Kulkarni Limit Set of Subgroups of $\operatorname{PSL}(3, \mathbb{C})$ joint work with Ángel Cano

Waldemar Barrera and Juan Pablo Navarrete

Universidad Autónoma de Yucatán (UADY), Mérida, Yucatán,Mexico

Almora 2012, India

Contents

(1) Introduction

- Preliminaries
- Kulkarni Limit Set
- Some Results about of Kulkarni Limit set
- One example of Kulkarni Limit Set
- Pappus Theorem and box operations
- Groups with more than five lines: Construction

Contents

(1) Introduction

- Preliminaries
- Kulkarni Limit Set
- Some Results about of Kulkarni Limit set
- One example of Kulkarni Limit Set
- Pappus Theorem and box operations
- Groups with more than five lines: Construction
- Definition: A Complex Kleinian Group is a discrete subgroup of $\operatorname{PSL}(n+1, \mathbb{C})$ acting on $\mathbb{P}_{\mathbb{C}}^{n}$ with non empty region of discontinuity.
- We restrict our attention to complex Kleinian subgroups of $\operatorname{PSL}(3, \mathbb{C})$.
- There are two natural sources of complex Kleinian groups: Discrete subgroups of $P U(2,1)$ and discrete subgroups of $\operatorname{Aff}\left(\mathbb{C}^{2}\right)$.
- It is difficult to decide when a discrete subgroup of $\operatorname{PSL}(3, \mathbb{C})$ is complex Kleinian group, and Kulkarni limit set provides a valuable tool for the solution of this problem.

Definition [Groups with Domains of Discontinuity, R. Kulkarni, 1978]

Let X be a locally compact Hausdorff Space and G be a group acting by homeomorphisms on X.

- $L_{0}(G)$ is the closure of the set of points in X with infinite isotropy group
- $L_{1}(G)$ is the closure of the set of cluster points of $\{g(z): g \in G\}$ where z runs over $X-L_{0}(G)$.
- $L_{2}(G)$ is the closure of the set of cluster points $\{g(K): g \in G\}$ where K runs over compact subsets of $X-\left(L_{0}(G) \cup L_{1}(G)\right)$.

The Kulkarni Limit Set is

$$
\Lambda(G)=L_{0}(G) \cup L_{1}(G) \cup L_{2}(G)
$$

Kulkarni Domain of Discontinuity

The domain of discontinuity of Γ is defined as the set

$$
\Omega(G)=X-\Lambda(G)
$$

G is said to have the Kleinian Property if $\Omega(G) \neq \emptyset$.

Kulkarni’s Theorem

Definition. Let X be a locally compact Hausdorff space and G be a group acting on X by homeomorphisms. The action of G is properly discontinuous on a G-invariant subset Ω of X if for any two compact C and D of $\Omega, g(C) \cap D \neq \emptyset$ only for finitely many $g \in G$.

Theorem[Kulkarni,1978] Let X and G be as above where G is equipped with the compact open topology. Then $L_{0}, L_{1}, L_{2}, \Lambda, \Omega$ are G-invariant and G acts properly discontinuously on Ω. If G has the Kleinian property then it is discrete. If X has a countable base for its topology then G is countable.

Remarks

- We remark that the usual limit set and Kulkarni limit set agree for classical Kleinian groups. In fact $L_{0}=L_{1}=L_{2}=\Lambda$.
- On the other hand when working in complex projective geometry, the sets L_{0}, L_{1}, L_{2} can be quite different amongst them.

