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1 Lecture I

1. Riemann surfaces

2. Holomorphic maps

3. The Riemann-Hurwitz relation

4. Singularities

1.1 RIEMANN SURFACES

A Riemann surface "looks locally" like an open subset of the complex plane.
Definition. A Riemann surfaceX is a second-countable, connected, Haus-

dorff space with an atlas of charts {φα : Uα → Vα | α ∈ A}.
Uα is an open subset ofX , Vα is an open subset of C, and φα is a homeomor-

phism. For any two charts φα, φβ with overlapping domains, the transition
map,

φβ ◦ φ−1
α : φα(Uα ∩ Uβ) → φβ(Uα ∩ Uβ)

is bianalytic, that is, analytic with analytic inverse. (It is a bijection by con-
struction.)
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1.2 EXAMPLES OF RIEMANN SURFACES

1. The Riemann sphere. A two-chart atlas on S2 = {(x, y, w) ∈ R3 | x2 + y2 +
w2 = 1} is given by stereographic projection from the north and south poles:
Define charts

φ1 : S2 \ (0, 0, 1) → C by (x, y, w) 7→
x

1 − w
+ i

y

1 − w

φ2 : S2 \ (0, 0,−1) → C by (x, y, w) 7→
x

1 + w
− i

y

1 + w

The inverse chart maps are

φ−1
1 (z) =

(
2Re(z)

|z|2 + 1
,

2Im(z)

|z|2 + 1
,
|z|2 − 1

|z|2 + 1

)

φ−1
2 (z) =

(
2Re(z)

|z|2 + 1
,
−2Im(z)

|z|2 + 1
,
1 − |z|2

|z|2 + 1

)
.

The transition map φ2 ◦ φ
−1
1 is simply z 7→ 1/z.

2. The graph of an analytic function. The graph {(z, g(z)) | z ∈ U} ⊆ C2,
where g is an analytic function whose domain contains the open set U ⊆ C, is
a Riemann surface with the single chart πz : (z, g(z)) 7→ z (projection onto the
z coordinate).

3. Smooth affine plane curves. Definition. An affine plane curve X is
the zero locus of a polynomial f(z, w) ∈ C[z, w]. It is non-singular or "smooth"

if, for all p = (a, b) ∈ X ,
∂f

∂z

∣∣∣∣
p

and
∂f

∂w

∣∣∣∣
p

are not simultaneously zero.

By the implicit function theorem, in a neighborhood of every p on a smooth
affine plane curve, at least one of the coordinates z, w is an analytic function of
the other, depending on which partial derivative is 6= 0.

If
∂f

∂w

∣∣∣∣
p

6= 0, there is an open setU containing p such that, for all q = (z, w) ∈

U , w = g(z), an analytic function of z. Thus πz : U → C is a local chart. If, also,
∂f

∂z

∣∣∣∣
p

6= 0, there is an open set V containing p such that, for all q = (z, w) ∈ V ,

z = h(w), an analytic function of w. Then πw : V → C is also a local chart. The
transition functions,

πw ◦ π−1
z : z 7→ g(z)

πz ◦ π−1
w : w 7→ h(w),

defined on πz(U ∩V ) and πw(U ∩V ), resp., are, by construction, analytic. Thus
a connected smooth affine plane curve is a Riemann surface. [Connectivity
can be guaranteed by taking the polynomial f(z, w) to be irreducible.]

The points of the complex projective plane P2 are the one-dimensional
subspaces of C3. The span of (x, y, z) ∈ C3, (x, y, z) 6= (0, 0, 0), is denoted
[x : y : z]. For λ ∈ C, λ 6= 0,

[x : y : z] = [λx : λy : λz] ("homogeneous coordinates").
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P2 is a complex manifold of dimension 2. It is covered by three sets, defined by
x 6= 0, y 6= 0, z 6= 0, respectively. In homogenous coordinates, we may assume
that |x|2 + |y|2 + |z|2 = 1; in particular, that |x|, |y|, |z| ≤ 1. Thus P2 is compact.

Definition. A polynomial F (x, y, z) ∈ C3 is homogeneous if, for every
λ ∈ C∗, F (λx, λy, λz) = λdF (x, y, z), where d is the degree of the polynomial.

The zero locus of a homogeneous polynomial F (x, y, z) is well-defined on
P2.

4. Smooth projective plane curves. Definition. A projective plane
curve X is the zero locus in P2 of a homogeneous polynomial F (x, y, z) ∈
C[x, y, z]. It is non-singular (smooth) if, at all p = [x : y : z] ∈ X , the three

partial derivatives
∂F

∂x

∣∣∣∣
p

,
∂F

∂y

∣∣∣∣
p

and
∂F

∂z

∣∣∣∣
p

are not simultaneously zero.

An affine plane curve f(x, y) = 0 is "projectivized" (hence, compactified)
by multiplying each term of f by a suitable power of z so that all terms have
the same (minimal) degree. The affine portion of the projectivized curve corre-
sponds to z = 1, and the "points at infinity" correspond to z = 0.

Theorem. A nonsingular projective plane curve is a compact Riemann
surface.

Proof. Let Ui = {[x0 : x1 : x2] ⊆ P2 | xi 6= 0}, i = 0, 1, 2. (Up to
homogeneous coordinates, xi 6= 0 is equivalent to xi = 1.) Let X be a smooth
projective plane curve defined as the zero locus of the homogenous polynomial
F (x0, x1, x2), and let Xi = X ∩ Ui. Each Xi is an affine plane curve, e.g.,

X0 = {(a, b) ∈ C2 | F (1, a, b) = 0}.

With Euler’s formula for homogeneous polynomials of degree d,

F (x0, x1, . . . xk) =
1

d

k∑

i=0

xi
∂F

∂xi
,

it can be shown that X is nonsingular if and only if eachXi is a smooth affine
plane curve.

Proof, cont. Coordinate charts on Xi are ratios of homogeneous coordi-
nates onX . For example, charts onX0 are x1/x0 or x2/x0, and charts onX2 are
x0/x2 or x1/x2. Transition functions are readily seen to be holomorphic, e.g.,
near p ∈ X0 ∩ X1, where x0, x1 6= 0, let z = φ1 = x1/x0 and w = φ2 = x2/x1.
Then

φ2 ◦ φ
−1
1 : z 7→ [1 : z : h(z)] 7→

h(z)

z
= w,

where h(z) is a holomorphic function, and z 6= 0, since p ∈ X1. [Technical
detail: connectivity is needed to make Xi (and hence X) a Riemann surface.
This follows from a standard theorem in algebraic geometry: a nonsingular
homogeneous polynomial is automatically irreducible.] Q.e.d.

Remark. Projective spaces Pn can be defined for all n ≥ 1. The complex
projective line P1 is the space of one-dimensional subspaces of C2,

{[x : y] | x, y ∈ C, (x, y) 6= (0, 0)},
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where [x : y] = [λx : λy], λ ∈ C∗. The two-chart atlas

φ0 : P1 \ {[0 : 1]} → C

φ1 : P1 \ {[1 : 0]} → C,

defined by [x : y] 7→ y/x, resp., [x : y] 7→ x/y, has transition function

φ1 ◦ φ
−1
0 : z 7→ 1/z.

This makes P1 ≃ C ∪ {∞} a Riemann surface, where ∞ corresponds to [1 : 0].

1.3 HOLOMORPHIC MAPS

Non-constant holomorphic maps between compact Riemann surfaces look lo-
cally (when "read through charts") like z 7→ zm, m ≥ 1, and globally, like
covering maps (except possibly at finitely many points).

Definition. A map f : X → Y between compact Riemann surfaces is
holomorphic if, for every p ∈ X , there is a chart φ : Up → C defined on a
neighborhood of p, and a chart ψ : Vf(p) → C defined on a neighborhood of
f(p) ∈ Y , such that the map ψ ◦ f ◦ φ−1 : φ(Up) → ψ(Vf(p)) is analytic.

Two Riemann surfaces X and Y are isomorphic iff there exists a holomor-
phic bijection f : X → Y with a holomorphic inverse (a biholomorphism).

Exercise: Show that the complex projective line P1 is isomorphic to the
Riemann sphere.

An isomorphism f : X → X of a Riemann surface with itself is called an
automorphism. The automorphisms form a group, Aut(X), about which we
will have much more to say.

Definition. A meromorphic function on a Riemann surface X is a
holomorphic map f : X → P1.

Examples. 1. The meromorphic functions on P1 are the rational func-

tions r(z) =
p(z)

q(z)
, where p, q ∈ C[z], q 6= 0.

2. The meromorphic functions on a smooth affine plane curve f(x, y) = 0
are the rational functions

r(x, y) =
p(x, y)

q(x, y)
, p, q ∈ C[x, y],

provided q(x, y) is not a divisor of f(x, y) (i.e, by Hilbert’s Nullstellensatz, pro-
vided q(x, y) does not vanish identically on the curve).

3. The meromorphic functions on a smooth projective plane curve defined
by the nonsingular homogeneous polynomial F (x, y, z) (as its zero locus) are
rational functions

R(x, y, z) =
P (x, y, z)

Q(x, y, z)
, P,Q ∈ C[x, y, z],
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where P and Q are homogeneous of the same degree, and Q is not a divisor of
F .

Holomorphic maps "inherit" many properties of analytic maps. Let
f : X → Y be a nonconstant holomorphic map between between Riemann
surfaces. Then, as with an analytic map from C to C,

1. f is an open mapping (taking open sets to open sets);
2. If g : X → Y is another holomorphic map, and f and g agree on a subset

S ⊆ X with a limit point in X , then f = g;
3. f−1(y), y ∈ Y , is a discrete subset of X .
Theorem. If X is a compact Riemann surface and f : X → Y is a

nonconstant holomorphic map, then f is onto, Y is compact, and f−1(y) ⊆ X ,
y ∈ Y , is a non-empty finite set.

Proof. f(X) is open by the openness of the mapping; f(X) is a compact
subset of Hausdorff space and hence also closed. Since Y is connected, f(X)
must be all of Y . A discrete subset of a compact space is finite. Q.e.d.

Theorem (Local normal form of a holomorphic map). If f : X → Y is a
nonconstant holomorphic map, and p ∈ X , there exists a unique positive inte-
ger m = multp(f) (the multiplicity of f at p) such that, for every coordinate
chart φ : U ⊆ X → C "centered at p" (i.e., φ(p) = 0) and every coordinate chart
ψ : V ⊆ Y → C centered at f(p), ψ◦f ◦φ−1 : φ(U) → ψ(V ) has the local normal
form z 7→ zm.

