
Introduction to Theory and Numerics of 
Partial Differential Equations VI:

Wave equation and Einstein equations
 in spherical symmetry/1+1 dimensions

1

Sascha Husa
ICTS Summer School on Numerical Relativity

Bangalore, June 2013



Lab goals for today

Look at energy, energy conservation and 
characteristic variables in your wave equation code.

Upgrade your code to fourth order centered finite 
differences. What is the effect on accuracy/
efficiency?

Change boundary conditions to reflecting, incoming 
signal, and “outgoing”.

Implement the shifted wave equation.

Start planning your coupled Einstein code (who can 
form a black hole tomorrow?)
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smooth and 
distributional solutions

More generally: characteristics can cross, typically signifies physical 
breakdown of underlying PDE, like in fluid dynamics.
Unless a PDE is linearly degenerate (speeds independent of solution), 
shocks can form from smooth data in a finite time.
Vacuum EE: can be written in linearly degenerate form, do not expect 
physical shocks, but shocks can form due to bad gauge conditions.
Numerical methods for fluid dynamics are dominated by methods that  
deal with shocks - e.g. propagate shocks at correct physical speed.
Solutions of vacuum GR are smooth except due to bad gauges or 
physical singularities, high order FD or spectral ideal!
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  Burger’s equation: ut = u ux. 

  Characteristic speeds depend on u, 
peak velocity overtakes rest of the wave 
after some time.



• Want: approximate solution to a PDE with an error estimate 
at affordable cost.
• affordable cost in running the code,
• affordable cost in developing the code,
• affordable cost modifying the code for new problems.

• We will only need a certain accuracy, but it may not be easy 
to understand what it should be, in particular if we want to 
study new phenomena.

• Don’t waste too much time trying to interpret poor 
numerical data, use the time to produce better data. Don’t 
become obsessed with machine accuracy (double precision 
~10-16, 64 bit). Usually this is more than enough, sometimes 
not!

Cost & error

• If you have a good idea and a working code, computer time will come to you.

• Often most of the human time is spent on debugging the code, and on trying to 
figure out “the physics” when numerical data are poor (inaccurate, noisy, ...)

• Defensive programming & good enough resolution & enough output!



• Keep it Simple!

Avoid problems early ...



Finite difference stencils in Fourier space

Example: second order centered finite difference stencils.

apply them to a wave of frequency ω:

Apply finite difference operator to function:

Simplify expression
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∂xf ≈ f3 − f1
2h

∂xxf ≈ f3 − 2f2 + f1
h2

f(x) = eiωx

eihw − e−ihw

2h

D̂2 =
i sin(hw)

h



Numerical stability for first order hyperbolic systems
P : linear constant coefficient differential operator

WP is equivalent to                     -> need    diagonalizable

discretize, e.g. 2nd order centered:                    (exercise!) 

n-th order Runge Kutta:

Fourier: 

now we can solve: 

amplification matrix     diagonalizable if    is!

stability if eigenvalues satisfy: |qµ| ≤ 1, qµ = p(∆t pµ) 

PDE does not explicitly depend on direction or dimension d
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|eP̂ (iω)t| ≤ Keαt P̂

p(x) =
l=n�

l=0

xl

l!
vn+1 = Qvn = p(∆t P )vn

P̂ (iω) : ∂/∂xj → iωj = i
ξj
h

(i.e. P̂ = iωiA
i)

v̂n+1(ξ) = Q̂(ξ) vn(ξ) = p(∆t P̂ (ξ))v̂n(ξ)

∂tu = P (∂x)u

∂x ⇒ i

h
sin ξ

v̂n(ξ) = Q̂(ξ)n v0(ξ)

Q̂ P̂

λ =
∆t

∆x
≤ α0

σ(A)
√
d
, α0 = 2(ICN),

√
3(RK3),

√
8(RK4)



nonlinear systems and dissipation 
Numerical schemes for quasi-linear hyperbolic PDEs: can use the 
same numerical methods, but need to dissipate high frequency 
modes to achieve numerical stability.

Standard procedure: add Kreiss-Oliger dissipation for 2r-2 
accurate scheme, dissipation strength σ > 0:

does not degrade convergence order!

Adding too much dissipation decreases time-step limit (makes 
equations behave more and more like heat equation).

Artificial dissipation in fluid dynamics has traditionally been used 
to smear out shocks, superseded by “High resolution shock 
capturing” methods.
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∂tu → ∂tu+Qu, Q2r = σ
(−∆x)2r−1

22r
(D+)

r(D−)
r



Second order in space systems: motivation

Can we discuss well-posedness for second order in space 
systems like YADM and g-harmonic without first order 
reduction?

Reduction to first order in time -> new evolution equations

Reduction to first order in space -> new evolution & constraint 
equations.

enlarges solution space, new unphysical d.o.f. may give rise 
to instabilities (remember EM on curved background).

General theory for WP of 2nd order in space only > 2004

How about accuracy of 1st vs. 2nd order in space?

generalized wave equations: WP
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example: mixed order wave equation
Time domain:

Frequency domain, t -> ω:

Introduce new variable λ as the square root of h,xx:

Characteristic speeds are -1,1,0; problem is symmetric hyperbolic and 
well posed in the norm (L2 does not always work!):

In the Fourier domain this system could be treated in analogy with 
first order in space systems, using a “pseudo-differential reduction” - 
but variables play different roles depending on how often they are 
differentiated.
In the discrete case, we will have to choose an appropriate 
discretization for the derivative in the norm!
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λ̂ := iωĥ ⇒ λ̂,t = iωk̂, k̂,t = iωλ̂ ĥ,t = k̂

h,t = k, k,t = h,xx

∂t




h
k
λ



 = A




h
k
λ



 , A =




0 0 0
0 −iω 0
0 0 iω





||u||2 =

� �
|h|2 + |k|2 + |∂xh|2

�
dx

ĥ,t = k̂, k̂,t = −ω2ĥ



second order in space hyperbolic systems
normal form: P takes second derivatives of u, but not v.

