called the boundary at infinity or the circle

at infinity of the hyperbolic plane. Let γ : [0, 1] → H2 be a path

γ = {z(t) = x(t) + iy(t) | t ∈ [0, 1], y(t) > 0}.

As in the above section, its hyperbolic length is given by

length(γ) =

∫

γ

|dz|
y(t)

=

∫ 1

0

|dz|
|dt|
y(t)

dt.

A geodesic or a hyperbolic line is a path which minimizes the length. The hyperbolic distance

between two points z and w is given by

ρ(z, w) = inf length(γ),

where the infimum is taken over all γ joining z and w in H2. It is easy to check that ρ is

non-negative, symmetric and satisfies the triangle inequality

ρ(z, w) ≤ ρ(z, u) + ρ(u,w),

i.e. ρ is a metric on H2.

4.2. The geodesics in H2. To understand the geometry of H2, a first step is to know which

curves in H2 are geodesics. The first step is to show that the vertical lines are geodesics in

H2:

Let P0 and P1 are two points in H2 with same x-coordinate. Let their y-coordinate be y0

and y1 respectively. The length of the vertical segment γ joining P0 to P1 is
∫

γ

ds =

∣∣∣∣
∫ y1

y0

dy

y

∣∣∣∣ =
∣∣∣∣log

y1
y0

∣∣∣∣.

If l is a different path from P0 to P1 then length of l is

=

∣∣∣∣
∫ y1

y0

1

y

√(
dx

dt

)2

+

(
dy

dt

)2

dt

∣∣∣∣

≥
∣∣∣∣
∫ y1

y0

1

y

[(
dy

dt

)2] 1

2

dt

∣∣∣∣

=

∣∣∣∣
∫ y1

y0

1

y
dy

∣∣∣∣

Thus the length of l is greater than the length of γ. So, γ is the shortest path between P0

and P1. Hence it follows that all vertical lines in H2 are geodesics.
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The second step is to find some isometries of H2. As isometric image of a geodesic is again

a geodesic, this will give us some more geodesics in H2. One obvious kind of isometry is to

reflect H2 in vertical lines. Recall that the reflection in the line x = c is given by

r(z) = 2c− z̄.

If z = x+ iy then dz = dx+ idy. Also

|dz|
ℑz =

dx2 + dy2

y
.

For w = 2c− (x− iy), dw = −(dx− idy) and |dw| = dx2 + dy2 = |dz|. This implies,

ℑz = ℑw, hence,
|dw|
ℑw =

|dz|
ℑz .

This shows that the reflections in vertical lines are isometries of H2.

Lemma 4.1. An inversion σ of Ĉ in S(a, r) restricts to an isometry of H2 provided a is in

R.

Proof. First observe that σ1 is an isometry of the hyperbolic plane. Let

w = σ1(z) =
z

|z|2 =
1

z̄
.

Clearly, it preserves the upper-half space, and dw = −dz
z̄2
. Therefore,

ds2 =
|dw|2
(ℑw)2 =

4dwdw

(w − w̄)2
=

4dzdz

(z − z̄)2
=

|dz|2
(ℑz)2 .

Thus σ1 is an isometry of H2. If y = a + rz, then dy = rdz and ℑy = rℑz if and only if

a ∈ R. This shows that the map φ(z) = a+rz is an isometry of H2 if and only if a ∈ R. Since

composition of two isometries is again an isometry, by Lemma 2.5 the lemma follows. �

Since, the semi-circle with ends at a and b on the real line can be obtained from the line

x = a by inverting in the circle S(b, |a − b|), hence it follows that every semi-circle in H2

centered at a point on the real line is a geodesic. We claim that there is no more geodesics in

H2 other than the semi-circles centered at the real line, and the vertical lines.

Theorem 4.2. A subset L of H2 is a geodesic if and only if L is the intersection of H2 with

either a (straight) line, or a circle orthogonal to the real line.

Proof. Suppose that there is a geodesic l of H2 which is not of the types mentioned above.

Take any two points P and Q on l. Then through P , Q there will be either a vertical line or a

semi-circle with center on the real-line. For, if P , Q are not joined by vertical lines, join them

by a straight line. Take the perpendicular bisector of PQ. Suppose it cuts the real axis at the

point C. Then the semi-circle with center C and radius CP or CQ will justify the assertion.

But then the length of PQ along the above semi-circle or vertical length will be greater than

the length of PQ along l, which cannot be possible as we have shown earlier. Hence l cannot

be any other path than a vertical line, or a semi-circle of the above type. �
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Corollary 4.3. Any two points z, w in H2 can be joined by a unique geodesic.

4.3. The Isometry Group. It is easy to see that the isometries of H2 form a group under

composition of maps. We denote the isometry group by I(H2).

Lemma 4.4. PSL(2,R) ⊂ I(H2)

Proof. We have already seen that the translations z 7→ z + b, b ∈ R and the dialations

z 7→ az, a ∈ R, a > 0 are isometries of H2. Thus all transformations of the form z 7→
az+ b, a, b ∈ R, a 6= 0, are isometries. Also the maps ι : z 7→ 1

z̄
and η : z 7→ −z̄ are in I(H2).

Thus the maps of the form z 7→ 1
cz+d

, c, d ∈ R, c 6= 0 are in I(H2). It follows that all the

linear fractional transformations of the form

S : z 7→ az + b

cz + d
, a, b, c, d ∈ R

are in I(H2) provided with some condition on a, b, c, d, which follow from the relation:

ℑ(az+b
cz+d

) > 0. Now

ℑ
(
az + b

cz + d

)
=

ℑz
|cz + d|2det

(
a b

c d

)
,

which is > 0 if and only if (
a b

c d

)
> 0.

Thus z 7→ az+b
cz+d

is an isometry of H2 if and only if a.b, c, d ∈ R and ad − bc > 0. Since the

map ι is also in I(H2),the map

ι ◦ S : z 7→ cz̄ + d

az̄ + b

is in I(H2) if and only if

det

(
c d

a b

)
= −det

(
a b

c d

)
< 0.

The group

M+(1) = {z 7→ az + b

cz + d
: ad− bc > 0}

may be identified with the group SL(2,R) in a natural way: just divide the numerator and

denominator of the linear fractional by
√
ad− bc. After this identification we see that SL(2,R)

acts on H2 as a subgroup of isometries under the action:
(
a b

c d

)
z =

az + b

cz + d
.

Note that for a given matrix A in SL(2,R), A and −A produce the same isometry under the

above action. Hence M+(1) is isomorphic to PSL(2,R) = SL(2,R)/{±I}. �

Lemma 4.5. PSL(2,R) acts transitively on H2.
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Proof. Let ai+ b ∈ H2, a > 0. Then T (z) =
a

√

a
z+ b

√

a

1
√

a

is the action of

AT =

(
a√
a

b√
a

0 1√
a

)

on H2 and T (i) = ai+b. Thus for all z in H2, there exists A in PSL(2,R) such that A(z) = i.

Thus any point on H2 can be mapped onto i by the action of a suitable element of PSL(2,R).

This completes the proof. �

Lemma 4.6. Let [z, w] denote the closed segment on the geodesic joining distinct points z

and w on H2. Then

ρ(z, w) = ρ(z, ζ) + ρ(ζ, w)

if and only if ζ ∈ [z, w].

Proof. Then if ζ ∈ [z, w],

ρ(z, w) = ρ(z, ζ) + ρ(ζ, w).

If ζ does not belong to [z, w], let γ be the path consisting of the segments [z, ζ] and [ζ, w].

Then γ is a path from z to w other than the geodesic. Hence length of γ along this path will

be greater than ρ(z, w). Thus

ρ(z, w) < ρ(z, ζ) + ρ(ζ, w).

�

The above lemma implies that for any isometry φ of H2, the points φ(ζ) is between φ(z)

and φ(w) if and only if ζ is between z and w. So φ maps [z, w] onto [φ(z), φ(w)]. Hence

Corollary 4.7. A transformation in PSL(2,R) maps geodesics onto geodesics.

Lemma 4.8. PSL(2,R) acts transitively on the set of all geodesics in H2.