Example

$$
\gamma=\left(\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right), \quad\left|\lambda_{1}\right|<\left|\lambda_{2}\right|<\left|\lambda_{3}\right|
$$

If $e_{1}=[1: 0: 0], e_{2}=[0: 1: 0]$ and $e_{3}=[0: 0: 1]$ ，then
－$L_{0}(\gamma)=\left\{e_{1}, e_{2}, e_{3}\right\}$
－$L_{1}(\gamma)=\left\{e_{1}, e_{2}, e_{3}\right\}$
－$L_{2}(\gamma)=\left(e_{1} e_{2}\right) \cup\left(e_{2} e_{3}\right)$ ．

Loxodromic dynamic

More remarks

－$\Omega(G)$ is not always the maximal open set where the group acts proper and discontinuosly．
－If $H \leq G$ not necessarily $\Lambda(H) \subset \Lambda(G)$ ．
－If G is an infinite discrete subgroup of $\operatorname{PSL}(3, \mathbb{C})$ ，then $\Lambda(G)$ consists of one complex projective line，one complex projective line and one point，two complex projective lines，three complex projective lines or a union of infinitely many complex projective lines．

- It is also important to know the maximum number of complex projectives lines in general position in Λ. It is known that this number is equal $1,2,3,4$ or ∞.
- Suspensions provide examples with many complex projectives lines in Λ but at most two in general position.
- There is a classification of those subgroups of $\operatorname{PSL}(3, \mathbb{C})$ such that the maximum number of complex projectives lines in Λ is equal to four(Barrera-Cano-Navarrete).

PURPOSE

To construct complex Kleinian groups not conjugate to any subgroup of $P U(2,1)$ nor to any subgroup of $\operatorname{Aff}\left(\mathbb{C}^{2}\right)$ with rich dynamics and with infinitely many projectives lines in general position in its Kulkarni limit set.

Pappus Theorem

Box operations

A box consists of four points p, q, r, s in general position in $\mathbb{P}_{\mathbb{C}}^{2}$, called the vertices of the box, plus two points t and b, in the complex lines $p q$ and $r s$, respectively, such that:

- $p \neq t \neq q, t \neq(p q)(r s)$,
- $r \neq b \neq s, b \neq(p q)(r s)$.

This box is denoted by $\Theta=(p, q, r, s ; t, b)$ and the box operations are defined as follows:

$$
i(\Theta)=(s, r, p, q ; b, t)
$$

$$
\begin{aligned}
& \tau_{1}(\Theta)=(p, q,(b q)(r t),(b p)(s t) ; t,(q s)(p r)), \\
& \tau_{2}(\Theta)=((b q)(r t),(b p)(s t), r, s ;(q s)(p r), b)
\end{aligned}
$$

Operation τ_{1} and τ_{2}

Operation i

Box operations II

It is not hard to verify that the following relations are satisfied

$$
i^{4}=1, \quad \tau_{1} i^{3} \tau_{2}=i, \quad \tau_{2} i \tau_{1}=i^{3}, \quad \tau_{1} i \tau_{1}=i^{2} \tau_{2}, \quad \tau_{2} i^{3} \tau_{2}=\tau_{1}
$$

These relations show that the operations on a box Θ form a group，and this group is generated by

$$
\alpha=i \quad \text { and } \quad \beta=i \tau_{1}
$$

Moreover

$$
\alpha^{4}=1=\beta^{6}
$$

Box Operations III

- If $\mathbf{g} \in \operatorname{PSL}(3, \mathbb{C})$ and $\Theta=(p, q, r, s ; t, b)$ is a box, then

$$
\mathbf{g} \Theta=(\mathbf{g}(p), \mathbf{g}(q), \mathbf{g}(r), \mathbf{g}(s) ; \mathbf{g}(t), \mathbf{g}(b))
$$

- This action commutes with the box operations i, τ_{1}, τ_{2}.
- We want to find projective transformations $A, T_{1}, T_{2} \in \operatorname{PSL}(3, \mathbb{C})$ (depending on Θ) such that:
a) $\tau_{1}(\Theta)=T_{1} \Theta$,
b) $\tau_{2}(\Theta)=T_{2} \Theta$,
c) $i(\Theta)=A \Theta$.

Good box

Lemma

- There exists $T_{1} \in \operatorname{PSL}(3, \mathbb{C})$ such that $\tau_{1}(\Theta)=T_{1} \Theta$, if and only if, Θ is a good box.
- There exists $T_{2} \in \operatorname{PSL}(3, \mathbb{C})$ such that $\tau_{2}(\Theta)=T_{2} \Theta$, if and only if, Θ is a good box.
- There exists $A \in \operatorname{PSL}(3, \mathbb{C})$ such that $i(\Theta)=A \Theta$, if and only if, Θ is a good box.

