Day Three

Jorge Kurchan

LPS-ENS, Paris

June 15, 2013

Density functional theory ← Random First Order

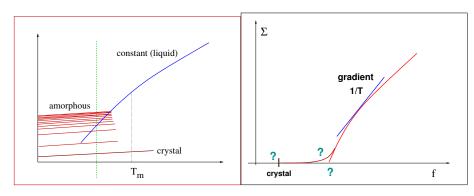
a mean-field free energy

$$F[\rho(\mathbf{x})] = \int d^3\mathbf{x} \, \rho[\ln \rho(\mathbf{x}) - 1] - \frac{1}{2} \int d^3\mathbf{x} \, d^3\mathbf{x}' \, [\rho(\mathbf{x}) - \rho_o] \frac{C(\mathbf{x} - \mathbf{x}')[\rho(\mathbf{x}') - \rho_o]}{C(\mathbf{x} - \mathbf{x}')[\rho(\mathbf{x}') - \rho_o]}$$

has many local minima, solutions of

$$\frac{\delta F[\rho(\mathbf{x})]}{\delta \mathbf{x}} = \ln \rho(\mathbf{x}) - 1 - \int d^d \mathbf{x}' \ C(\mathbf{x} - \mathbf{x}', \rho_o)[\rho(\mathbf{x}') - \rho_o] = 0$$

liquid - crystal + many amorphous



The freezing at the Kauzmann temperature

$$\mathbf{Z} = \mathbf{\Sigma_{solutions}} \hspace{0.1in} \mathbf{e^{V[\Sigma(\mathbf{f}) - eta \mathbf{f}]}} \hspace{1.1in} rac{\mathbf{d\Sigma}}{\mathbf{df}} = \mathbf{r}^{V[\Sigma(\mathbf{f}) - eta \mathbf{f}]}$$

Density functional theory ← Random First Order

we may simplify even further, just as going from Landau theory to Curie-Weiss:

$$F[\rho(\mathbf{x})] = \int d^3\mathbf{x} \, \rho[\ln \rho(\mathbf{x}) - 1] - \frac{1}{2} \int d^3\mathbf{x} \, d^3\mathbf{x}' \, [\rho(\mathbf{x}) - \rho_o] C(\mathbf{x} - \mathbf{x}') [\rho(\mathbf{x}') - \rho_o]$$

$$E[\rho_1, ..., \rho_N] = \sum_{ijk} J_{ijk} \rho_i \rho_j \rho_k$$

has similar phenomenology

Here, I am cutting a long story short.

- This form of density functional theory was introduced long ago (70's), and used to study crystallisation
- Later the existence of amorphous solutions, and hence the relevance for glasses, was remarked (1984).
- Random First Order theory started from the observation that spin glass-like models with quenched disorder $E = \sum_{ijk} J_{ijk} s_i s_j s_k$ where mean-field models of glasses (late 80's)
- This led to an explosion of results (mainly in the 90's), because well established techniques (and technicians) where now available.
- Finally, one may come back to a local mean-field (Landau) theory for $\rho(x)$, which will be a better-understood and consistent form of density functional theory. The phenomenological (for the moment) extension beyond mean-field is the subject of the mosaic theory.

The thermodynamics, and indeed all landscape features may be obtained from Parisi (replica) theory

the Kauzmann temperature appears as a Replica Symmetry Breaking (freezing) transition

The dynamics associated with these models

$$\ddot{\rho}_i = -\frac{\partial E}{\partial \rho_i} + thermal\ bath$$

is also exactly solvable

- Above T_c the system equilibrates in finite time Mode Coupling Equations
- ullet Below T_c the system never equilibrates. It ages.
- The appearance of effective temperatures:

Correlation and response functions obey the exact equation

$$R(t, t_w) \equiv \frac{\delta s(t)}{\delta h(t_w)} \bigg|_{h=0}$$
, $\chi(t, t_w) \equiv \int_{t_w}^t dt' R(t, t')$.

$$\begin{split} \frac{\partial C(t,t_w)}{\partial t} & = & \left(-\mu(t)C(t,t_w) + \int_0^{t_w} dt'' C^p(t,t'') R(t_w,t'') \right) \\ & + \int_0^t dt'' C^{p-1}(t,t'') R(t,t'') C(t'',t_w) \;, \\ \frac{\partial R(t,t_w)}{\partial t} & = & \left(-\mu(t) R(t,t_w) + \int_{t_w}^t dt'' C^{p-1}(t,t'') R(t,t'') R(t'',t_w) \right) \;. \end{split}$$

In equilibrium, they reduce to the Mode Coupling Equations

$$\frac{\partial C(t - t_w)}{\partial t} = -\mu C(t - t_w) + \frac{1}{T} \int_{t_w}^t dt'' C^p(t - t'') \frac{\partial C(t'' - t_w)}{\partial t''} + c$$