Proof. It suffices to show that any geodesic l can be mapped onto the y-axis x = 0 by the

action of an appropriate element of PSL(2,R). If l is perpendicular to the real line, suppose

it intersects the real line at the point c. Then the element of PSL(2,R) corresponding to

either z 7→ z+ c, or, z 7→ z− c does the job. If l is a semi-circle perpendicular to the real axis,

let the point of intersections with the real line be a, b, b > a. Then the element of PSL(2,R)

corresponding to the isometry z 7→ z−b
z−a

maps l onto the line x = 0. This completes the

proof. �

Lemma 4.9. PSL(2,R) acts triply transitively on R̂.

Proof. Suppose a, b, c in R are mutually distinct. We assume a > b > c.

Case (i). Let a 6= ∞. Let

A =

(
a− c −b(a− c)

b− c −c(b− c)

)
.
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Consider the action of A
|A| on H2:

z 7→ (a− c)z − b(a− c)

(b− c)z − c(b− c)
.

Then Aa = 1, Ab = 0, Ac = ∞.

Case (ii). Let a = ∞.

The transformation z 7→ z − c

z − b
maps (∞, b, c) onto (1, 0,∞).

Thus any triplet {a, b, c} ⊂ R̂ is mapped onto {1, 0,∞} by a suitable element of PSL(2,R).

This completes the proof. �

Recall that the cross ratio of distinct points z1, z2, z3, z4 on Ĉ is given by

(z1, z2; z3, z4) =
(z1 − z2)(z4 − z3)

(z3 − z2)(z4 − z1)
.

It is well-known that the cross ratios are invariant under linear fractional transformations.

Theorem 4.10. Let z, w be two distinct points in H2. Let pz and pw be the end points of

the geodesic on R̂. Then

ρ(z, w) = |ln(w, pz; z, qw)|,
where (pz, qw; z, w) denotes the cross-ratio of pz, qw, z, w.

Proof. First consider the case when z = ia, w = ib, that is, both the points lies on the y-axis.

Then {pz, qw} = {0,∞}. Let pz = 0, qw = ∞. Let γ be the segment of the y-axis joining ia

and ib. Then

ρ(z, w) = length(γ) =

∣∣∣∣
∫ b

a

dy

y

∣∣∣∣ =
∣∣ln b

a

∣∣.

Note that (w, 0; z,∞) = b
a
. Suppose σ is some other arc from ia to ib, then

=

∣∣∣∣
∫

σ

1

y

√(
dx

dt

)2

+

(
dy

dt

)2

dt

∣∣∣∣

≥
∣∣∣∣
∫ b

a

1

y

[(
dy

dt

)2] 1

2

dt

∣∣∣∣

=
∣∣ln b

a

∣∣

Therefore ρ(z, w) = |ln(w, 0; z,∞)| ,where z = ia, w = ib.

Suppose z, w are points other than pure imaginary. Then there is a unique geodesic joining

them. Let A ∈ PSL(2,R) be such that, for a, b ∈ R, Az = ia, Aw = ib, Apz = 0, Aqw = ∞.

Since linear fractional transformations preserve the cross ratio,we have

(0,∞; ia, ib) = (Aw,Apz;Az,Aqw) = (w, pz; z, qw).

Therefore ρ(z, w) = |ln(w, pz; z, qw)|. This proves the theorem. �
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Corollary 4.11.

cosh ρ(z, w) = 1 +
|z − w|2
2ℑzℑw

.

Proof. Since PSL(2,R) acts transitively on the geodesics of H2, it suffices to show the result

for points on the imaginary axis. So suppose without loss of generality, z = ia, w = ib, a < b.

For such points, the above relation is immediate. �

Theorem 4.12. The group of isometries of I(H2) is given by the linear fractional transfor-

mations over the reals, i.e.

I(H2) = M+(1) ∪M−(1),

where

M+(1) =

{
z 7→ az + b

cz + d
| a, b, c, d ∈ R, det

(
a b

c d

)
> 0

}
,

M−(1) =

{
z 7→ az̄ + b

cz̄ + d
| a, b, c, d ∈ R, det

(
a b

c d

)
< 0

}
.