Remark

- Let $\mathbf{g} \in \operatorname{PSL}(3, \mathbb{C})$ be a projective transformation. It is not hard to see that Θ is a good box, if and only if, $\mathbf{g} \Theta$ is a good box. It follows that the orbit of a good box Θ by box operations consists of good boxes.

Theorem

- If p, q, r, s in $\mathbb{P}_{\mathbb{C}}^{2}$ are four points in general position, then there exist two unique points t and b such that the group generated by the operations in the box $\Theta=(p, q, r, s ; t, b)$ can be represented as a subgroup of $\operatorname{PSL}(3, \mathbb{C})$.
- This group is conjugate in $\operatorname{PSL}(3, \mathbb{C})$ to a group such that every element has a lift to $S L(3, \mathbb{C})$ of the form

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & a & b \\
0 & c & d
\end{array}\right)
$$

where

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

is an element in $S L(2, \mathbb{Z})$.

- Moreover, its Kulkarni limit set is the union of those concurrent complex lines determined by the common intersection point $(p q)(r s)$, and the points in the real projective line $t b$.

The group of a good box

Now we show that $\operatorname{PSL}(3, \mathbb{Z})$ is a discrete subgroup of $\operatorname{PSL}(3, \mathbb{C})$ acting on $P_{\mathbb{C}}^{2}$ in such way that its Kulkarni limit set is all of $\mathbb{P}_{\mathbb{C}}^{2}$.
The plan is as follows:

- We introduce a new operation on good boxes that together with τ_{1}, τ_{2} and i generate a group of operations on good boxes which may be represented as a group of projective transformations of $\mathbb{P}_{\mathbb{C}}^{2}$ called the group of the a good box, and denoted \mathcal{P}.
- It is shown that the group of the good box contains a discrete subgroup, denoted \mathcal{P}_{2}, which is also a subgroup of $\operatorname{PSL}(3, \mathbb{Z})$ and whose Kulkarni limit set is all of $\mathbb{P}_{\mathbb{C}}^{2}$.
- It is proved that the \mathcal{P}_{2} orbit of any point in $\mathbb{P}_{\mathbb{R}}^{2} \subset \mathbb{P}_{\mathbb{C}}^{2}$ has a dense orbit in $\mathbb{P}_{\mathbb{R}}^{2}$. In other words, the action of \mathcal{P}_{2} on $\mathbb{P}_{\mathbb{R}}^{2}$ is minimal.

Theorem

[Barrera-Cano-Navarrete] Let $\Gamma \subset \operatorname{PSL}(3, \mathbb{C})$ be an infinite discrete subgroup, without fixed points nor invariant complex lines. Let $\mathcal{E}(\Gamma)$ be the subset of $\left(\mathbb{P}_{\mathbb{C}}^{2}\right)^{*}$ consisting of all the complex lines / for which there exists an element $\gamma \in \Gamma$ such that $I \subset \Lambda(\gamma)$.
a)

$$
\Lambda(\Gamma)=\overline{\bigcup_{I \in \mathcal{E}(\Gamma)} I}=\bigcup_{I \in \overline{\mathcal{E}(\Gamma)}} I=\overline{\bigcup_{\gamma \in \Gamma} \Lambda(\gamma)}
$$

is
b) If $\mathcal{E}(\Gamma)$ contains more than three complex lines, then $\overline{\mathcal{E}(\Gamma)} \subset\left(\mathbb{P}_{\mathbb{C}}^{2}\right)^{*}$ is a perfect set. Also, it is the minimal closed Γ-invariant subset of $\left(\mathbb{P}_{\mathbb{C}}^{2}\right)^{*}$.

Definition

The side operation λ is defined as follows: If $\Theta=(p, q, r, s ; t, b)$ is a box, then

$$
\lambda(\Theta)=(q, r, s, p ; L(t), L(b))
$$

where L is the only projective transformation satisfying

$$
L(p)=q, \quad L(q)=r, \quad L(r)=s, \quad L(s)=p .
$$

It follows that $L \Theta=\lambda(\Theta)$, and $\Theta=(p, q, r, s ; t, b)$ is a good box, if and only if, $\lambda(\Theta)$ is a good box.

Let $p=[1: 0: 0], q=[0: 1: 0], r=[0: 0: 1], s=[1: 1: 1]$ ，and $\Theta=(p, q, r, s ; t, b)$ a good box，then

$$
L=\left(\begin{array}{ccc}
0 & 0 & 1 \\
-1 & 0 & 1 \\
0 & -1 & 1
\end{array}\right)
$$

－ $\mathcal{P}=\left\langle A, T_{1}, L\right\rangle$（the group of a good box）．
－ $\mathcal{P}_{2}=\left\langle A, T_{1}^{2}, T_{2}^{2}, L\right\rangle \subset \operatorname{PSL}(3, \mathbb{Z})$ ．

Lemma

Let M_{2} be the group $\left\langle A^{2}, T_{1}^{2}, T_{2}^{2}\right\rangle$, acting on $\mathbb{P}_{\mathbb{C}}^{2}$, then M_{2} is conjugate (in $\operatorname{PSL}(3, \mathbb{C})$) to a double covering group of the classical Kleinian group $\operatorname{Mod}(2)$ and its limit set according to Kulkarni $\Lambda\left(M_{2}\right) \subset \Lambda\left(\mathcal{P}_{2}\right)$, is the union of those concurrent complex projective lines determined by the common point $y=(p q)(r s)$ and those points on the real projective line bt. In other words,

$$
\Lambda\left(M_{2}\right)=\bigcup_{w \in(b t)_{\mathbb{R}}}(w y)_{\mathbb{C}} .
$$

Theorem

The groups \mathcal{P} and \mathcal{P}_{2} acting on $\mathbb{P}_{\mathbb{C}}^{2}$ are not complex Kleinian. In fact, $\Lambda(\mathcal{P})=\Lambda\left(\mathcal{P}_{2}\right)=\mathbb{P}_{\mathbb{C}}^{2}$.

- The complete pencil of projective real lines with vertex y is contained in the Kulkarni limit set $\Lambda\left(\mathcal{P}_{2}\right)$.
- Since $L \in \mathcal{P}_{2}$, it follows that the complete pencil of projective real lines with vertex x is contained in $\Lambda\left(\mathcal{P}_{2}\right)$.
- Moving this pencil along the real projective $t b$ with the action of $\operatorname{Mod}(2)$, we obtain that every real projective line is contained in $\Lambda\left(\mathcal{P}_{2}\right)$.
- And finally it can be proved that $\Lambda\left(\mathcal{P}_{2}\right)=\mathbb{P}_{\mathbb{C}}^{2}$.

Corollaries

- The Kulkarni limit set of the group $\operatorname{PSL}(3, \mathbb{Z})$ acting on $\mathbb{P}_{\mathbb{C}}^{2}$ is all of $\mathbb{P}_{\mathbb{C}}^{2}$.
- The group \mathcal{P}_{2} acts minimally on the space of real projective lines of $\mathbb{P}_{\mathbb{R}}^{2}$. In other words, the \mathcal{P}_{2}-orbit of every real projective line in $\mathbb{P}_{\mathbb{R}}^{2}$ is dense in the space of real projective lines in $\mathbb{P}_{\mathbb{R}}^{2}$.
- The \mathcal{P}_{2}-orbit of any point in $\mathbb{P}_{\mathbb{R}}^{2}$ is dense in $\mathbb{P}_{\mathbb{R}}^{2}$.

Groups with more than five lines: Construction

Now we construct a family of examples of groups $\Gamma \subset S L(3, \mathbb{R})$, such that:
i) Γ is a free group not conjugate, in $\operatorname{PSL}(3, \mathbb{C})$, to any subgroup of $P U(2,1)$ nor conjugate to any subgroup of $\operatorname{Aff}\left(\mathbb{C}^{2}\right)$.
ii) Γ, acting on $\mathbb{P}_{\mathbb{C}}^{2}$, is a complex Kleinian group. In other words, its Kulkarni discontinuity region, $\Omega(\Gamma) \subset \mathbb{P}_{\mathbb{C}}^{2}$, is not empty.
iii) $\Gamma^{*}=\left\{\left(\gamma^{t}\right)^{-1}: \gamma \in \Gamma\right\}$ can be realized as a group of operations on good boxes and it is a group of Schottky type.
iv) $\Lambda(\Gamma)$ contains at least five lines in general position.

Group of Schottky type (Conze and Guivarch,Tits)

Definition.

- Let (X, δ) be a complete metric space.
- p a point in X.
- Σ a finite set of homeomorphisms of X which is symmetric (namely, $a^{-1} \in \Sigma$ for all $a \in \Sigma$).
- Let $\left\{C_{a}\right\}_{a \in \Sigma}$ be a family of compact subsets of X such that $p \notin \cup_{a \in \Sigma} C_{a}$ and $a(p) \in C_{a}$ for all $a \in \Sigma$.
Assume the following conditions are sastified
(1) If $a, b \in \Sigma$ are two distinct elements, then $C_{a} \cap C_{b}=\varnothing$.
(2) If $a, b \in \Sigma$ and $a \neq b^{-1}$, then $a\left(C_{b}\right) \subset \operatorname{lnt}\left(C_{a}\right)$.
(3) For all sequences $\left\{a_{n}\right\}$ such that $a_{n} \neq a_{n+1}^{-1}$ for all $n \geq 1$, the diameter of $a_{1} \ldots a_{n} C_{a_{n+1}}$ goes to 0 as $n \rightarrow \infty$.

Remarks I

- The compact sets C_{a} are not necessarily circles.
- In the case of a classical Schottky group acting on the Riemann sphere, the common exterior of the circumferences is a fundamental domain. However, this is no longer valid for a group of Schottky type.
- In the construction of a classical Schottky group one requires that the circles (the compact sets) bound a domain D and $g_{m}(D) \cap D=\varnothing$ for all $m=1, \ldots, n$ which implies that the group is free and discrete.
Analogously, in the case of a group of Schottky type one requires the existence of a point $p \notin \bigcup_{a \in \Sigma} C_{a}$ such that $a(p) \in C_{a}$ for all $a \in \Sigma$, and this condition together with condition (2) assures that the group is free and discrete.
- The condition (3) is not deduced from (1) and (2), since the conformal properties of Möbius transformations are no longer valid. However, in the real projective space $\mathbb{P}_{\mathbb{R}}^{n}$, if the sets C_{a} are convex then conditions (1) and (2) do imply condition (3)

Remarks II

- A closed subset C of $\mathbb{P}_{\mathbb{R}}^{2}$ is called convex if it is contained in the complement of a real projective line ℓ and it is convex as a subset of $\mathbb{P}_{\mathbb{R}}^{2}-\ell$.
- A matrix $a \in G L(3, \mathbb{R})$ is called loxodromic if it has an eigenvalue λ_{0} such that $\left|\lambda_{0}\right|>|\lambda|$ for all the others eigenvalues λ of γ (whether real or complex). For such a matrix a, an eigenvector $a^{+} \in \mathbb{R}^{3}$ corresponding to the eigenvalue λ_{0} is called a dominant eigenvector of γ.
- The subset $K(a)$ is defined as the projectivization of the set $\left\{w \in \mathbb{R}^{3}: \lambda_{0}^{-n} a^{n}(w) \rightarrow(0,0,0)\right.$ as $\left.n \rightarrow \infty\right\}$.

Proposition

- $\hat{\Sigma}=\left\{\left(a, C_{a}\right) \mid a \in \Sigma\right\}$ a system, where Σ is a set of projective transformations and C_{a} are compact convex sets. If $\hat{\Sigma}$ satisfies conditions (1) and (2) of definition of group of Schottky type, then every element in Σ is loxodromic, with $a^{+} \in C_{a}$ and $K(b) \cap C_{a}=\varnothing$ for $b \neq a^{-1}$.
- $\hat{\Sigma}=\left\{\left(a, C_{a}\right) \mid a \in \Sigma\right\}$ a system, where C_{a} are disjoint compact convex sets and Σ is a set of loxodromic projective transformations with $a^{+} \in C_{a}$ and $K(b) \cap C_{a}=\varnothing$ whenever $b \neq a^{-1}$, then for all sufficiently large n the system $\hat{\Sigma}_{n}=\left\{\left(a^{n}, C_{a}\right) \mid a \in \Sigma\right\}$ satisfies conditions (1) and (2) of definition group of Schottky type.

i	τ_{1}^{2}	τ_{2}^{2}	λ
A	T_{1}^{2}	T_{2}^{2}	L
$\left(\begin{array}{lll}1 & 1 & -1 \\ 0 & 1 & -1 \\ 0 & 2 & -1\end{array}\right)$	$\left(\begin{array}{lll}1 & -1 & 1 \\ 0 & -1 & 2 \\ 0 & -2 & 3\end{array}\right)$	$\left(\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 2 & 1\end{array}\right)$	$\left(\begin{array}{ccc}0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 1\end{array}\right)$

- Let $\Gamma_{1}=\langle\delta, \epsilon\rangle$, where $\delta=T_{2}^{2} T_{1}^{2} T_{2}^{2}$ and $\epsilon=L \delta L^{-1}$.
- Let $V=\{p, q, r, s\}$ be the set of vertices of the box Θ_{0}.
- The sets $V, \delta(V), \delta^{-1}(V), \epsilon(V)$ and $\epsilon^{-1}(V)$ are contained in $\mathbb{R}^{2}=\left\{[x: y: 1] \in \mathbb{P}_{\mathbb{R}}^{2}\right\}$
- Define $C_{\delta}, C_{\delta-1}, C_{\epsilon}, C_{\epsilon^{-1}}$ as the convex hull of the sets $\delta(V)$, $\delta^{-1}(V), \epsilon(V), \epsilon^{-1}(V)$, respectively.
- The point $[0: 1: 1]=p \notin C_{\delta} \cup C_{\delta^{-1}} \cup C_{\epsilon} \cup C_{\epsilon^{-1}}$, but $\delta(p), \delta^{-1}(p), \epsilon(p), \epsilon^{-1}(p)$ do belong to $C_{\delta} \cup C_{\delta^{-1}} \cup C_{\epsilon} \cup C_{\epsilon^{-1}}$.
- It is not hard to check that the compact convex sets $C_{\delta}, C_{\delta^{-1}}, C_{\epsilon}, C_{\epsilon^{-1}}$ are disjoint.
- Each one of the elements $\delta, \delta^{-1}, \epsilon, \epsilon^{-1}$ is loxodromic, and $\delta^{+} \in C_{\delta}$, $\left(\delta^{-1}\right)^{+} \in C_{\delta^{-1}}, \epsilon^{+} \in C_{\epsilon},\left(\epsilon^{-1}\right)^{+} \in C_{\epsilon^{-1}}$.
- Moreover,

$$
\begin{gathered}
K(\delta) \cap C_{\delta}=\varnothing, \quad K(\delta) \cap C_{\epsilon}=\varnothing, \quad K(\delta) \cap C_{\epsilon^{-1}}=\varnothing ; \\
K\left(\delta^{-1}\right) \cap C_{\delta^{-1}}=\varnothing, \quad K\left(\delta^{-1}\right) \cap C_{\epsilon}=\varnothing, \quad K\left(\delta^{-1}\right) \cap C_{\epsilon^{-1}}=\varnothing ; \\
K(\epsilon) \cap C_{\delta}=\varnothing, \quad K(\epsilon) \cap C_{\delta^{-1}}=\varnothing, \quad K(\epsilon) \cap C_{\epsilon}=\varnothing ; \\
K\left(\epsilon^{-1}\right) \cap C_{\delta}=\varnothing, \quad K\left(\epsilon^{-1}\right) \cap C_{\delta^{-1}}=\varnothing, \quad K\left(\epsilon^{-1}\right) \cap C_{\epsilon^{-1}}=\varnothing .
\end{gathered}
$$

- For all sufficiently large n, the system

$$
\Sigma_{n}=\left\{\left(\delta^{n}, C_{\delta}\right),\left(\delta^{-n}, C_{\delta^{-1}}\right),\left(\epsilon^{n}, C_{\epsilon}\right),\left(\epsilon^{-n}, C_{\epsilon^{-1}}\right)\right\}
$$

satisfies conditions (1), (2) and (3). Therefore, for all sufficiently large n, the group $\Gamma_{n}=\left\langle\delta^{n}, \epsilon^{n}\right\rangle$ is of Schottky type.

- The closure of the set of attracting fixed points of loxodromic transformations in Γ_{n} is a closed minimal set for the action of Γ_{n} on $\mathbb{P}_{\mathbb{R}}^{2}$.
- Given four arbitrary open sets $U_{\delta}, U_{\delta^{-1}}, U_{\epsilon}, U_{\epsilon^{-1}}$ neighborhoods of δ^{+}, $\left(\delta^{-1}\right)^{+}, \epsilon^{+},\left(\epsilon^{-1}\right)^{+}$, respectively. We can choose n large enough in such way that the closed minimal set of Γ_{n} is contained in the union of these four arbitrary neighborhoods.
- For every $n \in \mathbb{N}$, we define $\Gamma_{n}^{*}=\left\{\left(\gamma^{t}\right)^{-1}: \gamma \in \Gamma_{n}\right\} \leq S L(3, \mathbb{R})$ acting on $\mathbb{P}_{\mathbb{C}}^{2}$ (the groups Γ_{n}^{*} and Γ_{n} are isomorphic, but not necessarily equal).
- Γ_{n}^{*} acts on $\mathbb{P}_{\mathbb{C}}^{2}$ without globally fixed points (because $\left(\delta^{t}\right)^{-1}$ and $\left(\epsilon^{t}\right)^{-1}$ are loxodromic elements and they have no common fixed point).
- Γ_{n}^{*} acts on $\mathbb{P}_{\mathbb{C}}^{2}$ without invariant complex projective lines (because δ and ϵ are loxodromic elements and have no common fixed point).
- The Kulkarni limit set, $\Lambda\left(\Gamma_{n}^{*}\right)$, contains at least four complex projective lines in general position, because

$$
\Lambda\left(\Gamma_{n}^{*}\right)=\overline{\bigcup_{\gamma \in \Gamma_{n}} \Lambda\left(\left(\gamma^{t}\right)^{-1}\right)} \supset \Lambda\left(\left(\delta^{t}\right)^{-n}\right) \cup \Lambda\left(\left(\epsilon^{t}\right)^{-n}\right)=\Lambda\left(\left(\delta^{t}\right)^{-1}\right) \cup \Lambda\left(\left(\epsilon^{t}\right)^{-1}\right),
$$

and $\Lambda\left(\left(\delta^{t}\right)^{-1}\right) \cup \Lambda\left(\left(\epsilon^{t}\right)^{-1}\right)$ is equal to four complex projective lines in general position.

- It follows that $\Lambda\left(\Gamma_{n}^{*}\right)$ contains at least five complex projective lines in general position. Therefore it contains infinitely many complex projective lines in general position.
- Let $\mathcal{E}\left(\Gamma_{n}^{*}\right)$ be the set consisting of those complex projective lines ℓ for which there exists $\gamma \in \Gamma_{n}$ such that $\ell \subset \Lambda\left(\left(\gamma^{t}\right)^{-1}\right)$.
- (Barrera-Cano-Navarrete) $\overline{\mathcal{E}\left(\Gamma_{n}^{*}\right)}$ is the minimal Γ_{n}^{*}-invariant closed set for the action of Γ_{n}^{*} on $\left(\mathbb{P}_{\mathbb{C}}^{2}\right)^{*}$.
- But this action is precisely the natural action Γ_{n} on $\mathbb{P}_{\mathbb{C}}^{2}$
- Thus, for any n large enough, $\overline{\mathcal{E}\left(\Gamma_{n}^{*}\right)}$ is identified with the minimal Γ_{n}-invariant closed set of the group of Schottky type Γ_{n} acting on $\mathbb{P}_{\mathbb{R}}^{2}$, because $\mathbb{P}_{\mathbb{R}}^{2}$ is a closed invariant set for the action of Γ_{n} on $\mathbb{P}_{\mathbb{C}}^{2}$.
- For sufficiently large n, this minimal closed set is contained in the union of arbitrary neighborhoods (in $\left(\mathbb{P}_{\mathbb{C}}^{2}\right)^{*}$) of the complex projective lines $\delta^{+},\left(\delta^{-1}\right)^{+}, \epsilon^{+},\left(\epsilon^{-1}\right)^{+}$.
- We denote these neighborhoods by $U_{\delta}, U_{\delta^{-1}}, U_{\epsilon}, U_{\epsilon^{-1}}$, and we can choose them in such way that

$$
\left(\bigcup_{\ell \in U_{\delta} \cup U_{\delta-1} \cup U_{\epsilon} \cup U_{\epsilon^{-1}}} \ell\right) \subsetneq \mathbb{P}_{\mathbb{C}}^{2},
$$

then

$$
\Lambda\left(\Gamma_{n}^{*}\right)=\bigcup_{\ell \in \overline{\mathcal{E}\left(\Gamma_{n}^{*}\right)}} \ell \subset\left(\bigcup_{\ell \in U_{\delta} \cup U_{\delta-1} \cup U_{\epsilon} \cup U_{\epsilon^{-1}}} \ell\right) \subsetneq \mathbb{P}_{\mathbb{C}}^{2} .
$$

- In consequence, the region of discontinuity $\Omega\left(\Gamma_{n}^{*}\right)=\mathbb{P}_{\mathbb{C}}^{2} \backslash \Lambda\left(\Gamma_{n}^{*}\right)$ is not empty for all sufficiently large n.
- Lemma. If $g \in \operatorname{PSL}(3, \mathbb{C})$ is conjugate to a loxodromic element of $P U(2,1)$ and $g^{n} \in P U(2,1)$ for some $n \in \mathbb{Z} \backslash\{0\}$, then $g \in P U(2,1)$.
- Proposition. The group $\Gamma_{1}^{*}=\left\langle\left(\delta^{-1}\right)^{t},\left(\epsilon^{-1}\right)^{t}\right\rangle$ is not conjugate to any subgroup of $P U(2,1)$.
- Proposition

For every $n \in \mathbb{N}$, the group $\Gamma_{n}^{*}=\left\langle\left(\delta^{-n}\right)^{t},\left(\epsilon^{-n}\right)^{t}\right\rangle$ is not conjugate to any subgroup of $P U(2,1)$.

Proof

Let C be an element in $\operatorname{PSL}(3, \mathbb{C})$ such that

$$
\begin{aligned}
& \left(C\left(\delta^{-1}\right)^{t} C^{-1}\right)^{n}=C\left(\delta^{-n}\right)^{t} C^{-1} \in P U(2,1) \\
& \left(C\left(\epsilon^{-1}\right)^{t} C^{-1}\right)^{n}=C\left(\epsilon^{-n}\right)^{t} C^{-1} \in P U(2,1)
\end{aligned}
$$

then by lemma, $C\left(\delta^{-1}\right)^{t} C^{-1}$ and $C\left(\epsilon^{-1}\right)^{t} C^{-1}$ are elements in $P U(2,1)$, so Γ_{1}^{*} is conjugate to a subgroup of $P U(2,1)$, which contradicts above proposition.