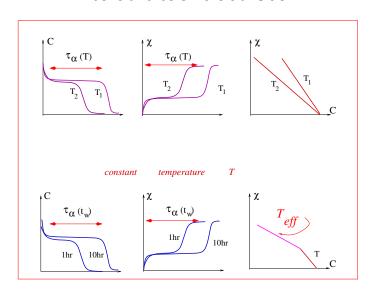
The Mode Coupling equations have a transition temperature where the timescale diverges as a power law

this Mode-Coupling transition is an artifact, destroyed by fluctuations

Below the transition temperature

the system ages forever

Above and below the transition



Random First Order theory is at present the best bet

but going beyond mean-field is at the same time necessary and daunting

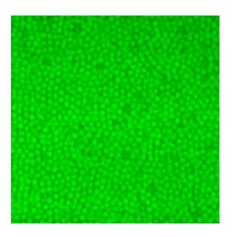
Is there purely geometric order in a solid?

i.e. an order that can be read from a configuration, without knowing the interactions or dynamics

just as in crystals or quasicrystals

Remember: solid = spatial density modulations not erased by thermal fluctuations

14 / 40

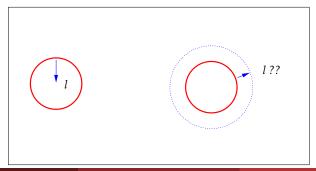


Liquid or Glass?

A Theorem for point-to-set correlations Montanari-Semerjian

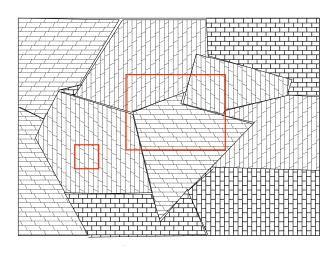
boundary determines interior for $\ell < \ell(T)$

$$\ell \to \infty$$
 if (timescale $\to \infty$)

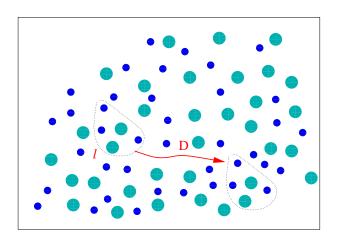


Patch - recurrence length D(l) crossover l_o

detects crystallite length.



Generalize this to general systems



Perfect order (three kinds)

Three levels of order

0101010101010101010101010101

Periodic, Fourier transform gives deltas.

101101011011010110110110110110110

Fibonacci sequence Quasiperiodic, Fourier transfom \rightarrow dense set of δ-functions

01101001100101101001011001101001

Thue-Morse sequence 'Non-Pisot" Fourier transform has no δ functions.

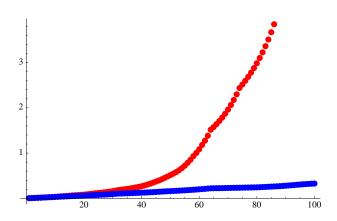
Patch repetition is a matter of entropy

subextensive entropy → infinite length

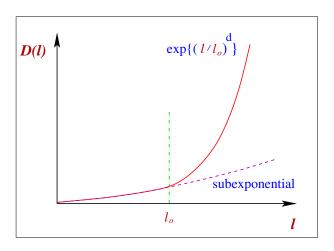
independent pieces will always yield extensive entropy

Finite correlation lengths in imperfect sequences

D(l) vs. l



Patch - recurrence length D(l) crossover l_o



More examples: higher dimensionalities

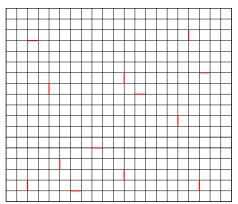
Wang Tiles

Quasiperiodic ground states

can be seen as a 12-state spin model (Leuzzi and Parisi)

Monte Carlo dynamics is slow

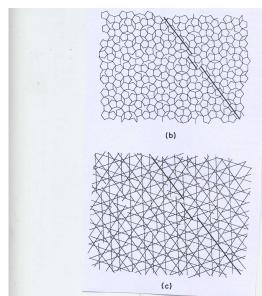
annealing to zero temperature leads to a system with point defects



coherence length = inter-defect lenght!!!

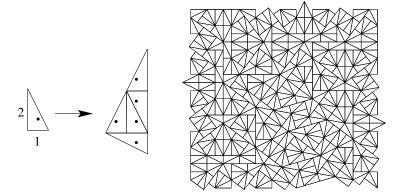
There is a way to see this, through the Ammann lines.