Second order principal symbol

Analyze WP & numerical stability by pseudo-differential 
reduction (first order reduction in Fourier space).

WP reduces to diagonalizability of 

Discrete stability is not implied by WP + centered FD + small ∆t

∂xx = ∂x∂x does not carry over from continuum, e.g.  

discrete norm:

∂t

�
u
v

�
= P

�
u
v

�
, P =

�
Ai∂i +B C

Dij∂i∂j + Ei∂i + F Gi∂i + J

�

P̂ =

�
iωAn C

−ω2Dnn iωGn

�

P̂reduced = iω

�
An C
Dnn Gn

�

D̂(2) = − 4

∆x2
sin2

ξ

2
�=

�
i

∆x
sin ξ

�2

�u�2h + �v�2h +
d�

i=1

�D+iu�2h, D+vj =
vj+1 − vj

∆x



comparison 1st vs 2nd order in space
λ(ξ) eigenval. of

phase velocity 

group vel.
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advection eq.
wave eq.
- - 2nd order
--- 4th order

P̂ (ξ)

vp = i
λ

ω

vg = i
dλ

dω
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modes with speeds of the wrong sign will come out of BHs!
second order in space systems have high frequency damping built in!



Some simple incarnations of the 
scalar wave equation

Scalar WEQ defined with metric gab, may consider fixed 
metric, or couple scalar field to Einstein equations:

e.g. WEQ on Minkowski space. 1+1 dimensional 
problems are obtained by considering plane waves

or spherically symmetric waves

Scaling of variables can do miracles:
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gab∇a∇bφ = 0

gµν = ηµν , φ(x, t) → φtt = φxx

gµν = ηµν , φ(r, t) → φtt = φrr +
2

r
φrr

φ̃(r, t) := rφ(r, t) → φ̃tt = φ̃rr

Gab[g] = 8πGTab[φ]



Scalar field energy in flat space
Energy density ρ gives rise to a conserved energy E:

For plane waves we get

Because of energy conservation, for plane waves 
the field strength can’t decay.

In spherical symmetry we expect decay with 1/r
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ρ =

�
∂φ

∂t

�2

+ |∇φ|2E =

�

R3

ρ d3x

ρ =

�
∂φ

∂t

�2

+

�
∂φ

∂x

�2

φ(r, t) :=
φ̃(r, t)

r



Boundary conditions

Can consider 3 distinct cases:

finite grid without boundaries, use periodic 
boundary conditions = identify end points, DONE

finite grid with boundaries, need to impose 
boundary conditions (reflecting, incoming signal, 
outgoing=no incoming signal)

infinite grid. need to “pull in” infinity with a 
coordinate transformation, will lead to singular 
equations -> investigate tomorrow
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Spice up the wave equation 
with moving coordinates

Restrict to plane waves in 1 space dimension:

redefine x coordinate using shift (vector)

The metric becomes

Rewrite the WEQ using e.g.
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ds2 = −dt̃2 + dx̃2

dt = dt̃, dx = dx̃− βdt̃

gµν =

�
(−1 + β2) β

β 1

�
gµν =

�
−1 β
β (1− β2)

�

�φ =
1√
−g

∂µ[
√
−ggµν∂νφ] = 0



Shifted wave equation

Suggests definition of new variables:

Evolution equations:
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ψ := ∂xφ π := ∂tφ− β∂xφ

∂tπ = ∂x(ψ + βπ)∂tψ = ∂x(π + βψ)
∂tφ = π + βψ



characteristic variables
matrix formulation:

A is diagonalizable with eigenvalues = characteristic 
speeds λ1=-β+α, λ2=-β-α, and eigenvectors

characteristic variables, propagating with characteristic 
speeds: 

Plot the characteristic variables in your code!
Observe that these quantities propagate as expected.
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u = (π,ψ)T

∂tu+A∂xu = u∂xβ A = −
�

β 1
1 β

�

v1 = (1,−1)T , v2 = (1, 1)T

u1 = uR =
1

2
(π − ∂xφ) u2 = uL =

1

2
(π + ∂xφ)



Boundary conditions
Putting boundary conditions on outgoing characteristic 
fields is not logically consistent - initial boundary value 
problem will not be well-posed.

Can only put boundary conditions on incoming 
characteristic fields!

Examples: 

reflecting boundary conditions

outgoing boundary conditions: incoming signal set to 
zero, e.g. at left boundary:
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φ = ∂tφ = π = ∂tπ = ∂xψ = 0

uR = 0 = π − ψ ⇒ π = ψ



Scalar field coupled to gravity

Simple form of the metric in spherical symmetry, with 
zero shift

Definitions:

Einstein equations:

Scalar field equations:
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ds2 = −α(r, t)2dt2 + a(r, t)2dr2 + r2
�
dθ2 + sin2 θdϕ2

�

∂ra

a
=

1− a2

2r
+

r
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�
ψ2 + π2

�∂rα

α
=

∂ra

a

a2 − 1

r
∂ta =

1

2
raαφπ

ψ = ∂rφ, π =
a

α
∂tφ

∂tφ =
α

a
π

∂tπ =
1

r2

�
r2αψ

a

�
∂tψ = ∂r

�απ
a

�


