Kulkarni Limit Set of Subgroups of $PSL(3, \mathbb{C})$ joint work with Ángel Cano

Waldemar Barrera and Juan Pablo Navarrete

Universidad Autónoma de Yucatán (UADY), Mérida, Yucatán, Mexico

Almora 2012, India

Contents

Introduction

- Preliminaries
- Kulkarni Limit Set
- Some Results about of Kulkarni Limit set
- One example of Kulkarni Limit Set
- Pappus Theorem and box operations
- Groups with more than five lines: Construction

<ロ> (四) (四) (王) (王) (王) (王)

Contents

Introduction

- Preliminaries
- Kulkarni Limit Set
- Some Results about of Kulkarni Limit set
- One example of Kulkarni Limit Set
- Pappus Theorem and box operations
- Groups with more than five lines: Construction

<ロ> (四) (四) (王) (王) (王) (王)

- Definition: A Complex Kleinian Group is a discrete subgroup of *PSL*(n + 1, ℂ) acting on ℙⁿ_ℂ with non empty region of discontinuity.
- We restrict our attention to complex Kleinian subgroups of $PSL(3, \mathbb{C})$.
- There are two natural sources of complex Kleinian groups: Discrete subgroups of PU(2,1) and discrete subgroups of $Aff(\mathbb{C}^2)$.
- It is difficult to decide when a discrete subgroup of $PSL(3, \mathbb{C})$ is complex Kleinian group, and Kulkarni limit set provides a valuable tool for the solution of this problem.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Definition [Groups with Domains of Discontinuity, R. Kulkarni, 1978]

Let X be a locally compact Hausdorff Space and G be a group acting by homeomorphisms on X.

- $L_0(G)$ is the closure of the set of points in X with infinite isotropy group
- L₁(G) is the closure of the set of cluster points of {g(z) : g ∈ G} where z runs over X − L₀(G).
- L₂(G) is the closure of the set of cluster points {g(K) : g ∈ G} where K runs over compact subsets of X − (L₀(G) ∪ L₁(G)).

The Kulkarni Limit Set is

$$\Lambda(G) = L_0(G) \cup L_1(G) \cup L_2(G)$$

Kulkarni Domain of Discontinuity

The domain of discontinuity of Γ is defined as the set

$$\Omega(G) = X - \Lambda(G).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

G is said to have the Kleinian Property if $\Omega(G) \neq \emptyset$.

Kulkarni's Theorem

Definition. Let X be a locally compact Hausdorff space and G be a group acting on X by homeomorphisms. The action of G is properly discontinuous on a G-invariant subset Ω of X if for any two compact C and D of Ω , $g(C) \cap D \neq \emptyset$ only for finitely many $g \in G$.

Theorem[Kulkarni,1978] Let X and G be as above where G is equipped with the compact open topology. Then L_0 , L_1 , L_2 , Λ , Ω are G-invariant and G acts properly discontinuously on Ω . If G has the Kleinian property then it is discrete. If X has a countable base for its topology then G is countable.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Remarks

- We remark that the usual limit set and Kulkarni limit set agree for classical Kleinian groups. In fact L₀ = L₁ = L₂ = Λ.
- On the other hand when working in complex projective geometry, the sets *L*₀, *L*₁, *L*₂ can be quite different amongst them.

Example

$$\gamma = \left(\begin{array}{ccc} \lambda_1 & 0 & 0 \\ 0 & \lambda_2 & 0 \\ 0 & 0 & \lambda_3 \end{array}\right), \quad |\lambda_1| < |\lambda_2| < |\lambda_3|$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ のへで

If $e_1 = [1:0:0]$, $e_2 = [0:1:0]$ and $e_3 = [0:0:1]$, then

L₀(γ) = {e₁, e₂, e₃}
L₁(γ) = {e₁, e₂, e₃}
L₂(γ) = (e₁e₂) ∪ (e₂e₃).

Loxodromic dynamic

More remarks

- Ω(G) is not always the maximal open set where the group acts proper and discontinuosly.
- If $H \leq G$ not necessarily $\Lambda(H) \subset \Lambda(G)$.
- If G is an infinite discrete subgroup of PSL(3, C), then Λ(G) consists of one complex projective line, one complex projective line and one point, two complex projective lines, three complex projective lines or a union of infinitely many complex projective lines.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- It is also important to know the maximum number of complex projectives lines in general position in Λ . It is known that this number is equal 1,2, 3, 4 or ∞ .
- Suspensions provide examples with many complex projectives lines in Λ but at most two in general position.
- There is a classification of those subgroups of PSL(3, C) such that the maximum number of complex projectives lines in Λ is equal to four(Barrera-Cano-Navarrete).

PURPOSE

To construct complex Kleinian groups not conjugate to any subgroup of PU(2,1) nor to any subgroup of $Aff(\mathbb{C}^2)$ with rich dynamics and with infinitely many projectives lines in general position in its Kulkarni limit set.

< □ > < @ > < 注 > < 注 > ... 注

Pappus Theorem

Box operations

A *box* consists of four points p, q, r, s in general position in $\mathbb{P}^2_{\mathbb{C}}$, called the *vertices* of the box, plus two points t and b, in the complex lines pq and rs, respectively, such that:

•
$$p \neq t \neq q, t \neq (pq)(rs),$$

• $r \neq b \neq s$, $b \neq (pq)(rs)$.

This box is denoted by $\Theta = (p, q, r, s; t, b)$ and the box operations are defined as follows:

$$i(\Theta) = (s, r, p, q; b, t),$$

 $\tau_1(\Theta) = (p,q,(bq)(rt),(bp)(st);t,(qs)(pr)),$

 $\tau_2(\Theta) = ((bq)(rt), (bp)(st), r, s; (qs)(pr), b).$

Box operations II

It is not hard to verify that the following relations are satisfied

$$i^4 = 1$$
, $\tau_1 i^3 \tau_2 = i$, $\tau_2 i \tau_1 = i^3$, $\tau_1 i \tau_1 = i^2 \tau_2$, $\tau_2 i^3 \tau_2 = \tau_1$

These relations show that the operations on a box Θ form a group, and this group is generated by

$$\alpha = i$$
 and $\beta = i\tau_1$

Moreover

$$\alpha^{\rm 4}={\bf 1}=\beta^{\rm 6}$$

Box Operations III

• If $\mathbf{g} \in \textit{PSL}(3,\mathbb{C})$ and $\Theta = (p,q,r,s;t,b)$ is a box, then

 $\mathbf{g} \Theta = (\mathbf{g}(p), \mathbf{g}(q), \mathbf{g}(r), \mathbf{g}(s); \mathbf{g}(t), \mathbf{g}(b)).$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- This action commutes with the box operations i, τ_1, τ_2 .
- We want to find projective transformations A, T₁, T₂ ∈ PSL(3, C) (depending on Θ) such that:
- a) $\tau_1(\Theta) = T_1 \Theta$, b) $\tau_2(\Theta) = T_2 \Theta$, c) $i(\Theta) = A \Theta$.

Good box

Lemma

- There exists $T_1 \in PSL(3, \mathbb{C})$ such that $\tau_1(\Theta) = T_1 \Theta$, if and only if, Θ is a good box.
- There exists $T_2 \in PSL(3, \mathbb{C})$ such that $\tau_2(\Theta) = T_2 \Theta$, if and only if, Θ is a good box.
- There exists $A \in PSL(3, \mathbb{C})$ such that $i(\Theta) = A\Theta$, if and only if, Θ is a good box.

Remark

 Let g ∈ PSL(3, C) be a projective transformation. It is not hard to see that Θ is a good box, if and only if, g Θ is a good box. It follows that the orbit of a good box Θ by box operations consists of good boxes.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Theorem

- If p, q, r, s in P²_C are four points in general position, then there exist two unique points t and b such that the group generated by the operations in the box Θ = (p, q, r, s; t, b) can be represented as a subgroup of PSL(3, C).
- This group is conjugate in *PSL*(3, C) to a group such that every element has a lift to *SL*(3, C) of the form

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & a & b \\ 0 & c & d \end{pmatrix},$$

 $\begin{pmatrix} c d \end{pmatrix}$

where

is an element in $SL(2,\mathbb{Z})$.

 Moreover, its Kulkarni limit set is the union of those concurrent complex lines determined by the common intersection point (pq)(rs), and the points in the real projective line tb.

The group of a good box

Now we show that $PSL(3, \mathbb{Z})$ is a discrete subgroup of $PSL(3, \mathbb{C})$ acting on $P^2_{\mathbb{C}}$ in such way that its Kulkarni limit set is all of $\mathbb{P}^2_{\mathbb{C}}$. The plan is as follows:

- We introduce a new operation on good boxes that together with τ_1, τ_2 and *i* generate a group of operations on good boxes which may be represented as a group of projective transformations of $\mathbb{P}^2_{\mathbb{C}}$ called the group of the *a* good box, and denoted \mathcal{P} .
- It is shown that the group of the good box contains a discrete subgroup, denoted P₂, which is also a subgroup of PSL(3, Z) and whose Kulkarni limit set is all of P²_C.
- It is proved that the \mathcal{P}_2 orbit of any point in $\mathbb{P}^2_{\mathbb{R}} \subset \mathbb{P}^2_{\mathbb{C}}$ has a dense orbit in $\mathbb{P}^2_{\mathbb{R}}$. In other words, the action of \mathcal{P}_2 on $\mathbb{P}^2_{\mathbb{R}}$ is minimal.

Theorem

[Barrera-Cano-Navarrete] Let $\Gamma \subset PSL(3, \mathbb{C})$ be an infinite discrete subgroup, without fixed points nor invariant complex lines. Let $\mathcal{E}(\Gamma)$ be the subset of $(\mathbb{P}^2_{\mathbb{C}})^*$ consisting of all the complex lines I for which there exists an element $\gamma \in \Gamma$ such that $I \subset \Lambda(\gamma)$.

$$\Lambda(\Gamma) = \overline{\bigcup_{I \in \mathcal{E}(\Gamma)} I} = \bigcup_{I \in \overline{\mathcal{E}(\Gamma)}} I = \overline{\bigcup_{\gamma \in \Gamma} \Lambda(\gamma)}$$

is

a)

b) If $\mathcal{E}(\Gamma)$ contains more than three complex lines, then $\overline{\mathcal{E}(\Gamma)} \subset (\mathbb{P}^2_{\mathbb{C}})^*$ is a perfect set. Also, it is the minimal closed Γ -invariant subset of $(\mathbb{P}^2_{\mathbb{C}})^*$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Definition

The side operation λ is defined as follows: If $\Theta = (p, q, r, s; t, b)$ is a box, then

$$\lambda(\Theta) = (q, r, s, p; L(t), L(b)),$$

where L is the only projective transformation satisfying

$$L(p) = q$$
, $L(q) = r$, $L(r) = s$, $L(s) = p$.

It follows that $L\Theta = \lambda(\Theta)$, and $\Theta = (p, q, r, s; t, b)$ is a good box, if and only if, $\lambda(\Theta)$ is a good box.

Let p = [1:0:0], q = [0:1:0], r = [0:0:1], s = [1:1:1], and $\Theta = (p, q, r, s; t, b)$ a good box, then

$$L = \left(\begin{array}{rrrr} 0 & 0 & 1 \\ -1 & 0 & 1 \\ 0 & -1 & 1 \end{array}\right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

P = ⟨A, T₁, L⟩ (the group of a good box).
P₂ = ⟨A, T₁², T₂², L⟩ ⊂ PSL(3, ℤ).

Lemma

Let M_2 be the group $\langle A^2, T_1^2, T_2^2 \rangle$, acting on $\mathbb{P}^2_{\mathbb{C}}$, then M_2 is conjugate (in $PSL(3,\mathbb{C})$) to a double covering group of the classical Kleinian group Mod(2) and its limit set according to Kulkarni $\Lambda(M_2) \subset \Lambda(\mathcal{P}_2)$, is the union of those concurrent complex projective lines determined by the common point y = (pq)(rs) and those points on the real projective line bt. In other words,

$$\Lambda(M_2) = \bigcup_{w \in (bt)_{\mathbb{R}}} (wy)_{\mathbb{C}}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Theorem

The groups \mathcal{P} and \mathcal{P}_2 acting on $\mathbb{P}^2_{\mathbb{C}}$ are not complex Kleinian. In fact, $\Lambda(\mathcal{P}) = \Lambda(\mathcal{P}_2) = \mathbb{P}^2_{\mathbb{C}}$.

- The complete pencil of projective real lines with vertex y is contained in the Kulkarni limit set Λ(P₂).
- Since L ∈ P₂, it follows that the complete pencil of projective real lines with vertex x is contained in Λ(P₂).
- Moving this pencil along the real projective tb with the action of Mod(2), we obtain that every real projective line is contained in Λ(P₂).

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• And finally it can be proved that $\Lambda(\mathcal{P}_2) = \mathbb{P}^2_{\mathbb{C}}$.

Corollaries

- The Kulkarni limit set of the group $PSL(3,\mathbb{Z})$ acting on $\mathbb{P}^2_{\mathbb{C}}$ is all of $\mathbb{P}^2_{\mathbb{C}}$.
- The group \mathcal{P}_2 acts minimally on the space of real projective lines of $\mathbb{P}^2_{\mathbb{R}}$. In other words, the \mathcal{P}_2 -orbit of every real projective line in $\mathbb{P}^2_{\mathbb{R}}$ is dense in the space of real projective lines in $\mathbb{P}^2_{\mathbb{R}}$.

• The \mathcal{P}_2 -orbit of any point in $\mathbb{P}^2_{\mathbb{R}}$ is dense in $\mathbb{P}^2_{\mathbb{R}}$.

Groups with more than five lines: Construction

Now we construct a family of examples of groups $\Gamma \subset SL(3, \mathbb{R})$, such that:

- i) Γ is a free group not conjugate, in PSL(3, C), to any subgroup of PU(2, 1) nor conjugate to any subgroup of Aff(C²).
- ii) Γ , acting on $\mathbb{P}^2_{\mathbb{C}}$, is a complex Kleinian group. In other words, its Kulkarni discontinuity region, $\Omega(\Gamma) \subset \mathbb{P}^2_{\mathbb{C}}$, is not empty.
- iii) $\Gamma^* = \{(\gamma^t)^{-1} : \gamma \in \Gamma\}$ can be realized as a group of operations on good boxes and it is a group of Schottky type.

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

iv) $\Lambda(\Gamma)$ contains at least five lines in general position.

Group of Schottky type (Conze and Guivarch, Tits)

Definition.

- Let (X, δ) be a complete metric space.
- p a point in X.
- Σ a finite set of homeomorphisms of X which is symmetric (namely, $a^{-1} \in \Sigma$ for all $a \in \Sigma$).
- Let $\{C_a\}_{a \in \Sigma}$ be a family of compact subsets of X such that $p \notin \bigcup_{a \in \Sigma} C_a$ and $a(p) \in C_a$ for all $a \in \Sigma$.

Assume the following conditions are sastified

- (1) If $a, b \in \Sigma$ are two distinct elements, then $C_a \cap C_b = \emptyset$.
- (2) If $a, b \in \Sigma$ and $a \neq b^{-1}$, then $a(C_b) \subset Int(C_a)$.
- (3) For all sequences $\{a_n\}$ such that $a_n \neq a_{n+1}^{-1}$ for all $n \ge 1$, the diameter of $a_1 \dots a_n C_{a_{n+1}}$ goes to 0 as $n \to \infty$.

Remarks I

- The compact sets C_a are not necessarily circles.
- In the case of a classical Schottky group acting on the Riemann sphere, the common exterior of the circumferences is a fundamental domain. However, this is no longer valid for a group of Schottky type.
- In the construction of a classical Schottky group one requires that the circles (the compact sets) bound a domain D and $g_m(D) \cap D = \emptyset$ for all $m = 1, \ldots, n$ which implies that the group is free and discrete. Analogously, in the case of a group of Schottky type one requires the existence of a point $p \notin \bigcup_{a \in \Sigma} C_a$ such that $a(p) \in C_a$ for all $a \in \Sigma$, and this condition together with condition (2) assures that the group is free and discrete.
- The condition (3) is not deduced from (1) and (2), since the conformal properties of Möbius transformations are no longer valid. However, in the real projective space Pⁿ_ℝ, if the sets C_a are convex then conditions (1) and (2) do imply condition (3)

Remarks II

- A closed subset C of P²_ℝ is called *convex* if it is contained in the complement of a real projective line ℓ and it is convex as a subset of P²_ℝ − ℓ.
- A matrix a ∈ GL(3, ℝ) is called *loxodromic* if it has an eigenvalue λ₀ such that |λ₀| > |λ| for all the others eigenvalues λ of γ (whether real or complex). For such a matrix a, an eigenvector a⁺ ∈ ℝ³ corresponding to the eigenvalue λ₀ is called a dominant eigenvector of γ.

◆□▶ ◆圖▶ ◆理▶ ◆理▶ ─ 理

• The subset K(a) is defined as the projectivization of the set $\{w \in \mathbb{R}^3 : \lambda_0^{-n} a^n(w) \to (0,0,0) \text{ as } n \to \infty\}.$

Proposition

- Σ̂ = {(a, C_a) | a ∈ Σ} a system, where Σ is a set of projective transformations and C_a are compact convex sets. If Σ̂ satisfies conditions (1) and (2) of definition of group of Schottky type, then every element in Σ is loxodromic, with a⁺ ∈ C_a and K(b) ∩ C_a = Ø for b ≠ a⁻¹.
- Σ̂ = {(a, C_a) | a ∈ Σ} a system, where C_a are disjoint compact convex sets and Σ is a set of loxodromic projective transformations with a⁺ ∈ C_a and K(b) ∩ C_a = Ø whenever b ≠ a⁻¹, then for all sufficiently large n the system Σ̂_n = {(aⁿ, C_a)|a ∈ Σ} satisfies conditions (1) and (2) of definition group of Schottky type.

i	$ au_1^2$	$ au_2^2$	λ
A	T_{1}^{2}	T_{2}^{2}	L
$\begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \end{pmatrix}$	$\begin{pmatrix} 1 & -1 & 1 \\ 0 & 1 & 2 \end{pmatrix}$	$\begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \end{pmatrix}$	$\begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \end{pmatrix}$
$\left(\begin{array}{rrr} 0 & 1 & -1 \\ 0 & 2 & -1 \end{array}\right)$	$\left(\begin{array}{rrr} 0 & -1 & 2 \\ 0 & -2 & 3 \end{array}\right)$	$\left(\begin{array}{rrr} 0 & 1 & 0 \\ 0 & 2 & 1 \end{array}\right)$	$\left(\begin{array}{cc} -1 & 0 & 1 \\ 0 & 0 & 1 \end{array}\right)$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

- Let $\Gamma_1 = \langle \delta, \epsilon \rangle$, where $\delta = T_2^2 T_1^2 T_2^2$ and $\epsilon = L \delta L^{-1}$.
- Let $V = \{p, q, r, s\}$ be the set of vertices of the box Θ_0 .
- The sets $V, \delta(V), \delta^{-1}(V), \epsilon(V)$ and $\epsilon^{-1}(V)$ are contained in $\mathbb{R}^2 = \{[x : y : 1] \in \mathbb{P}^2_{\mathbb{R}}\}$
- Define C_{δ} , $C_{\delta^{-1}}$, C_{ϵ} , $C_{\epsilon^{-1}}$ as the convex hull of the sets $\delta(V)$, $\delta^{-1}(V)$, $\epsilon(V)$, $\epsilon^{-1}(V)$, respectively.
- The point $[0:1:1] = p \notin C_{\delta} \cup C_{\delta^{-1}} \cup C_{\epsilon} \cup C_{\epsilon^{-1}}$, but $\delta(p), \delta^{-1}(p), \epsilon(p), \epsilon^{-1}(p)$ do belong to $C_{\delta} \cup C_{\delta^{-1}} \cup C_{\epsilon} \cup C_{\epsilon^{-1}}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

• It is not hard to check that the compact convex sets $C_{\delta}, C_{\delta^{-1}}, C_{\epsilon}, C_{\epsilon^{-1}}$ are disjoint.