For example, in a true quasicrystal, one can see this: (Li, Zhang and Kuo):



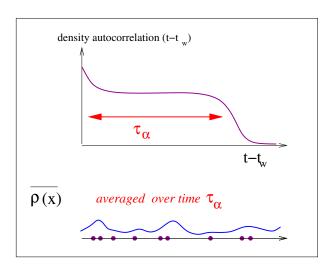
An amorphous Pinwheel tiling

of Radin and Conway (fig: Baake, Frettlöh and Grimm)

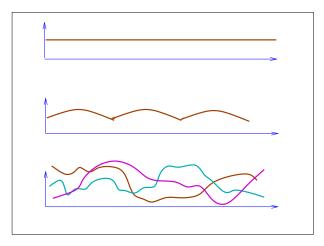


again, infinite coherence length

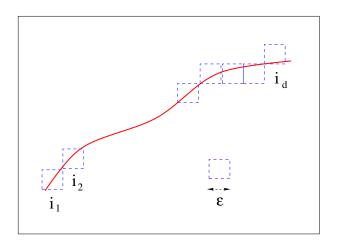
Particle systems: supercooled liquid



Average density profiles: constant, periodic, 'chaotic'



We need to count profiles ↔ identify patches



inspiration from dynamic systems

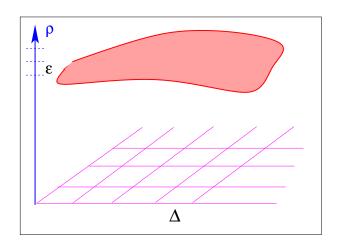
The limit is well-defined:

$$K_1 \sim -\lim_{ au o 0} \lim_{\epsilon o \infty} \lim_{d o \infty} rac{1}{ au d} \sum_{i_1,...,i_d} P_{\epsilon}(i_1,...,i_d) \ln P_{\epsilon}(i_1,...,i_d)$$

Renyi: a measure of 'rare' patches (very frequent or very unfrequent):

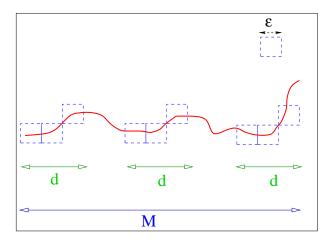
$$K_q \sim -\lim_{ au o 0} \lim_{\epsilon o \infty} \lim_{d o \infty} \frac{1}{ au d(q-1)} \ln \left(\sum_{i_1,...,i_d} P_{\epsilon}(i_1,...,i_d)^q \right)$$

 $... o \mathcal{P}[P_{\epsilon}]$ by Legendre transform.



$$t \to \vec{r}$$
 $x \to \rho$

Grassberger-Procaccia:



33 / 40

count the number of repetitions n_i of a patch of size d within a large box M and average over patches

$$P_{\epsilon}(i_1,...,i_d)^q \sim \frac{1}{M} \sum_i [n_i^d(\epsilon)]^{q-1} \sim \epsilon^{\phi} e^{\tau(q-1)d K_q}$$

So that:

$$K_d \sim \lim_{ au o 0} \lim_{\epsilon o \infty} \lim_{d o \infty} rac{1}{ au(q-1)} rac{\delta}{\delta d} \ \ln \left[\sum_i [n_i^d(\epsilon)]^{q-1}
ight]$$

for K_1 we use $\left[\sum_i \ln[n_i^d(\epsilon)]\right]$

practical because we work at finite precision

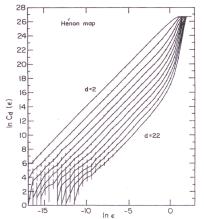


FIG. 3. Same as Fig. 1, but for the Hénon map. The values of d are d=2 (top curve), 4,6,8,...,22 (bottom curve).

Now, let us argue that if the timescale goes to infinity

in any super-Arrhenius manner

complexity is necessarily subextensive

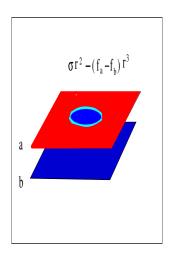
and lengthscale goes to infinity

Two nucleation arguments show that it is impossible to have stable states

with free energy density higher than equilibrium

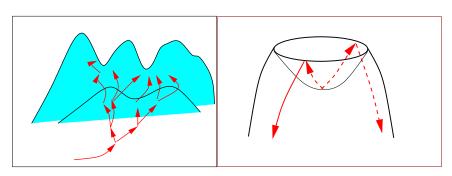
or

exponential in number



$$r^* = \frac{(2)\sigma}{3(f_a - f_b)} \rightarrow f(r^*) \propto \frac{\sigma^3}{(f_a - f_b)^2}$$

Entropic pressure: multiplication of possibilities helps climb high mountains



$$V_{eff} = V(r) - T(d-1)\ln r$$

We may frame the discussion in terms of well-defined, measurable quantities

Order appears as a logical consequence of super-Arrhenius timescales