Proof. Given any isometry φ in I(H2) there is an isometry

g(z) =
az + b

cz + d
, a, b, c, d ∈ R, ad− bc = 1

such that gφ leaves the positive imaginary axis ℑ+ invariant:

Simply choose g such that it maps φ(ℑ+) onto ℑ+. Such g exists by Proposition 4.8.

For if, Suppose gφ(i) 6= i then compose gφ with a reflection σ sending gφ(i) to i. If

this composition doesn’t leave the rays (0, i) and (i,∞) invariant, compose it with a reflection

through a geodesic l through i, such that the circle containing l is S(0, 1). Thus we can assume

gφ(i) = i and gφ leaves the rays (0, i), (i,∞) invariant. Thus, without loss of generality, we

assume that, gφ(i) = i, and gφ leaves the rays (0, i) and (i,∞) invariant.

Let z, w ∈ ℑ+. A point on ℑ+ is determined by its distance from i, by the formula

ρ(z, w) = ρ(gφ(z), gφ(w)) = ρ(gφ(z), i) + ρ(i, gφ(w)).

Therefore we must have gφ(z) = z, gφ(w) = w. Thus gφ fixes ℑ+ point-wise.

Select z ∈ H2. Let z = x+ iy, y > 0. Let gφ(z) = u+ iv. Then

ρ(z, it) = ρ(gφ(z), gφ(it)) = ρ(u+ iv, it)

⇒ coshρ(z, it) = cosh ρ(u+ iv, it)

⇒ v[x2 + (y − t)2] = y[u2 + (v − t)2].

This relation is hold for all t > 0. Hence we must have y = v and x2 = u2. Thus gφ(z) =

z or − z̄.

On ℑ+, gφ(z) = z = −z̄. Since gφ is continuous on H2, it maps connected components of

H2 − ℑ+ onto connected components. Hence one and only one of the possibilities gφ(z) = z

or gφ(z) = −z̄ must hold for all z ∈ H2.
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If gφ(z) = z, then aφ(z) + b = zcφ(z) + dz. This implies,

φ(z) =
dz − b

a− cz
, det

(
d −b

−c a

)
= ad− bc = 1

If gφ(z) = −z̄ then

φ(z) =
−dz̄ − b

a− cz
, det

(
−d −b

c a

)
= −1.

Given any transformation of the form z 7→ az̄+b
cz̄+d

, ad−bc < 0 we can consider it as the following

transformation after dividing the numerator or the denominator by
√

−(ad− bc):

z 7→ az̄ + b

cz̄ + d
, ad− bc = −1.

This proves the theorem. �

Corollary 4.13. I(H2) is generated by the reflections in geodesics.

Proof. We have seen in the proof of Lemma 4.4 that every isometry in M+(1) is generated

by reflections in geodesics. The elements in M−(1) are obtained by composing the reflection

z → z̄ with elements of M−(1). �

Remark 4.14. Given three distinct points on the circle R̂, we can order them by the usual

cyclic ordering on a circle. There are exactly two such choices of order, either clockwise or

anti-clockwise. A preferred choice of an order is called an orientation on the boundary circle

of H2. If an isometry φ preserves a chosen orientation, i.e. for all triples, (z1, z2, z3) and

(φ(z1), φ(z2), φ(z3)) belong to the same ordered class, it is called orientation-preserving. It

follows that the group of orientation-preserving isometries of H2 is M+(1). This is because

det φ′(z) > 0. We identify M+(1) with the group PSL(2,R). This is an index 2 subgroup in

I(H2).

4.4. The Poincaré Disk Model. We shall now describe the Poincaré disk model of the

hyperbolic plane. We shall deduce this model naturally from the upper-half space model by

the map

f : z → z − i

z + i
.

Note that f maps H2 onto the unit disk D2 and f−1 : D2 → H2 is given by

f−1(z) =
i(1 + z)

1− z
.

The metric on D2 is given by d(z, w) = ρ(f−1(z), f−1(w)). Thus f is an isometry between

H2 and D2.