Proof. Let w be the complex coordinate on φ(U) ⊆ C. Let T (w) =∑∞

i=m ciw
i be the Taylor series of ψ ◦ f ◦ φ−1(w). Since T (0) = 0, m ≥ 1,

and T (w) = wmS(w), with S(w) analytic at 0 and S(0) 6= 0. It follows that
S(w) has a local "mth root," R(w). Let z = z(w) = wR(w). We have z(0) = 0
and z′(0) = R(0) 6= 0, so on an open subset of U , z(w) is a new complex coor-
dinate for a new chart, φ1, centered at p. Reading through this new chart, f has
the form z 7→ zm. (Uniqueness of m is left to the reader.) Q.e.d.

Defintions. A point q ∈ X for which multq(f) > 1 is called a ramification
point; the image of a ramification point (in Y ) is called a branch point.

The branch set and its preimage, which contains the ramification points,
are discrete subsets of Y , resp. X : in local coordinates w = h(z), ramification
occurs at the isolated points z0, where h′(z0) = 0.

Here is the crucial global property of a holomorphic map between com-
pact surfaces:

Theorem. If f : X → Y is a nonconstant holomorphic map between
compact surfaces, there exists a unique positive integer d such that, for every
y ∈ Y , ∑

p∈f−1(y)

multp(f) = d.

Remark. d is called the "degree" of f . The theorem explains why f is also
called a branched covering map: the branch locus B ⊂ Y and its preimage
f−1(B) are discrete and hence finite (by compactness of Y ). Thus, away from
finitely many points, f is a covering map of degree d (every point in Y \ B is
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contained in an open set U whose pre-image is a disjoint union of d open sets,
each homeomorphic to U ).

Sketch of the proof of the theorem. The open unit disk D ⊆ C is a
Riemann surface, and for the holomorphic map f : D → D, defined by z → zm,
the theorem is clearly true: 0 is the unique point in f−1(0), and the multiplicity
at 0 is m; if a ∈ D, a 6= 0, f−1(a) consists of m distinct points (the mmth roots
of a), at which the multiplicity of f is 1. Thus the total multiplicity over every
point in D is m. A general nonconstant holomorphic map is a "disjoint union"
of such power maps, which shows that dy : Y → N, which a priori depends on
y ∈ Y , is a locally constant map. But dy is also continuous; the connectedness
of Y implies that dy is constant. Q.e.d.

1.4 THE RIEMANN-HURWITZ RELATION

Topologically, compact oriented surfaces are completely classified by the genus
g ≥ 0. All such surfaces admit triangulations; for any triangulation,

#{vertices} − #{edges} + #{faces} = 2 − 2g (Euler characteristic).

If f : Xg → Yh is a covering map of degree d between compact oriented sur-
faces of genera g, h, resp., then 2g − 2 = d(2h− 2). For branched coverings (in
particular, for holomorphic maps) we have:

Theorem (the Riemann-Hurwitz relation). If f : Xg → Yh is a non-
constant holomorphic map of degree d between compact Riemann surfaces of
genera g,h, resp., then

2g − 2 = d(2h− 2) +
∑

p∈X

(multp(f) − 1).

Proof. Let Y be triangulated so that the branch locus B ⊂ Y is con-
tained in the vertex set. Let v,e, f be the number of vertices, edges and faces
respectively. The triangulation lifts through the covering of degree d to a trian-
gulation of X which has de edges and df faces, but only

dv −
∑

b∈B

(d− |f−1(b)|)

vertices. Hence

2 − 2g = dv − de+ df −
∑

b∈B

(d− |f−1(b)|).

Since dv − de+ df = d(2 − 2h), it suffices to show that

∑

b∈B

(d− |f−1(b)|) =
∑

p∈X

(multp(f) − 1).
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Proof, cont. Let B = {b1, b2, . . . , bn}. We make use of the trivial fact that
|f−1(bi)| =

∑
x∈f−1(bi)

1, together with the constancy of the degree
∑

x∈f−1(bi)
multx(f) =

d, to rewrite the sum

∑

b∈B

(d− |f−1(b)|) =
n∑

i=1

(d− |f−1(bi)|)

=

n∑

i=1

∑

p∈f−1(bi)

(multp(f) − 1)

=
∑

p∈X

(multp(f) − 1).

At the final step, we use the fact that multp(f) = 1 whenever p /∈ f−1(B).
Q.e.d.

Applications. 1. The genus of the Fermat curve. Let X be the smooth
projective plane curve which is the zero locus of the polynomial F (x, y, z) =
xd + yd + zd. Consider the holomorphic map

π : X → P1, [x : y : z] 7→ [x : y].

It has degree d, since π−1([x : y]) is in bijection with the set of dth roots of
−xd − yd. If xd = −yd, |π−1([x : y])| = 1 and the multiplicity of π is d. There
are d such points, given (in homogeneous coordinates) by [1 : ω : 0], where ω is
a dth root of −1. At all other points, the multiplicity of π is 1. The genus of P1

is 0 so the RH relation 2gX − 2 = d(−2) + d(d− 1) yields

gX =
(d− 1)(d− 2)

2
.

[In fact, this degree-genus formula holds for ANY smooth projective curve of
degree d.]

2. Cyclic covers of the line. Let h(x) be a polynomial of degree k, and
consider the affine plane curve C = {(x, y) ∈ C2 | yd = h(x)}, where d ≥ 2.
If h has distinct roots (first non-trivial assumption), the projection πx : X →
C, (x, y) 7→ x ramifies with multiplicity d over the roots of h, and is a d-fold
covering over all other points in C. We compactify C to C by projectivization.
Then πx extends to a map πx : C → P1. What happens "at infinity" (i.e., as
x→ ∞)? Suppose k = dt, t ≥ 1 (second non-trivial assumption). For x 6= 0 (i.e.,
in a neighborhood of ∞), the map (x, y) ↔ (1/x, y/xt) is bianalytic and defines
new coordinates z = 1/x, w = y/xt. The defining equation of C transforms to

wd = yd/xk = ydzk = h(x)zk = h(1/z)zk

= (1 − za1)(1 − za2) · · · · · (1 − zak) = g(z)

where a1, . . . , ak are the roots of h(x). The dth roots of g(0) 6= 0 correspond to
d points at ∞.
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Thus πx : C → P1 is a holomorphic map of degree d between compact
Riemann surfaces (in fact, a meromorphic function) which ramifies at k points
(over the k distinct zeroes of h(x), but not over ∞) with multiplicity d. The RH
relation determines the genus of C

2gC − 2 = d(−2) + k(d− 1)

gC = (d− 1)(k − 2)/2.

Remarks. 1. C admits an automorphism of order d, defined by

α : (x, y) 7→ (x, ωy),

where ω is a primitive dth root of unity. α fixes the k ramification points, and
permutes all other points in orbits of length d.

2. If d = 2, C is hyperelliptic and α is the hyperelliptic involution, with
k = 2g + 2 fixed points.

1.5 SINGULARITIES

Consider, again, the affine plane curve C = {(x, y) ∈ C2 | yd = h(x)}, where
d ≥ 2 and h(x) is a polynomial of degree k. We wish to treat the most general
case: we do NOT assume h has distinct roots, and we do NOT assume k is a
multiple of d. Thus:

• h(x) = (x− a1)
e1(x− a2)

e2 . . . (x− ar)
er , ai ∈ C, ei ≥ 0, and

∑r
i=1 ei = k;

• k = dt− ǫ, t ≥ 1, 0 ≤ ǫ ≤ d− 1.

With these assumptions, C and its compactification C ⊂ P2 may contain
singular points which must be "resolved."

Definitions. A point p = (x0, y0) on an affine plane curve f(x, y) = 0
is singular if fx(x0, y0) = fy(x0, y0) = 0. A singularity is monomial if there
are local coordinates (z, w) centered at p in which the defining equation has the
form zn = wm, n,m > 1.

A monomial singularity may occur at ∞. For C, a cyclic covering of the
line, defined by yd = h(x), the projection πx : (x, y) 7→ x is a coordinate chart on
the affine portion. For the points at ∞, we change to the coordinates z = 1/x,
w = y/xt. In the new coordinates, the defining equation

yd = (x− a1)
e1(x− a2)

e2 . . . (x − ar)
er = h(x)

transforms to

wd = yd/xk+ǫ = ydzk+ǫ = h(x)zk+ǫ = h(1/z)zk+ǫ

= zǫ(1 − za1)
e1(1 − za2)

e2 . . . (1 − zar)
er = zǫg(z).

Since g(0) 6= 0, the equation "looks like" the singular curve wd = zǫ near ∞
(i.e., near z = 0) .
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We also get a monomial singularity on C at any root of h(x) with multi-
plicity > 1, e.g., if e1 > 1, then, near x = a1, the equation is

yd = aǫ
1(x − a1)

e1(a1 − a2)
e2 . . . (a1 − ar)

er

≈ constant ·Xe1 (where X = x− a1).

Theorem. On an affine plane curve, a monomial singularity of type
zn = wm is resolved by removing the singular point and adjoining (n,m) =
gcd(n,m) points.

Proof. Case 1. If n = m, zn − wn factors as

zn − wn =

n−1∏

i=0

(z − ζiw),

where ζ is a primitive n th root of unity. Each factor defines a smooth curve.
The singularity is resolved by removing the common point (0, 0) and replacing
it with n distinct points.

Case 2. If (n,m) = 1 (relatively prime), there exist a, b ∈ Z such that
an + bm = 1. The map φ : (z, w) 7→ zbwa defines a "hole chart" whose do-
main is the curve minus the singular point {(0, 0)} and whose co-domain is the
"punctured" plane C \ {0}. The inverse chart is φ−1 : s 7→ (sm, sn). By conti-
nuity, φ extends uniquely to the closure of the domain ("restoring" the singular
point).

Case 3. If (n,m) = c, there exist a, b ∈ Z such that n = ac and m = bc, and
(a, b) = 1. Then

zn − wm = (za)c − (wb)c =

c∏

i=1

(za − ζiwb),

where ζ is a primitive c th root of unity. Case 2 applies to each of the c factors;
thus c points are adjoined to fill c holes. Q.e.d.

Corollary (genus of a cyclic cover of the line). Let yd = h(x), d ≥ 2,
define the cyclic covering πx : C → P1. Let the polynomial h(x) have r roots
of multiplicities e1, . . . , er. Assume

∑r
i ei ≡ 0 (mod d) (to avoid branching at

∞). The genus of C is

g = 1 +
(r − 2)d−

∑r
i=1(d, ei)

2
.

Proof. πx : C → P1 is a d-sheeted branched covering; over a zero of
multiplicity e, there are (d, e) points, each of multiplicity d/(d, e). Apply the
RH relation. Q.e.d.

[ Remark. For connectivity of C , f(x, y) = yd − h(x) must be irreducible.
Exercise: this is the case iff the gcd of the set {d, e1, . . . , ek} is 1.]
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2 Lecture II

1. Galois coverings

2. Automorphisms with fixed points

3. Monodromy

4. Permutation groups

5. Galois coverings of the line

6. The Galois extension problem

2.1 GALOIS COVERINGS

A Galois covering is a branched covering f : X → Y , where f is the quotient
map of a group action on X . The group G(f) = G(f,X, Y ) is called the Galois
group of the covering. If X and Y are compact Riemann surfaces and f is
holomorphic, then G(f) ≤ Aut(X). G(f) acts as a transitive permutation
group on the sheets of the covering (in particular, on the fibre over each y ∈ Y ).
At a ramification point p ∈ X , two or more sheets come together, so p must
have a non-trivial isotropy subgroup Gp ≤ G(f). If q is in the G(f)-orbit of p,
i.e., if there exists g ∈ G(f) such that q = g · p, then Gq = g ·Gp · g−1.

Example. Let yd = h(x), d ≥ 2, define the cyclic covering πx : C → P1.
The automorphism α : C → C, defined by

α : (x, y) 7→ (x, ωy),

where ω is a primitive d th root of unity, generates the (cyclic) Galois group
G(πx) = 〈α〉 ≃ Zd.

Example, cont. Let h(x) have r roots of multiplicities e1, . . . , er, and as-
sume

∑r
i ei ≡ 0 (mod d) (so there is no branching at ∞). We know that over

the root of multiplicity ei, the sheets come together at (d, ei) points, in sets of
d/(d, ei) sheets. If ei > 1, these are ramification points. At each of these points,
the isotropy subgroup can only be 〈α(d,e)〉 ≃ Zd/(d,e). Conversely, a point in C
a with non-trivial isotropy subgroup is a ramification point lying over a zero
of multiplicity > 1.

The Galois group of a holomorphic map between compact Riemann sur-
faces need not be cyclic, but the isotropy groups always are.

2.2 AUTOMORPHISMS WITH FIXED POINTS

Lemma. Let G be a finite group of automorphisms of a compact Riemann
surface X . Let Gp ≤ G be the isotropy subgroup of a point p ∈ X . Then Gp is
(finite) cyclic.
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Proof sketch. Let g ∈ Gp. In a coordinate (z) centered at p, g is represented
by a Taylor series of the form

∑∞

n=1 an(g)zn with zero constant term (since p
is fixed by g). a1(g) 6= 0 (since g is an automorphism, multq(g) = 1 for all
q ∈ X). Claim: the map θ : Gp → C∗, defined by θ : g 7→ a1(g), is a group
homomorphism. Proof of claim: If h ∈ Gp, the Taylor series for h, in the same
coordinate system, has coefficient a1(h) 6= 0. Multiplication of power series
shows a1(g ◦ h) = a1(g) · a1(h). (Q.e.d. claim.) Thus θ(Gp) is a finite subgroup
of C∗. The only finite subgroups of C∗ are cyclic. Exercise: Complete the proof
by showing that ker(θ) is trivial. Q.e.d.

2.3 MONODROMY

There is a finite permutation group associated to ANY branched covering f :
X → Y between compact surfaces (Galois or not). It is known as the mon-
odromy group of the covering. This group, together with a canonical set of
generators, determines the branched covering, up to up to homeomorphism
(biholomorphism, in the category of Riemann surfaces).

Let f have degree d, and let Y ∗ = Y − B, where B = {b1, b2, . . . , bn} ⊂ Y
is the (finite) branch set and X∗ = X − f−1(B). Note that f−1(B) is a finite
set containing the ramification points, and possibly some other points. The
restricted map

f∗ : X∗ → Y ∗

is an ordinary (unramified) d-sheeted covering map.
Choose a basepoint y0 ∈ Y ∗, and let

F = (f∗)−1(y0) = {x1, x2, . . . xd} ⊂ X∗,

the fibre over the basepoint. A loop γj , based at y0 and winding once counter-
clockwise around the puncture created by the removal of bj (and not winding
around any other puncture), has a unique lift to a path γ̃j,i starting at xi,
i = 1, 2, . . . d, with a well-defined endpoint belonging to F .

Lemma. For each j ∈ {1, 2, . . . , n}, the "endpoint of lift" map

ρj : i 7→ endpoint of γ̃j,i ∈ F, i ∈ {1, 2, . . . , d}

is a bijection (hence, an element of Sd).
Proof. Suppose the endpoint of γ̃j,i, say, xl, coincides with the endpoint

of γ̃j,k. Then there is a path in X from xi to xk , namely, (γ̃j,k)−1 ◦ γ̃j,i, which is
a lift of the trivial path (γj)

−1 ◦ γj = {y0} ∈ Y . This implies xi = xk . Q.e.d.

In other words, after choosing a basepoint y0 ∈ Y ∗, and choosing n loops
based at y0 winding once counterclockwise around one of the n punctures ,
we obtain a set {ρ1, . . . , ρn} ⊆ Sd of n permutations of the fibre F over the
basepoint y0. Definition The monodromy group of the branched covering f :
X → Y is the subgroup M(f) = M(f,X, Y ) ≤ Sd generated by {ρ1, . . . , ρn}.
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The cycle structure of ρj ∈M(f) encodes the ramification data of the orig-
inal branched covering f : X → Y above the branch point bj ∈ Y .

Proposition. The number of points in the fibre f−1(bj) is the number of
cycles in the monodromy generator ρj (1-cycles are counted). The multiplicity
of f at a point in the fibre f−1(bj) is the length of the corresponding cycle in ρj .

Proof sketch. Number the sheets of f∗ : X∗ → Y ∗ so that xi belongs to
the i th sheet. Suppose there are at least 3 sheets, and one of the cycles of ρj is
(123). Let γj be a loop in Y ∗ based at y0 and winding once counterclockwise
around the jth puncture (and not around any other puncture). By assumption,
the lift γ̃j,1, which starts at x1 ends at x2; the lift γ̃j,2, which starts at x2 ends at
x3; and the lift γ̃j,3 which starts at x3 ends at x1. It follows that (γj)

3 lifts to a
loop in X∗ based at x1, crossing sheets 1, 2 and 3, but no other sheets.

Proof sketch, cont. In a sufficiently small punctured neighborhood Vj ⊂
Y ∗ (punctured at bj), every point has three distinct pre-images on sheets 1, 2
and 3 (and possibly other pre-images on other sheets). There exists a "hole
chart" whose domain is a union of open subsets of sheets 1, 2 and 3, and whose
codomain is contained in Vj . In the local coordinates, f : z 7→ z3. To fill
the hole in the domain we must adjoin a point of multiplicity 3. Analogous
constructions are made for each cycle (including 1-cycles) of ρj . Q.e.d.

EXAMPLE. Let f : X → Y be a 6-sheeted branched covering, branched
over {b1, b2, . . . , bn} ⊂ Y , and suppose ρ2 = (135)(46)(2) ∈ S6. Then f−1(b2) ⊂
X consists of three points: one of multiplicity 3 (where the sheets 1, 3 and 5
come together); one of multiplicity 2 (where sheets 4 and 6 come together); and
one other point (on sheet 2) of multiplicity 1.

If f : X → Y is a Galois covering, each generator ρj ∈ M(f) is uni-
form, i.e., a product of cycles of the same length, where every symbol 1, 2, . . . d
appears in exactly one cycle. This is because each cycle of ρj is the (cyclic!)
isotropy subgroup of the corresponding ramification point; these points com-
prise an orbit of G(f); hence the cycles are conjugate, and therefore, have
the same length. Every symbol appears because G(f) acts transitively on the
sheets.

For a Galois covering, the ramification data is encoded by assigning a branch
index to each point in the branch set {b1, b2, . . . , bn} ⊂ Y . The index rj > 1 as-
signed to bj means that ρj is a product of d/rj cycles of length rj , where d is
the degree of the covering.

Example. For a 6-sheeted Galois covering, the possible branch indices are
2, 3, and 6. ρj is either (a) a product of 2 3-cycles; (b) a product of 3 2-cycles; or
(c) a single 6-cycle.

Here is a picture of a 6-fold Galois covering: The branch indices are (r1, r2, r3) =
(3, 2, 2). Note: this is NOT a cyclic covering of the line; we shall see that the
Galois group is S3 ≃ D6.

The Riemann-Hurwitz relation for a Galois covering. Branching indices
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b b b Y
b1 b2 b3

X

f

b

b b

b

b b

b b

{r1, r2, . . . , rn} yield a convenient form of the ramification term in the Riemann-
Hurwitz relation:

∑

p∈X

multp(f) =

n∑

i=1

|G|

ri
(ri − 1).

If g is the genus of X , and h the genus of Y , we have

2g − 2 = |G|(2h− 2) +

n∑

i=1

|G|

ri
(ri − 1)

= |G|

(
2h− 2 +

n∑

i=1

(1 − 1/ri)

)
.

Example, cont. For the 6-fold Galois covering pictured previously, with
branching indices (3, 2, 2), the RH relation yields g = h = 0 (exercise). Thus
the Galois group G(f) has order 6 and acts on P1. It cannot be Z6, because,
as a group of rotations of the sphere, it would have two fixed points where
the rotation axis meets the sphere, implying branching indices (6, 6). The only
other group of order 6 is S3 ≃ D6. A dihedron with two 3-sided faces is
realized on the sphere by inscribing an equilateral triangle on the equator, and
taking the two face-centers to be the North and South poles. The dihedron is
preserved by a 3-fold rotation about the polar axis and any of three conjugate
half-turns about a line joining a vertex with the opposite edge midpoint. There
is one orbit of length 2 (the poles), fixed by the 3-fold rotation (yielding branch
index 3); and two orbits of length 3 (vertices and edge-midpoints) fixed by a
half-turn (yielding branch indices (2, 2)). Exercise. Generalize to D2n, n ≥ 2,
acting on P1, with branch indices (2, 2, n).

The Galois group can be defined for a non-Galois (arbitrary branched) cov-
ering. Definition The Galois group G(f,X, Y ) of the branched covering map
f : X → Y is the group of covering transformations of f∗ : X∗ → Y ∗, that
is, the homeomorphisms h : X∗ → X∗ (automorphisms in the category of
Riemann surfaces) such that f∗ = f∗ ◦ h.

We shall show that G(f,X, Y ) is isomorphic to the group of permutations
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of the fibre F which commute with the elements of M(f,X, Y ). We first extract
the purely algebraic part.

2.4 TWO PERMUTATION GROUPS

Let K ≤ H be a subgroup-group pair. Let

K∗ = ∩h∈Hh
−1Kh,

the core of K in H , and let NH(K) = {h ∈ H | hK = Kh}, the normalizer of
K inH . Assume that the index [H : K∗] (hence also [H : K], and [NH(K) : K])
is finite. There are two natural finite permutation groups defined on the set
R = {Kh | h ∈ H} of right cosets of K in H :

• (H/K∗, R) (monodromy type - action on the right);

• (NH(K)/K,R) (Galois type - action on the left).

• the right (monodromy) action H/K∗ ×R → R is

K∗h2 · Kh = KhK∗h2 = Khh2

• the left (Galois) action NH(K)/K ×R → R is

Kh1 · Kh = Kh1Kh = Kh1h (h1 ∈ NH(K)).

Exercise. Show:
1. The actions are well-defined and faithful, i.e. a group element that

fixes every coset in R is the identity.
2. The actions commute: (Kh1)(Khh2) = (Kh1h)(K

∗h2).
3. The monodromy action is transitive.
4. The Galois action is regular: if h1 ∈ NH(K), and Kh1h = Kh, then

h1 ∈ K (i.e., all isotropy subgroups are trivial).
5. If K is normal in H (i.e, K∗ = K , NH(K) = H), the two groups

are isomorphic (≃ H/K) and the actions reduce to the left and right regular
representations of H/K on itself.

Our goal is to show that M(f,X, Y ), and G(f,X, Y ) fit into this algebraic
scheme.

Recall we have a branched covering map f : X → Y, of degree d, with
branch set B = {b1, b2, . . . , bn} ⊂ Y , a basepoint y0 ∈ Y ∗ = Y −B, and fibre

F = (f∗)−1(y0) = {x1, x2, . . . xd} ⊂ X∗ = X − f−1(B),

over the basepoint. By standard covering space theory, f induces an imbed-
ding of the fundamental groups {π1(X

∗, xi), i = 1, . . . , d}, (all isomorphic), as
a conjugacy class of subgroups Di ≤ Γ, of index d, where Γ = π1(Y

∗, y0).
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Γ = π1(Y
∗, y0) acts on the fibre F = f−1(y0) ⊂ X∗, by the "endpoint of lift"

map. The isotropy subgroup of xi isDi; the kernel of the action isD∗ = ∩d
i=1Di.

The action is transitive, by the connectivity of X∗: there exists a path lj ⊂ X∗

from x1 to xj , for each j ∈ {1, . . . , d}. This path projects to a loop f(lj), based
at y0, defining an element of Γ which takes x1 to xj . f(lj) may wind several
times around one or more punctures. If it winds, say, twice around b1, and
three times around b5, it is homotopic to γ2

1γ
3
5 , where γj is defined as before: a

loop based at y0 which winds once counterclockwise about the puncture at bj
(and not around any other puncture).

It follows that there is a surjective homomorphism

θ : Γ →M(f,X, Y )

with kernel D∗. Equivalently, M(f,X, Y ) ≃ Γ/D∗.
Let |Γ/D1|r be the set of right cosets ofD1 in Γ. There is a natural bijection

between this set and F : let ǫi ∈ Γ, i = 1, . . . , n, lift to a path in X from x1 ∈ F
to xi ∈ F . (These exist by the transitivity of Γ on F ; we may assume ǫ1 = id.)
∪n

i D1ǫi = Γ since every γ ∈ Γ has a lift starting at x1 (and ending at xj ∈ F , for
some j). D1ǫi ∩D1ǫj = ∅ if i 6= j by uniqueness of path lifting.

Definition Permutation groups (G,A), (G′, A′) are isomorphic if there exist
a group isomorphism i : G → G′ and a bijection b : A → A′ such that the
diagram

G × A → A
i ↓ b ↓ b ↓
G′ × A′ → A′

is commutative.
Theorem. The permutation groups (Γ/D∗, |Γ/D1|r) and (M(f,X, Y ), F )

are isomorphic via the group isomorphism ρj ↔ D∗γj , and the natural bijec-
tion F ↔ |Γ/D1|r.

Remark. This is an instance of a more general theorem which will be useful
later on: Theorem. If (G,A) is a transitive permutation group (G a group, A
a set) with isotropy subgroup G1 ≤ G, and θ : Γ → G a surjective homomor-
phism, with θ−1(G1) = D, then (G,A) is isomorphic (as a permutation group)
to (Γ/D∗, |Γ/D|r).

There is a natural way to define a permutation group automorphism. For
the permutation group (G,A), an automorphism is a bijection σ : A → A
(equivalently, σ ∈ SA) such that

G × A → A
id ↓ σ ↓ σ ↓
G × A → A

commutes. Hence we define

Aut(G,A)
def
= {σ ∈ SA | σg = gσ for all g ∈ G}

= CentSA
(G).
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Theorem. G(f,X, Y ) ≃ NΓ(D1)/D1.
Proof. G(f,X, Y ) is the automorphism group of the permutation group

(M(f,X, Y ), F ). Identifying the latter with (Γ/D∗, |Γ/D1|r), we seek to char-
acterize the bijections τ which make the diagram

Γ/D∗ × |Γ/D1|r → |Γ/D1|r
id ↓ τ ↓ τ ↓

Γ/D∗ × |Γ/D1|r → |Γ/D1|r

commute. Commutativity means for all γ ∈ Γ, τ(D1γ) = τ(D1)γ. In particular,
if γ ∈ D1, τ(D1) = τ(D1)γ. Suppose τ(D1) = D1ε, for some ε ∈ Γ. Then
D1ε = D1εγ. Since γ ∈ D1 was arbitrary,

D1ε = D1εD1 (as cosets)

ε−1D1ε = ε−1D1εD1,

which implies D1 ⊆ ε−1D1ε and hence ε ∈ NΓ(D1). Q.e.d.
If the covering f : X → Y is Galois, D1 = D∗ = D. Then G(f) ≃ M(f),

and both are isomorphic to the finite group G = Γ/D ≤ Aut(X), of order d.
The surjective homomorphism θ : Γ → M(f) yields a presentation of G, as
follows. Γ = π1(Y

∗, y0), has presentation

〈a1, b1, . . . , ah, bh, γ1, . . . , γn |
h∏

i=1

[ai, bi]

n∏

j=1

γj = id〉,

where h is the genus of Y and [a, b] = a−1b−1ab. The order of θ(γj) is rj > 1 (in
M(f) ≤ Sd, θ(γj) = ρj , a product of d/ri cycles of length ri). G is generated by
g1, k1, . . . , gh, kh (images of ai, bi, resp., under θ), and ρ1, . . . , ρn (images of the
γj ’s). In addition to the order relations ρri

i = id, there is the "long" relation

h∏

i=1

[gi, ki]

n∏

j=1

ρj = id.

2.5 GALOIS COVERINGS OF THE LINE

In the case h = 0 (f : X → P1), the long relation is simply
∏n

j=1 ρj = id, and it
has the following topological explanation: a loop winding once around all the
punctures can be shrunk to a point "around the back" of the sphere.

Theorem. Let f : X → P1 be a Galois covering with Galois group G
of order d < ∞, and branching indices {r1, . . . , rn}, all ri > 1. Then G is
generated by n elements of orders ri, i = 1, . . . , n, whose product is the identity.
Conversely, any finite group G with an n-element generating set is the Galois
group of a Galois covering of the line, branched over n+ 1 points.

Corollary. Every finite group is a group of automorphisms of a compact
Riemann surface.
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Theorem (Harvey ’66). Let A = {a1, a2, . . . , an}, n ≥ 2, be a multi-set of
integers with ai > 1. Then A is the set of branching indices of a d-fold cyclic
covering of the line if and only if d = lcm(A) = lcm(A− {ai}), i = 1, . . . , n.

Proof. If lcm(A) < d, A cannot generate a cyclic group of order d. Since
the product of the elements ofA is trivial, any one of them is redundant. Hence
the removal of any one of the generators must not reduce the lcm. Q.e.d.

2.6 THE GALOIS EXTENSION PROBLEM

Given Galois coverings f : X → Y and g : Y → Z , under what conditions is
g ◦ f : X → Z also a Galois covering? Equivalently,

• Does G(f) ≤ Aut(X) extend to a larger group of automorphisms?

• Does G(g) ≤ Aut(Y ) lift to a subgroup of Aut(X)?

These questions can be answered in terms of monodromy, but a more fruitful
approach is via uniformization. We’ll take this up in the next lecture.

3 Lecture III

1. Uniformization

2. The Dirichlet region

3. Surface groups

4. Triangle groups

5. Uniformization of automorphisms

3.1 UNIFORMIZATION

Uniformization Theorem (Klein, Poincarè, Koebe). A simply connected Rie-
mann surface, up to conformal equivalence, is one of the following:

1. the complex plane C;

2. the Riemann sphere P1;

3. the upper half plane U = {z ∈ C | Im(z) > 0}.

Each simply connected surface has a canonical complete metric of constant
curvature. On U the metric is |dz|/Im(z), with curvature ≡ −1.

The uniformization theorem implies that every Riemann surface has one
of these three as its universal cover. More generally, every Riemann surface is
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conformally equivalent to a quotient X̃/Γ, where X̃ is one of the simply con-

nected surfaces, and Γ is a discrete group of Isom+(X̃) (orientation-preserving
isometries), acting properly discontinuously.

Definitions (1) A subgroup Γ of a topological group such as Isom+(X̃) is
discrete iff any infinite sequence {γn ∈ Γ} converging (in the subspace topol-
ogy) to id, is eventually constant (γn = id for all n ≥ N , for some N < ∞).

(2) Γ acts properly discontinuously on a topological space such as X̃ if every

x ∈ X̃ is contained in an open set Ux such that {γ ∈ Γ | γUx ∩ Ux 6= ∅} is finite.

If Γ acts properly discontinuously on X̃ , the set D of points with non-trivial
stabilizer is discrete (possibly empty). Deleting D yields a covering map

X̃ −D → (X̃ −D)/Γ

(possibly infinite-sheeted) which transfers the metric on X̃ to the quotient,
making it a Riemann surface (punctured at a discrete set of points). The metric
extends canonically to the closure (with filled-in punctures).

We focus on the case where X̃/Γ is compact. This is automatic if X̃ = P1

(itself compact). If X̃ = C, we get compact quotients (tori) when Γ is a lattice
generated by ω1, ω2 ∈ C, with ω1/ω2 /∈ R.

When X̃ = U, Isom+(X̃) is the real Möbius group
{
z 7→

az + b

cz + d
, a, b, c, d ∈ R, ad− bc = 1

}
≃ PSL(2,R).

Discrete subgroups of PSL(2,R) are Fuchsian groups. The limit set of a Fuch-
sian group Γ is the set of accumulation points of its orbits; by discreteness,
these lie on the ideal boundary ∂U = R ∪ {∞}. There are three types of ele-
ments in PSL(2,R): elliptic elements, with trace = 2 and a single fixed point
in U; parabolic elements, with trace < 2 and a single fixed point in ∂U; and
hyperbolic elements, with trace > 2 and two fixed points in ∂U. Hyperbolic
and parabolic elements have infinite order; an elliptic element can have infi-
nite order, but an elliptic element in a Fuchsian group has finite order (by
discreteness).

Lemma. Two elements of PSL(2,R) commute if and only if they have the
same fixed point set.