• Each one of the elements $\delta, \delta^{-1}, \epsilon, \epsilon^{-1}$ is loxodromic, and $\delta^+ \in C_{\delta}$, $(\delta^{-1})^+ \in C_{\delta^{-1}}, \epsilon^+ \in C_{\epsilon}, (\epsilon^{-1})^+ \in C_{\epsilon^{-1}}$.

Moreover,

$$\begin{split} & \mathcal{K}(\delta) \cap \mathcal{C}_{\delta} = \varnothing, \quad \mathcal{K}(\delta) \cap \mathcal{C}_{\epsilon} = \varnothing, \quad \mathcal{K}(\delta) \cap \mathcal{C}_{\epsilon^{-1}} = \varnothing; \\ & \mathcal{K}(\delta^{-1}) \cap \mathcal{C}_{\delta^{-1}} = \varnothing, \quad \mathcal{K}(\delta^{-1}) \cap \mathcal{C}_{\epsilon} = \varnothing, \quad \mathcal{K}(\delta^{-1}) \cap \mathcal{C}_{\epsilon^{-1}} = \varnothing; \\ & \mathcal{K}(\epsilon) \cap \mathcal{C}_{\delta} = \varnothing, \quad \mathcal{K}(\epsilon) \cap \mathcal{C}_{\delta^{-1}} = \varnothing, \quad \mathcal{K}(\epsilon) \cap \mathcal{C}_{\epsilon} = \varnothing; \\ & \mathcal{K}(\epsilon^{-1}) \cap \mathcal{C}_{\delta} = \varnothing, \quad \mathcal{K}(\epsilon^{-1}) \cap \mathcal{C}_{\delta^{-1}} = \varnothing, \quad \mathcal{K}(\epsilon^{-1}) \cap \mathcal{C}_{\epsilon^{-1}} = \varnothing. \end{split}$$

◆□ → ◆□ → ◆ = → ◆ = → ○ へ ⊙

• For all sufficiently large *n*, the system

$$\Sigma_n = \{ (\delta^n, C_{\delta}), (\delta^{-n}, C_{\delta^{-1}}), (\epsilon^n, C_{\epsilon}), (\epsilon^{-n}, C_{\epsilon^{-1}}) \}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

satisfies conditions (1), (2) and (3). Therefore, for all sufficiently large *n*, the group $\Gamma_n = \langle \delta^n, \epsilon^n \rangle$ is of Schottky type.

- The closure of the set of attracting fixed points of loxodromic transformations in Γ_n is a closed minimal set for the action of Γ_n on $\mathbb{P}^2_{\mathbb{R}}$.
- Given four arbitrary open sets U_{δ} , $U_{\delta^{-1}}$, U_{ϵ} , $U_{\epsilon^{-1}}$ neighborhoods of δ^+ , $(\delta^{-1})^+$, ϵ^+ , $(\epsilon^{-1})^+$, respectively. We can choose *n* large enough in such way that the closed minimal set of Γ_n is contained in the union of these four arbitrary neighborhoods.

- For every n ∈ N, we define Γ_n^{*} = {(γ^t)⁻¹ : γ ∈ Γ_n} ≤ SL(3, ℝ) acting on P_C² (the groups Γ_n^{*} and Γ_n are isomorphic, but not necessarily equal).
- Γ_n^* acts on $\mathbb{P}^2_{\mathbb{C}}$ without globally fixed points (because $(\delta^t)^{-1}$ and $(\epsilon^t)^{-1}$ are loxodromic elements and they have no common fixed point).
- Γ_n^* acts on $\mathbb{P}^2_{\mathbb{C}}$ without invariant complex projective lines (because δ and ϵ are loxodromic elements and have no common fixed point).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• The Kulkarni limit set, $\Lambda(\Gamma_n^*)$, contains at least four complex projective lines in general position, because