Let w = f−1(z) = i(1+z)
1−z

. Then ds = |dw|
ℑw

, where dw = 1+i
(1−z)2

dz. Since, w = i(1+z)
(1−z) =

i(1+z)(1−z̄)
|1−z|2 , this implies ℑw = 1−|z|2

|1−z|2 . Therefore,

ds =
|dw|
ℑw =

2|dz|
1− |z|2 .
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Thus the element of arc-length on D2, induced from H2 by the isometry f , is

ds =
2|dz|

1− |z|2 .

Proposition 4.15.

cosh d(z, w) = 1 +
2|z − w|2

(1− |z|2)(1− |w|2) .

Proof. We have,

cosh d(z, w) = cosh ρ(f−1(z), f−1(w))

= 1 +
|f−1(z)− f−1(w)|2
2ℑf−1(z)ℑf−1(w)

= 1 +

( 2|z−w|
|1−z||1−w|

)2

2(1−|z|2)(1−|w|2)
|1−z|2|1−w|2

= 1 +
2|z − w|2

(1− |z|2)(1− |w|2)
�

The geodesics of D2 are clearly the images of the geodesics of H2 under f . It follows

that the geodesics are either the open diameters of D2 or the intersection of D2 with circles

orthogonal to the boundary circle. The isometry group of D2 is

I(D2) = {fφf−1 : φ ∈ I(H2)}.

Let φ ∈ I(H2) be such that φ(z) = az+b
cz+d

, ad−bc = 1, a, b, c, d ∈ R. By a simple computation,

it follows that

fφf−1(z) =
αz − β

β̄z − ᾱ
, |α|2 − |β|2 = 1.

Since φ is an orientation preserving isometry of H2, hence fφf−1 is an orientation-preserving

isometry of D2. If

φ(z) =
az̄ + b

cz̄ + d
,

then

fφf−1 =
αz̄ − β

β̄z − ᾱ
, |α|2 − |β|2 = −1,

which is an orientation reversing isometry of D2. Thus we have:

Theorem 4.16. The isometries of the Poincaré disk model D2 of the hyperbolic plane are

given by
αz − β

β̄z − ᾱ
, |α|2 − |β|2 = 1,

αz̄ − β

β̄z − ᾱ
, |α|2 − |β|2 = −1.
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Thus the matrix group

SU(1, 1) =

{(
α β

β̄ ᾱ

)
: |α|2 − |β|2 = 1

}

acts on D2 as the group of orientation-preserving isometries.

4.5. The Hyperbolic Triangles. Let us define the angle between two hyperbolic lines in

H2 as the interior angle between their tangents at the point of intersection. Let x, y, z be

three hyperbolically non-collinear points in H2. Let L(x, y) be the unique geodesic in H2

containing x and y. Let H(x, y, z) be the closed half-space of H2 with L(x, y) as its boundary

and z in its interior. The hyperbolic triangle with vertices x, y, z is defined to be

T (x, y, z) = H(x, y, z) ∩H(y, z, x) ∩H(z, x, y).

Let [x, y] be the segment of L(x, y) joining x and y. The sides of T (x, y, z) are defined to be

[x, y], [y, z], [z, x]. Let a, b, c be the hyperbolic lengths of [z, y], [z, x] and [x, y] respectively.

Suppose f : [0, a] → H2, g : [0, b] → H2 and h : [0, c] → H2 are the geodesic arcs from y to z,

z to x, and x to y respectively. The angle α between the sides [z, x] and [x, y] of T (x, y, z) is

the interior angle between −g′(b) and h′(0), which is the interior angle between the tangents

at the point of intersection of the sides. Similarly, angles between the other pair of sides are

obtained. Now we shall allow the vertices of a triangle to belong to the circle at infinity. The

angle between two geodesics is defined to be zero if they intersect at the circle at infinity. If

all the three vertices of a hyperbolic triangle lie on the circle at infinity, it is called an ideal

triangle.

The area of a set X in H2 is defined by

Area(X) =

∫∫

X

dxdy

y2
.

The area in the unit-disk model D2 is
∫∫

X

2dxdy

1− x2 − y2
.

It can be proved that The hyperbolic area is invariant under the isometries of H2.

Theorem 4.17. Any ideal triangle in the hyperbolic space has area π.