Remarks on the proof. In a general transformation group, commuting
elements merely preserve each other’s fixed point set (exercise). In a gen-
eral group, conjugate elements have conjugate centralizers (exercise). From
the second statement, it suffices to examine centralizers of representatives of
conjugacy classes. In PSL(2,R), parabolic elements are conjugate to z 7→ z ± 1,
whose fixed point set is {∞} ⊂ ∂U. Hyperbolic elements are conjugate to
z 7→ λz, for some real λ > 1, having fixed point set {0,∞} ⊂ ∂U. Elliptic el-
ements are conjugate to rotations fixing the origin (after a standard conformal
transformation mapping U to the interior of the unit disk D). It can be shown
that the centralizer of any one of these element types is the largest cyclic sub-
group of PSL(2,R) containing the element; this can be characterized as the set
of elements having the same fixed point set.
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A Fuchsian group with a finite limit set is called elementary. These are
either infinite cyclic, finite cyclic, or "infinite dihedral," and they are generated,
respectively, by a single parabolic element, a single elliptic element, or a pair
consisting of a hyperbolic and an elliptic element of order 2. In the latter case,
the elliptic element interchanges the two ideal fixed points of the hyperbolic
element while fixing (setwise) the geodesic joining them.

We consider mostly cocompact Fuchsian groups, i.e, with compact quotient
space. These cannot contain parabolic elements, and must be non-elementary.
It suffices for our purposes to further restrict to cofinite area groups, whose
quotient has finite (hyperbolic) area. For such groups, one always has a fun-
damental domain, known as a Dirichlet region, which is a convex geodesic
polygon with finitely many sides, entirely contained in U. Recall that a closed
subset D ⊂ U is a fundamental domain for Γ if: (i) ∪γ∈Γ(γD) = U; and (ii)
Int(D) ∩ Int(γD) = ∅ unless γ = id.

3.2 THE DIRICHLET REGION

Let Γ be a cocompact, cofinite area Fuchsian group (henceforth, we will just
say "Fuchsian group").

Choose p ∈ U which is not fixed by any nontrivial element of Γ. The Dirich-
let region for Γ, based at p, is the set

Dp = {z ∈ U | d(z, p) ≤ d(γz, p), ∀γ ∈ Γ},

where d denotes hyperbolic distance. It is not hard to see that Dp is a finite
intersection of half-planes bounded by geodesics. A bounding geodesic seg-
ment is called a side of the region. A point where two distinct sides intersect
is called a vertex. The set {γDp | γ ∈ Γ} is called a Dirichlet tesselation of U.
A particular γDp is called a face of the tesselation. Neighboring faces share a
common side.

If an element of Γ has a fixed point q ∈ U, its orbit Γq intersects the Dirichlet
region D on its boundary ∂D. The isotropy subgroups of the points in Γq
are (finite) cyclic groups generated by elliptic elements (all conjugate in Γ).
Suppose u ∈ ∂D is fixed by an elliptic element γ ∈ Γ. If γ has order k ≥ 3, u
must be a vertex ofD, at which three or more sides meet at angles ≤ 2π/k < π.
If k = 2, u might be the midpoint of a side; in this case, it is convenient to
adjoin u to the vertex set, where two "half-sides" meet at the angle = π.

The set of vertices of D is partitioned into subsets ( vertex cycles) whose
elements belong to the same Γ orbit. If two vertices are in the same cycle,
their isotropy subgroups are conjugate. Hence there is a period associated
with each vertex cycle; it is the common order of the elliptic generator of the
isotropy subgroup. The vertex cycles with period > 1 are in bijection with
conjugacy classes of elliptic elements in Γ.

Lemma. The internal angles at the vertices of a vertex cycle of period k in
a Dirichlet region sum to 2π/k.

Proof. Let v1, . . . , vt be the vertices in a cycle, and let θi be the internal
angle at vi, i = 1, . . . , t. Let H ≤ Γ be the (finite, cyclic) isotropy subgroup of
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v1. Then there are |H | = k faces containing vertex v1 and having internal angle
θ1 at v1; similarly, there are k faces containing vj and having internal angle θj

at vj . There exists γj ∈ Γ such that γjvj = v1. Thus γj adds k more faces to
the total set of faces surrounding v1. Of course, the total angle around v1 is 2π.
Summing over all j, we have

k(θ1 + θ2 + · · · + θt) ≤ 2π.

Exercise: complete the proof by showing that every face containing v1 has been
counted in this procedure, hence the inequality is actually equality. Q.e.d.

Sides s1, s2 of a Dirichlet region D for Γ are congruent if there is a
side-pairing γ ∈ Γ such that s2 = γs1. In this case, D and γD are neighboring
faces. A side may be congruent to itself (if its midpoint is fixed by an ellip-
tic element of order 2). Since no side belongs to more than two faces of the
Dirichlet tesselation, no more than two sides can be congruent. For if a side s were
congruent with γ1s and γ2s, then it would belong to three faces: D, γ−1D, and
γ−1
1 D (unless γ = γ1). Hence, if we count a side whose midpoint is fixed by an

elliptic element of order 2 as a pair of (congruent) sides, then the number of
sides of D is even.

Lemma. The k side-pairing elements of a 2k-sided Dirichlet region for Γ
are a finite generating set for Γ.

Proof. Let Λ ≤ Γ be the subgroup generated by the side-pairing elements
of a Dirichlet region D for Γ. The strategy is to show that the connected set U

is the disjoint union of two closed sets,

X = ∪λ∈Λ λD and Y = ∪γ∈Γ−Λ γD.

Any union of faces is closed (exercise). Clearly X 6= ∅. Thus if we show that
X ∩ Y = ∅, it will follow that Y = ∅, i.e., Λ = Γ. Let λ ∈ Λ be arbitrary,
and suppose γD, γ ∈ Γ, is a neighboring face of λD. Then D is a neighboring
face of γ−1λD. Hence γ−1λ ∈ Λ, which forces γ ∈ Λ. This is true for each
of the finitely many neighbors of λD. There are possibly finitely many other
faces which share only a vertex with λD. Let γ1D be one of them. Since γ1D
is a "a neighbor of a neighbor of . . . a neighbor of" λD (finitely many!), the
previous argument, applied finitely many times, shows that γ1 ∈ Λ. Thus all
the faces surrounding any vertex of λD are Λ-translates of D, and none is a
(Γ − Λ)-translate. This shows that X ∩ Y = ∅. Q.e.d.

Let Γ have a Dirichlet region D with 2k ≥ 4 sides, r ≥ 0 vertex cycles with
periods mi > 1, i = 1, 2, . . . r, and s ≥ 0 other vertex cycles (with period 1). By
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the Gauss-Bonnet theorem, the hyperbolic area of D is

µ(D) = π(2k − 2) −
∑

internal angles

= π(2k − 2) −
r∑

i=1

2π

mi
− 2πs

= 2π

[
k − 1 − s−

r∑

i=1

1

mi

]

= 2π

[
k − 1− s− r +

r∑

i=1

1 −
1

mi

]
.

Claim: k − 1 − s− r = 2h− 2, where h is the genus of U/Γ.
To verify the claim, we need the following
Theorem. Let Γ be a Fuchsian group with Dirichlet region D. The (com-

pact) quotient Riemann surface U/Γ is homeomorphic to the orbifold D/Γ.
( Comments on the proof. An orbifold is a compact surface with finitely

many cone points, where the total angle surrounding a point is 2π/k for some
k > 1. There is a cone point in D/Γ for every vertex cycle with period k > 1.
To define an open, continuous, bijective mapping between the two spaces, one
uses the local finiteness of D: every point has an open neighborhood which
meets only finitely many of its Γ-translates. )

Proof of claim. The orbifold D/Γ has s + r vertices, k edges and 1 face.
Thus, if D/Γ has genus h, the Euler characteristic is 2− 2h = s+ r− k+ 1, and
the claim follows.

The area µ(D) of a Dirichlet region is a numerical invariant of Γ. This is a
consequence of the fact that any two sufficiently "nice" fundamental regions for
Γ have the same area. (Exercise: prove this for finite polygonal fundamental
regions.) From the formula

µ(D) = 2π

[
2h− 2 +

r∑

i=1

1 −
1

mi

]

we get, for every Fuchsian group Γ, a well-defined signature

(h;m1, . . . ,mr) h, r ≥ 0; if r > 0, mi > 1.

Theorem (Poincaré, Maskit). There exists a Fuchsian group with signature
(h;m1, . . . ,mr) if and only if

[
2h− 2 +

r∑

i=1

1 −
1

mi

]
> 0.

Proof sketch. Construct a 4h + r-sided regular polygon (it is convenient
to make a conformal tansformation and work in the interior of the unit disk
D). In counterclockwise order, label the first 4h sides α1, β1, α

−1
1 , β−1

1 , . . . ,
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αh, βh, α
−1
h , β−1

h . On the last r sides, erect external isosceles triangles with apex
angles 2π/mi. Delete the bases and label the equal sides of the isosceles tri-
angles ξi, ξ

−1
i . Expand or contract the resulting polygonal region (which has

4h+ 2r sides) until it has the required area. Let ai, bi ∈ PSL(2,R) pair αi with
α−1

i and βi with β−1
i , respectively. Let ei ∈ PSL(2,R) pair ξi with ξ−1

i . Let
Γ ≤ PSL(2,R) be the group generated by these elements. Claim: Γ is Fuchsian,
and the polygonal region is a fundamental polygon for Γ, with r singleton ver-
tex cycles of periods mi (the apices of the isosceles triangles) and one other
vertex cycle (the 4h+ r vertices of the original regular polygon) with period 1.
Q.e.d.

Corollary. A Fuchsian group Γ with signature (h;m1, . . . ,mr) has presen-
tation

Γ = 〈a1, b1, . . . , ah, bh, e1, . . . , er |

em1

1 = em2

2 = · · · = emr
r = id,

h∏

i=1

[ai, bi]

r∏

j=1

ej = id〉.

Proof. We already know that Γ is generated by the given (side-pairing)
elements. It remains to verify that the relations hold and that no other relations
are needed to define the group.

Proof, cont. Let φ : U → U/Γ be the quotient map. Remove from U all the
fixed points of elliptic elements of Γ, and remove from S = U/Γ the images of
those points, obtaining S0. The restricted map φ′ : U0 → S0 is an unbranched
Galois covering map (infinite sheeted), with Galois group Γ. From the theory
of covering spaces,

Γ ≃ π1(S0)/φ
′
∗(π1(U0)),

where φ′∗ is the imbedding of fundamental groups induced by φ′ (basepoints
suppressed). Since S0 is a surface of genus g punctured at r ≥ 0 points, its
fundamental group has presentation

〈a1, b1, . . . , ah, bh, e1, . . . , er |
h∏

i=1

[ai, bi]
r∏

j=1

ej = id〉.

If r = 0, we are done. Hence assume r > 0.
Proof, cont. We need to show that φ′∗(π1(U0)) is the smallest normal

subgroup of π1(S0) containing em1

1 , . . . , emr
r . It certainly must contain these el-

ements: a loop winding once counterclockwise around the jth puncture of S0

(and not around any other punctures) must be traversed exactlymj times until
it lifts to a loop in U0. Assuming ej represents such a loop, e

mj

j ∈ φ′∗(π1(U0)).
On the other hand, π1(U0) is generated by infinitely many loops λ1, λ2, . . .
winding around each of infinitely many punctures. Each λi winds around a
puncture lying over the jth puncture in S0, for some j ∈ {1, . . . , r}. Thus
φ′∗(λi) = e

mj

j . if u ∈ φ′∗(π1(U0)), and ũ is a preimage in π1(U0), then ũ =
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λǫ1
1 λ

ǫ2
2 . . . , and hence u is a product of elements from the set {em1

1 , . . . , emr
r }.

Q.e.d. Lemma. Fuchsian groups are isomorphic if and only if they have the
same signature (up to re-ordering of the periods.)

Proof. Exercise.

3.3 SURFACE GROUPS

A torsion-free Fuchsian group has signature (g;−), g > 1, and presentation

Λg = 〈a1, b1, . . . , ag, bg |

g∏

i=1

[ai, bi] = id〉.

It is called a "surface" group, since it is isomorphic to π1(Xg). Theorem. Any
compact Riemann surface Xg of genus g > 0 is conformally equivalent to the
orbit space U/Λg, where Λg is a surface group of genus g.

Proof. The orbifold D/Λg is a manifold (since there are no "cone" points).
It inherits a conformal structure from U. Q.e.d.

Theorem. Let Λ,Λ′ ≤ PSL(2,R) be two surface groups of fixed genus
g > 1. The compact surfaces U/Λ and U/Λ′ are conformally equivalent if and
only if Λ and Λ′ are conjugate in PSL(2,R).

Proof. Let g : U/Λ → U/Λ′ be a conformal homeomorphism between
the two compact surfaces. Any homeomorphism, in particular, g, lifts to the
universal cover, i.e., there exists T ∈ PSL(2,R) such that

g[z]Λ = [T (z)]Λ′ .

For any S ∈ Λ, g[S(z)]Λ = [TS(z)]Λ′ = [T (z)]Λ′ . Hence TS(z) = V T (z) for
some V ∈ Λ′. This is true for all z ∈ U, hence, TST−1 = V . Thus TΛT−1 ≤
Λ′. In fact, equality holds, since Λ and Λ′ are isomorphic. Thus Λ and Λ′ are
conjugate in PSL(2,R). Conversely, if TΛT−1 = Λ′, the map [z]Λ 7→ [T (z)]Λ′ is
a conformal homeomorphism. Q.e.d.

3.4 TRIANGLE GROUPS

Let ∆ ∈ U be a geodesic triangle with vertices a, b, c, at which the interior
angles are π/n, π/m, π/r respectively. Reflections in the sides of ∆ generate
a discrete group of isometries of U having ∆ as fundamental domain. The
orientation-preserving subgroup (of index 2) is a Fuchsian group with sig-
nature (0;n,m, r). To see why, let e1 be the product of the two reflections in
the sides incident with vertex a; geometrically, this is a rotation (orientation-
preserving) about vertex a through an angle 2π/n. Define e2 and e3 similarly
as rotations about b and c through angles 2π/m, 2π/r, respectively. The product
e1e2e3 is easily seen to be trivial (write it as the product of six side reflections).
Let D be the four-sided region formed by the union of ∆ with its reflection
across the side ab. e1 and e3 pair the sides ofD, soD is a Dirichlet region for the
group Γ∆ = 〈e1, e3〉 with presentation 〈e1, e2, e3 | en

1 = em
2 = er

3 = e1e2e3 = id〉.
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The construction of Γ∆ works as just well if the defining geodesic triangle
is in C or P1. In these cases, we get euclidean and spherical triangle groups.
The hyperbolic area of a Fuchsian triangle group with signature (n,m, r) (short
for (0;n,m, r)) is

µ(D) = 2π

[
1 − (

1

n
+

1

m
+

1

r
)

]
.

Hence there is a Fuchsian triangle group with signature (n,m, r) if and only if
the bracketed quantity is positive. If it is 0 or negative we get

(2, 4, 4), (3, 3, 3), (2, 3, 6) (euclidean);

(2, 2, n), n ≥ 3, (2, 3, 3), (2, 3, 4), (2, 3, 5) (spherical).

The spherical groups are finite: dihedral, tetrahedral, octahedral, icosahedral,
respectively.

Lemma (Hurwitz). The Fuchsian group with Dirichlet region of smallest
hyperbolic area is the triangle group with signature (2, 3, 7).

Proof. An entertaining exercise. Minimize from the general signature
(h;m1, . . . ,mr), showing, successively, that h = 0; 3 ≤ r ≤ 4; r = 3 and
m1 = 2, etc.

Since 1-(1/2+1/3+1/7)=1/42, the hyperbolic area A of a Dirichlet region
for a Fuchsian group satisfies A ≥ π/21.

3.5 UNIFORMIZATION OF AUTOMORPHISMS

Let Γ be Fuchsian, and Γ1 ≤ Γ a subgroup of finite index d. If D1 and D
are (respective) Dirichlet regions, a simple geometric argument yields µ(D1) =
dµ(D). This is none other than the Riemann-Hurwitz relation for the holo-
morphic map

ρ : U/Γ1 → U/Γ, ρ : [z]Γ1
7→ [z]Γ,

which sends the Γ1-orbit of z ∈ U to the Γ-orbit which contains it.
If we start with a surface group Λg , g > 1, and take Γ = N(Λg), its nor-

malizer in PSL(2,R), then, provided Γ is Fuchsian, we have a Galois covering
with Galois group Γ/Γ1, which must be the full automorphism group of the
compact Riemann surface U/Λg.

Theorem. The normalizer of a (noncyclic) Fuchsian group is Fuchsian.
Proof. Let Γ be a (noncyclic) Fuchsian group, and N(Γ) = NPSL(2,R)(Γ)

its normalizer. If N(Γ) is not Fuchsian, there is an infinite sequence of distinct
elements ni tending to id. For γ ∈ Γ, γ 6= id, n−1

i γni is an infinite sequence in Γ
tending to γ, which must be eventually constant, since Γ is Fuchsian. Thus for
all sufficiently large i, ni and γ commute. An abelian Fuchsian group is cyclic,
for otherwise there are commuting elements of PSL(2,R) with different fixed
point sets. Since we are assuming Γ is not cyclic, it is not abelian, so there is an
element γ′ ∈ Γ which does not commute with γ. On the other hand, imitating
the first part of the proof, for sufficiently large i, ni commutes with γ′ as well.
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Hence both γ and γ′ have the same fixed point set, which implies that they
commute, a contradiction. Q.e.d.

Corollary (Hurwitz). The automorphism group of a compact Riemann
surface of genus g > 1 is finite, with order ≤ 84(g − 1).

Proof. The surface group Λg is non-cyclic, hence its normalizer N(Λg) is
Fuchsian. The area of a Dirichlet region for Λg is 2π(2g − 2). Let A ≥ π/21 be
the area of a Dirichlet region for N(Λg). Then

|Aut(U/Λg))| = [N(Λg) : Λg] ≤
2π(2g − 2)

A
≤ 84(g − 1). Q.e.d.

Remark. A group of 84(g − 1) automorphisms of a compact surface of
genus g > 1 is called a Hurwitz group. The smallest Hurwitz group is PSL(2, 7)
(order 168) acting in genus g = 3. There are infinitely many Hurwitz genera
(and also infinitely many non-Hurwitz genera) (A.M. Macbeath.)

We have shown that every Riemann surface transformation group, G ×
Xg → Xg , where Xg is a compact Riemann surface of genus g > 1, and G ≤
Aut(Xg), can be represented entirely in terms of Fuchsian groups acting on the
universal covering space U:

Γ

Λg
×

U

Λg
→

U

Λg
, γ : [z] 7→ [γz],

where Λg is a surface group, and Γ is a subgroup ofN(Λg), such that Γ/Λg ≃ G.
γ denotes the element γΛg of the factor group; [z], [γz] denote the Λg-orbits of
z, γz ∈ U.

But Λg could imbed as a normal subgroup of Γ in more than one way, so it
is more precise to associate the action with a short exact sequence

{id} → Λg → Γ
ρ
→ G → {id}.

The epimorphism ρ, which determines the G-action, is called a “smooth" or
“surface-kernel" epimorphism (SKEP).

In studying actions on Xg , we are free to vary Λg in its conjugacy class
(within PSL(2,R)). Since conjugate subgroups have conjugate normalizers, we
may assume Γ is a fixed representative of its conjugacy class. Suppose two
SKEPS, ρ, ρ′ : Γ → G differ by pre- and post composition by automorphisms α,
β of Γ, G, respectively. That is, the diagram

{id} → Λg
i
→ Γ

ρ
→ G → {id}

‖ α ↓ β ↓

{id} → Λg
j
→ Γ

ρ′

→ G → {id}

commutes. Then the actions are topologically conjugate (E.K. Lloyd ’72), that
is, there exists an orientation-preserving homeomorphism H such that

G ×ρ U/i(Λg) → U/i(Λg)
β ↓ H ↓ H ↓
G ×ρ′ U/j(Λg) → U/j(Λg)
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commutes.
Lloyd’s result is a consequence of a deep result going back to Nielsen (’27)

and later generalized by Zieschang (’66): every automorphism of a Fuchsian
group is geometrically realized, that is, given α ∈ Aut(Γ), there exists a home-
omorphism h such that the diagram

Γ × U → U

α ↓ h ↓ h ↓
Γ × U → U

commutes.
Topological conjugacy is an equivalence relation on Riemann surface trans-

formation groups. It is, of course, weaker than conformal conjugacy. In the
latter case, two G-actions are merely conjugate within the full automorphism
group of a single (conformal equivalence class of) surface. In contrast, topo-
logically conjugate G-actions may occur on distinct surfaces. Topological con-
jugacy is best studied in the context of Teichmüller spaces.

4 Lecture IV

Lecture IV:

1. Teichmüller spaces of Fuchsian groups

2. The extension problem

3. Generalized Lefschetz curves

4. Accola-Maclachlan and Kulkarni curves

5. Appendix: Dessins d’enfant

4.1 TEICHMÜLLER SPACES

As before, Γ denotes a co-compact Fuchsian group with signature (h;m1,m2, . . .mr).
Let L = PSL(2,R), and let R(Γ) be the representation space of all injective
homomorphisms r : Γ → L such that the image r(Γ) is Fuchsian. R(Γ) is
topologized as a subspace of the product of 2h+ r copies of L, by assigning to
r ∈ R(Γ) the point

(r(a1), r(b1), . . . , r(ah), r(bh), r(e1), . . . r(er)) ∈ L2h+r.

r1, r2 ∈ R(Γ) are equivalent if their images are conjugate in L. Definition The
Teichmüller space of Γ, T (Γ), is the set of equivalence classes [r : Γ → L],
endowed with the quotient topology from R(Γ).

Example: surface groups. T (Λg), where Λg is a surface group, is the ordi-
nary Teichmüller space Tg of “marked" Riemann surfaces,

Tg = {U/[r : Λg → L] | [r] ∈ T (Λg)}.

26



Let Aut+(Γ) be the group of automorphisms of Γ which are both type-
and orientation-preserving. [Type-preserving automorphisms preserve elliptic,
parabolic, hyperbolic types. Orientation-preserving automorphisms carry the
“long" relator to a conjugate of itself but not of its inverse.] α ∈ Aut+(Γ) in-
duces a homeomorphism of T (Γ) defined by [α] : [r] 7→ [r ◦ α]. The subgroup
Inn(Γ) ≤ Aut+(Γ) of inner automorphisms acts trivially by the definition of
T (Γ). Hence the Teichmüller modular group for Γ,

Mod(Γ) =
Aut+(Γ)

Inn(Γ)
= Out+(Γ),

acts (possibly not faithfully) on T (Γ).
Theorem (Kravetz, Maclachlan, Harvey). The Teichmüller modular group

acts properly discontinuously on T (Γ). The stabilizer of a point [r] ∈ T (Γ) is
isomorphic to the finite subgroup NL(r(Γ))/r(Γ).

Proof of the second statement. If [α] ∈ Mod(Γ) fixes [r], then [r ◦ α] = [r]
and there exists t ∈ L such that, for all γ ∈ Γ, r◦α(γ) = tr(γ)t−1. It follows that
t ∈ NL(r(Γ)). If t ∈ r(Γ), α ∈ Inn(Γ) and hence [α] is the identity in Mod(Γ).
Thus the stabilizer of [r] is isomorphic to a subgroup of NL(r(Γ))/r(Γ). On
the other hand, if t ∈ NL(r(Γ)), the map βt : r(γ) 7→ tr(γ)t−1 is a type- and
orientation-preserving automorphism of r(Γ), whence αt = r−1 ◦ βt ◦ r is a
type- and orientation-preserving automorphism of Γ. αt is inner if and only
if t ∈ r(Γ). This establishes the isomorphism. The normalizer of a cocom-
pact Fuchsian group Γ has a fundamental domain of finite area A = µ(NL(Γ))
which satisfies π/21 ≤ A ≤ µ(Γ). Hence the index [NL(Γ) : Γ] is finite. Q.e.d.

Surface groups, cont. Mod(Λg) is the “mapping class group" of outer
automorphisms of the fundamental group of a surface of genus g. The isotropy
subgroup of [r] ∈ T (Λg),

NL(r(Λg))/r(Λg),

is (the attentive listener will spot) none other than Aut(U/r(Λg)).

In most cases (with important exceptions!), the action of Mod(Γ) on T (Γ) is
faithful. This is true, for example, if Γ = Λg, g > 2. Then the orbit spaces

T (Λg)/Mod(Λg),

are the so-called moduli spaces. Higher dimensional generalizations of orb-
ifolds, they are “almost manifolds," depending on 3g − 3 complex numbers
which parametrize conformal equivalence classes of surfaces. The singular
set (where the manifold structure breaks down) consists of precisely those sur-
faces with a non-trivial automorphism group (Nielsen-Kerckhoff).

Note: the proof of the following theorem, and some others which follow,
is beyond the scope of these lectures. Theorem (Teichmüller, Ahlfors, Bers,
Macbeath, Singerman, . . . ). The Teichmüller space of a Fuchsian group Γ with
signature (h;m1, . . . ,mr) is homeomorphic to an open ball in the Euclidean
space C3h−3+r.
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3h− 3 + r is the (complex) Teichmüller dimension of Γ.
Theorem (Greenberg ’63). An inclusion i : Γ → Γ1 of Fuchsian groups

induces a imbedding of Teichmüller spaces,

i : T (Γ1) → T (Γ), i : [r] 7→ [r ◦ i],

whose image is a closed subspace.
The imbedding i : T (Γ1) → T (Γ) may be a surjection even though i(Γ) is

a proper subgroup of Γ1. For this to occur, the dimensions of T (Γ) and T (Γ1)
must be equal. The list of subgroup pairs Γ < Γ1 for which the Teichmüller
dimensions are equal, was partially determined Greenberg (’63) and completed
by D. Singerman (’72). For such a pair, we have the following possibility: if Γ
covers a group action on the Riemann surfaces in T (Γ), the action may extend
on all the surfaces to larger group action covered by Γ1.

Example 1. Γ(2;−) is a subgroup of index 2 in Γ1(0; 2, 2, 2, 2, 2, 2). One can
check that the Teichmüller dimensions are both = 3. Now Γ(2;−) = Λ2 covers
the trivial action on every surface of genus 2. But all surfaces of genus 2 are
hyperelliptic (2-fold cyclic coverings of P1); the trivial action always extends to
a Z2-action with 2g + 2 = 6 branch points.

Example 2. All triangle groups have Teichmüller dimension 0. It follows
that

• all triangle groups of a given signature are conjugate in L;

• a Fuchsian group which contains a triangle group is itself a triangle group.

It is a subtle problem to recognize, given a signature σ1 = (h;m1, . . . ,mr)
for a Fuchsian group Γ1, the possible signatures σ = (h′;n1, . . . , ns) for a sub-
group Γ. By the Riemann-Hurwitz relation for the holomorphic map U/Γ →
U/Γ1, the ratio of the hyperbolic areas µ(σ)/µ(σ1) must be a positive integer N
(equal to the index [Γ1 : Γ]). It is also clearly necessary that the periods of Γ be
divisors of the periods of Γ1. Necessary and sufficient conditions were given
by Singerman (’70): there exists a finite permutation group G, transitive on
N points, and an epimorphism θ : Γ → G, with precise conditions on the
cycle structures of θ(xi), where the xi, i = 1, . . . r, are the elliptic elements of
Γ1. (The required permutation group is the natural (monodromy type) action
of Γ1 on the left cosets of Γ (cf. Lecture II).)

Imposing the extra condition that the Teichmüller dimensions of Γ < Γ1

be equal severely restricts the possibilities for the signature pairs σ, σ1. The
complete list of pairs (Greenberg ’63, Singerman ’72) comprises seven infinite
families and one sporadic pair (for normal inclusions Γ ⊳ Γ), plus four infinite
families and seven sporadic pairs (for non-normal inclusions Γ < Γ). We give
a selection (involving triangle groups) on the next slide. Exercise: Verify the
Riemann-Hurwitz relation for each pair.

Notes: Cases N6 and N8 are normal inclusions; the rest are non-normal.
“Cyclic admissible" means that the sub-signatures (σ) are potential signatures
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Case σ σ1 [Γ(σ1) : Γ(σ)] Conditions
N6 (0; k, k, k) (0; 3, 3, k) 3 k ≥ 4
N8 (0; k, k, u) (0; 2, k, 2u) 2 u|k, k ≥ 3
T1 (0; 7, 7, 7) (0; 2, 3, 7) 24 -
T4 (0; 8, 8, 4) (0; 2, 3, 8) 12 -
T8 (0; 4k, 4k, k) (0; 2, 3, 4k) 6 k ≥ 2
T9 (0; 2k, 2k, k) (0; 2, 4, 2k) 4 k ≥ 3

T10 (0; 3k, k, 3) (0; 2, 3, 3k) 4 k ≥ 3

Table 1: Cyclic-admissible signatures (σ) and possible extensions (σ1)

for a cyclic group action (equivalently, potential branching indices for a cyclic
(Galois) covering of P1.)

Some geometric intuition: Consider the “T9" inclusion Γ(2k, 2k, k) < Γ1(2, 4, 2k),
index 4. First notice that T9 is equivalent to two successive extensions of the
“N8" type (a, a, b) < (2, a, 2b) (normal, index 2):

1. (2k, 2k, k) ⊳ (2, 2k, 2k)

2. (2, 2k, 2k) ⊳ (2, 4, 2k)

Construct a hyperbolic isosceles triangle (in U) with apex angle 2π/k and
base angles 2π/2k. (k ≥ 3.)

1. drop a perpendicular from the apex to the midpoint m of the base, creat-
ing two congruent right triangles (with angles 2π/2k at the apex and π/2
at m).

2. draw a perpendicular from m to each of the two opposite sides.

The original isosceles triangle with angles 2π{1/2k, 1/2k, 1/k}has been subdi-
vided into four congruent triangles with angles 2π{1/2, 1/4, 1/2k}.

4.2 THE EXTENSION PROBLEM

Given the existence of a genus g surface with a known group G of automor-
phisms, it is natural to ask if the (topological type of the) G- action can be ex-
tended to a larger group of automorphisms of some (possibly different) surface
of genus g, or if it is always the full group of automorphisms. Let X = U/Λg,
and let the G-action be uniformized by a Fuchsian group Γ, i.e., G ≃ Γ/Λg.
Then we have a short exact sequence

{id} → Λg →֒ Γ
ρ
→ G → {id}.

If σ(Γ) does not appear in the Greenberg-Singerman list, then G is always
the full group of automorphisms. If σ(Γ) appears as the first member of a
Greenberg-Singerman pair σ, σ1, then the G action might extend – that is ρ
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might extend to ρ1, a SKEP with the same kernel, onto a larger group G1,
uniformized by Γ1 with signature σ1.

In that case, we have a commuting diagram of short exact sequences,

{id} → Λg →֒ Γ
ρ
→ G → {id}

‖ µ ↓ ν ↓

{id} → Λg →֒ Γ1
ρ′

→ G1 → {id}

where µ, ν are inclusion maps. The inclusion µ can be given explicitly, since
the signatures and hence presentations of Γ,Γ1 are given. The problem then
is to determine conditions on G which permit an extension to G1 so that the
diagram commutes. This has been done recently for all Greenberg-Singerman
pairs (Bujalance, Cirre, Conder, 2002). Unfortunately, there is no general algo-
rithm; the problem must be handled on a case-by-case method. Here, we will
consider extendability of certain cyclic covers of P1.

4.3 GENERALIZED LEFSCHETZ CURVES

The generalized Lefschetz curves have (irreducible) equations of the form yn =
x(x − 1)b(x + 1)c, where 1 + b + c ≡ 0 (mod n), and we assume 1 ≤ b, c ≤
n − 1. These curves are treated comprehensively by Kallel and Sjerve (2003);
Lefschetz considered the case where n is a prime.

We have shown (cf. Lecture I) that the genus of such a curve is g = [(n+1−
(n, b)− (n, c)]/2. We also know (cf. Lecture II) that it is a cyclic Galois covering
of P1, with Galois group Zn, generated by three elements of orders n, (n, b),
(n, c) whose product is the identity. By Harvey’s theorem, lcm((n, b), (n, c)) =
n. In terms of Fuchsian groups, we have

{id} → Λg →֒ ∆
ρ
→ Zn → {id},

where ∆ is a triangle group with signature (n, (n, b), (n, c)).
For definiteness, we focus on a specific case: n = 2k ≥ 6, b = 1, c = n− 2.

This yields the signature (2k, 2k, k) for ∆, and there is a potential extension
(type T9) of the Z2k-action to a G8k-action with covering group ∆1,

∆ = 〈x1, x2, x3〉 (2k, 2k, k)

∆1 = 〈y1, y2, y3〉 (2, 4, 2k)

An explicit imbedding of µ : ∆ → ∆1 is given by

µ : x1 → y2
2y3y

2
2 , x2 7→ y3, x3 7→ y2y

2
3y

−1
2 .

We seek a group G8k and an inclusion ν : Z2k → G8k such that

{id} → Λg →֒ ∆
ρ
→ Z2k → {id}

‖ µ ↓ ν ↓

{id} → Λg →֒ ∆1
ρ′

→ G8k → {id}
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commutes.
Let Z2k = 〈a | a2k = id〉. The skep ρ : ∆ → Z2k determines a generating

vector
〈ρ(x1), ρ(x2), ρ(x3)〉 ∈ Z3

2k

for the Z2k-action. We may assume, up to an automorphism of Z2k, that ρ(x1) =
a. If ρ(x2) = ai and ρ(x3) = aj , then, since ρ is a skep, ρ(x1)ρ(x2)ρ(x3) =
a1+i+j = id. Equivalently, 1 + i + j ≡ 0 (mod 2k). Example: 〈a, a, a2k−2〉 is a
possible generating vector for Z2k. The existence of ν : Z2k → G8k , we shall
see, depends on the form of the generating vector.

Before proceeding, we note that the Riemann-Hurwitz relation yields k =
g+1, so we are looking to extend a Z2g+2 action to aG8g+8-action on the genus
g Lefschetz curve

y2g+2 = x(x− 1)(x+ 1)2g.

Recall that the “T9" extension (index 4) is equivalent to two successive nor-
mal (index 2) extensions of type “N8."

• ∆(2k,2k,k) ⊳∆0(2, 2k, 2k) (index 2);

• ∆0(2, 2k, 2k) ⊳ ∆1(2,4,2k) (index 2)

The first of these must cover an extension of Z2k to a group G4k ⊲ Z2k which
can be constructed as follows: let α ∈ Aut(Z2k) have order ≤ 2. Let t be a new
generator of order 2 such that conjugation by t acts on Z2k = 〈a〉 as α does.
Then

G4k = 〈a, t | a2k = t2 = 1, tat−1 = α(a)〉.

If α(a) = a−1, then G4k ≃ D4k, the dihedral group of order 4k; if α(a) = a,
then G4k ≃ Z2 × Z2k . If k 6= ps (p an odd prime) there exists an involutory au-
tomorphism α, α(a) 6= a, a−1. In this case G4k is a (non-dihedral, non-abelian)
semi-direct product Z2 ⋉α Z2k.

For the initial N8 extension, we have

∆ = 〈x1, x2, x3〉 (2k, 2k, k)

∆0 = 〈z1, z2, z3〉 (2, 2k, 2k)

and an explicit imbedding µ0 : ∆ → ∆0 is given by

µ0 : x1 → z−1
3 z2z3, x2 7→ z2, x3 7→ z2

3 .

We seek a skep ρ0 : ∆0 → 〈a, t〉 = G4k such that

{id} → Λg →֒ ∆
ρ
→ 〈a〉 → {id}

‖ µ0 ↓ ↓

{id} → Λg →֒ ∆0
ρ0

→ 〈a, t〉 → {id}

commutes. It is not difficult to verify that

ρ0 : z1 7→ t, z2 7→ ta, z3 7→ a−1
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will do. That is, 〈t, ta, a−1〉 is a ∆0-generating vector for the G4k-action.
For a second N8 extension (of the G4k action), we need β ∈ Aut(G4k), of

order 2, which interchanges ta and a−1 (the last two elements of the G4k gen-
erating vector). Hence let s be a new generator such that conjugation by s acts
as β does, i.e.,

sas−1 = a−1t.

Equivalently, (sa)2 = ts2. Since s2 ∈ 〈a, t〉 (for an index 2 extension), and
s2 /∈ 〈a〉, either s2 = t, or s2 = id. Claim: s2 = t. It follows that (sa)2 = id, and
hence we have an extended group

G8k = 〈s, a | s4 = a2k = (sa)2 = id, s2as2 = α(a)〉,

containing G4k = 〈s2, a〉, acting with ∆1- generating vector

〈sa, s, a〉 (2, 4, 2k).

4.4 ACCOLA-MACLACHLAN AND KULKARNI CURVES

These curves arise from certain choices of α ∈ Aut(Z2k) as considered in the
previous section.

Case 1. α(a) = a, i.e., α is trivial and G4k = Z2 × Z2k. With k = g + 1,
we have the Accola-Maclachlan surface of genus g, with equation y2g+2 =
x(x− 1)(x+ 1)2g , and full automorphism group

G8g+8 = 〈s, a | s4 = a2g+2 = (sa)2 = [s2, a] = id〉

The curve was identified by Accola and Maclachlan (independently) in 1968.
It is hyperelliptic with hyperelliptic involution s2. Note that G8g+8/〈s2〉 ≃
D4g+4, the dihedral group of order 4g + 4.

Case 2. g ≡ −1 (mod 4), and α(a) = ag+2. (Exercise: verify that α is an
automorphism under the stated condition.) Here we have

G8g+8 = 〈s, a | s4 = a2g+2 = (sa)2 = id, s2as2 = ag+2〉.

The (non-hyperelliptic) curve was identified by R.S. Kulkarni in 1991, and is
known as the Kulkarni curve. An equation of the curve is

y2g+2 = x(x− 1)g+2(x+ 1)g−1.

Corollary. Let m(g) be the order of the largest group of automorphisms of
a compact Riemann surface of genus g > 1. Then 8g+8 ≤ |Aut(X)| ≤ 84(g−1).

Remark. There exist genera g for which m(g) = 8g + 8, i.e., the lower
bound is sharp.
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4.5 APPENDIX: DESSINS D’ENFANT

Definition. A Belyi curve is a compact Riemann surface admitting a mero-
morphic function with at most three critical values.

Hence Lefschetz curves are Belyi.
Theorem (Belyi, Wolfart, Koeck). X is a Belyi curve if and only if it is

defined over a number field (finite field extension of Q.)
Let (X, f) be a Belyi pair, i.e., X is a curve and f : X → P1 a Belyi func-

tion having three or fewer critical values. Up to a Möbius transformation, the
three critical values can be assumed to lie in the set {0, 1,∞}. The preimage
f−1([0, 1]) of the unit interval is a bipartite graph imbedded on X , with, say,
black vertices at f−1(0) and white vertices at f−1(1).

Grothendieck realized that any finite bipartite graph (“child’s drawing" or
dessin d’enfant) defines a canonical compact Riemann surface on which the
graph imbeds geometrically, that is, with geodesic edges.

If all the white vertices have valence 2, they can be considered as edge mid-
points, and erased, resulting in an ordinary graph. When imbedded on a sur-
face, these special dessins are called maps. There is an intimate connection
between maps and (2, b, c)-triangle groups. They key object, once again, is a
pair of permutation groups arising from the triangle group and a certain finite
index subgroup.

A map is an embedding of a finite connected graph G on a compact oriented
surface X such that the complement X \ G is a union of 2-cells, called faces.

• G may have loops and multiple edges;

• a directed edge is called a dart;

• edges mostly carry two darts, although "free edges" are possible.

If there are n darts, label them with the symbols 0, 1, 2, 3, . . . , n− 1 (in some
convenient order) and define the monodromy group to be the subgroup of Sn

generated by:

• x ≡ product of dart-label cycles at the vertices;

• y ≡ product of dart-label pairs on the edges,

where the cyclic ordering of dart-labels at a vertex is determined by the ori-
entation of the ambient surface. It is easy to show that the cycles of (xy)−1

correspond to dart-label cycles bounding the faces.
In the figure, which shows a map on a torus, the monodromy group (≤ S24)

has generators

• x = (0 1 2) (3 4 5) (6 7 8) . . . (Eight 3-cycles ↔ vertices)

• y = (2 3) (4 6) . . . (Twelve 2-cycles ↔ edges)
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Note: (xy)−1 = (5 6 9 19 16 14) . . . (Four 6-cycles ↔ faces)
Definition. Two maps M1, M2 with n darts are equivalent if their mon-

odromy groups G1, G2 are strongly conjugate in Sn. This means there exists
a single permutation in Sn which simultaneously conjugates the generators
x1, y1 ∈ G1 to the corresponding generators x2, y2 ∈ G2.

Definition. The automorphism group of a map M with n darts is the cen-
tralizer of its monodromy group in Sn. (Rationale: M is non-trivially equiv-
alent to itself if there is a permutation in Sn which commutes with both mon-
odromy generators.) Aut(M) is well-defined on equivalence classes of one-
vertex maps: conjugate subgroups have conjugate centralizers.

Definitions. The type of a map M is (m, r) wherem is the lcm of the vertex
valencies and r is the lcm of the face valencies. M is:

• uniform if all vertices have valence m and all faces have valence r;

• regular if Aut(M) is transitive on the darts.

Regular =⇒ Uniform: every dart has the same local incidence relations.
Let Γ = Γ(m, r) be the group with presentation

Γ(m, r) = 〈ξ1, ξ2, ξ3 | ξm
1 = ξ22 = ξr

3 = ξ1ξ2ξ3 = 1〉.

There is an obvious surjective homomorphism

θ : ξ1 7→ x, ξ2 7→ y, ξ3 7→ (xy)−1.

onto the monodromy group G = 〈x, y〉 of a map M of type (m, r). Let Gδ ≤ G
be the isotropy subgroup of a dart δ.

Definition. The canonical map subgroup for M is

M ≡ θ−1(Gδ) ≤ Γ(m, r).

Note: M is (up to conjugacy) independent of the choice of δ (Reason: the un-
derlying graph G is connected ↔ G is transitive on the darts ↔ all Gδ are con-
jugate.)

Let M∗ ≡
⋂

γ∈Γ γ
−1Mγ (= the core of M in Γ). Let |Γ/M | = the set of

cosets M in Γ. Γ/M∗ acts faithfully and transitively on |Γ/M |. Let D ≡ the set
of darts of M.

Lemma (Jones, Singerman, ’78). The permutation groups (G,D) and (Γ/M∗, |Γ/M |)
are isomorphic.
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• M is uniform ⇐⇒ M is torsion-free;

• M is regular ⇐⇒ M is torsion-free and normal (M = M∗).

Via M we obtain, for a map M,

X ≡ the canonical Riemann surface of M =
U

M
,

where U ≡ C,P1, or H2.

• X contains M geometrically: edges are geodesics; face-centers and edge
midpoints are well-defined;

• Aut(M) is a group of conformal automorphisms of X .
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