Proof. Suppose T (x, y, z) is any ideal triangle in H2. Since PSL(2,R) acts triply transitively

on R̂, x, y, z can be mapped onto ∞, 1,−1 by a suitable isometry in PSL(2,R). Thus the

triangle we start with, will be mapped onto the triangle ∆ with vertices (−1, 0), (1, 0) and

∞. Therefore any ideal triangle T (x, y, z) can be mapped onto ∆ by a transformation in

PSL(2,R). This shows that all ideal triangles are congruent to each-other. Consequently, the
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Figure 3. Ideal triangles in the hyperbolic plane

An ideal triangle with one vertex at infinityAn ideal triangle with real vertices 

               

ideal triangles have equal area. Hence it is sufficient to compute the area of ∆. Observe that

Area(∆) =

∫∫

T

dxdy

y2

=

∫ 1

−1

∫ ∞
√
1−x2

dy

y2
dx

=

∫ 1

−1

[
− 1

y

]∞√
1−x2

dx

=

∫ 1

−1

dx√
1− x2

= [sin−1 x]1−1

= π.

This completes the proof. �

The following formula shows that the hyperbolic area of a hyperbolic triangle depends only

on its angles.

Theorem 4.18. (Gauss-Bonnet) Let ∆ be a hyperbolic triangle with angles α, β and γ.

Then

Area(∆) = π − (α+ β + γ).

Proof. Case (i). Suppose ∆ is an ideal triangle. Then the theorem follows from Theorem 4.17.

Case (ii). Two vertices of ∆ are on the circle at infinity. Let α be the angle of the triangle
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Figure 4. Two vertices on the circle at infinity

AB

C

I

C

at the finite vertex. Now any such triangle can be mapped by a suitable transformation of

PSL(2,R) onto the triangle T with ideal vertices at A(1, 0), ∞ and the other vertex on the

geodesic segment S(0, 1) ∩H2. For example, in Figure 4 first use one element in PSL(2,R)

which maps A to ∞. Then use suitable transformations in PSL(2,R) to map the resulting

triangle onto the triangle with vertices at (1, 0), ∞ and P ∈ S(0, 1). Note that the finite

vertex at the triangle has angle α. So the finite vertex will be ei(π−α). Then the area of ∆ is

Area(∆) =

∫∫

T

dxdy

y2

=

∫ 1

cos(π−α)

∫ ∞
√
1−x2

dy

y2
dx

=

∫ 1

cos(π−α)

[
− 1

y

]∞√
1−x2

dx

=

∫ 1

cos(π−α)

dx√
1− x2

= π − α.

Case(iii). Two vertices are finite.

Let v1, v2 be the finite vertices and let l be the geodesic joining them, α, β are the angles at

the vertices. By a suitable transformation in PSL(2,R) we can map the infinite vertex on ∞
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Figure 5. Two finite vertices

and v1, v2 on the unit circle. Thus we further assume that v1 = ei(π−α), v2 = eiβ . Therefore,

Area(∆) =

∫∫

T

dxdy

y2

=

∫ cosβ

cos(π−α)

∫ ∞
√
1−x2

dy

y2
dx

=

∫ cosβ

cos(π−α)

[
− 1

y

]∞√
1−x2

dx

=

∫ cosβ

cos(π−α)

dx√
1− x2

= π − (α+ β)

Case(iv): All vertices are finite, with angles α, β, γ.

By the action of PSL(2,R), we can assume that ∆ has all the vertices on semi-circles

orthogonal to the real line. Thus we can express it as a difference of two hyperbolic triangles

each with one vertex at the circle at infinity as shown in the figure:

∆ABC = ∆ACDA−∆BCDB.

Thus

Area(∆) = Area(∆ACDA)−Area(∆BCDB)

= π − (α+ (γ + θ))− (π − (π − β)− θ)

= π − (α+ β + γ).
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Figure 6. All vertices are finite

Thus the area of a hyperbolic triangle with angles α, β, γ is equal to be π − (α + β + γ),

where the angle at the vertex at infinity, if any, is assumed to be zero. This formula is called

the Gauss-Bonnet formula for hyperbolic triangles. �

The following are basic references in hyperbolic geometry. The reader may look at any of

these texts for further reading.
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