$$\Lambda(\Gamma_n^*) = \overline{\bigcup_{\gamma \in \Gamma_n} \Lambda((\gamma^t)^{-1})} \supset \Lambda((\delta^t)^{-n}) \cup \Lambda((\epsilon^t)^{-n}) = \Lambda((\delta^t)^{-1}) \cup \Lambda((\epsilon^t)^{-1})$$

and $\Lambda((\delta^t)^{-1}) \cup \Lambda((\epsilon^t)^{-1})$ is equal to four complex projective lines in general position.

• It follows that $\Lambda(\Gamma_n^*)$ contains at least five complex projective lines in general position. Therefore it contains infinitely many complex projective lines in general position.

- Let *E*(Γ_n^{*}) be the set consisting of those complex projective lines *l* for which there exists *γ* ∈ Γ_n such that *l* ⊂ Λ((*γ*^t)⁻¹).
- (Barrera-Cano-Navarrete) $\overline{\mathcal{E}}(\Gamma_n^*)$ is the minimal Γ_n^* -invariant closed set for the action of Γ_n^* on $(\mathbb{P}^2_{\mathbb{C}})^*$.
- But this action is precisely the natural action Γ_n on $\mathbb{P}^2_{\mathbb{C}}$
- Thus, for any *n* large enough, $\overline{\mathcal{E}}(\Gamma_n^*)$ is identified with the minimal Γ_n -invariant closed set of the group of Schottky type Γ_n acting on $\mathbb{P}^2_{\mathbb{R}}$, because $\mathbb{P}^2_{\mathbb{R}}$ is a closed invariant set for the action of Γ_n on $\mathbb{P}^2_{\mathbb{C}}$.

- For sufficiently large n, this minimal closed set is contained in the union of arbitrary neighborhoods (in (P²_C)*) of the complex projective lines δ⁺, (δ⁻¹)⁺, ε⁺, (ε⁻¹)⁺.
- We denote these neighborhoods by $U_{\delta}, U_{\delta^{-1}}, U_{\epsilon}, U_{\epsilon^{-1}}$, and we can choose them in such way that

$$\Big(\bigcup_{\ell\in U_{\delta}\cup U_{\delta^{-1}}\cup U_{\epsilon}\cup U_{\epsilon^{-1}}}\ell\Big)\subsetneq \mathbb{P}^{2}_{\mathbb{C}},$$

then

$$\Lambda(\Gamma_n^*) = igcup_{\ell \in \overline{\mathcal{E}}(\Gamma_n^*)} \ell \subset \Big(igcup_{\ell \in U_{\delta} \cup U_{\delta^{-1}} \cup U_{\ell} \cup U_{\epsilon^{-1}}} \ell\Big) \subsetneq \mathbb{P}^2_{\mathbb{C}}.$$

 In consequence, the region of discontinuity Ω(Γ^{*}_n) = P²_C \ Λ(Γ^{*}_n) is not empty for all sufficiently large n.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Lemma. If $g \in PSL(3, \mathbb{C})$ is conjugate to a loxodromic element of PU(2,1) and $g^n \in PU(2,1)$ for some $n \in \mathbb{Z} \setminus \{0\}$, then $g \in PU(2,1)$.
- **Proposition**. The group $\Gamma_1^* = \langle (\delta^{-1})^t, (\epsilon^{-1})^t \rangle$ is not conjugate to any subgroup of PU(2, 1).

Proposition

For every $n \in \mathbb{N}$, the group $\Gamma_n^* = \langle (\delta^{-n})^t, (\epsilon^{-n})^t \rangle$ is not conjugate to any subgroup of PU(2, 1).

Proof

Let C be an element in $PSL(3, \mathbb{C})$ such that

$$(C(\delta^{-1})^{t}C^{-1})^{n} = C(\delta^{-n})^{t}C^{-1} \in PU(2,1),$$

$$(C(\epsilon^{-1})^t C^{-1})^n = C(\epsilon^{-n})^t C^{-1} \in PU(2,1),$$

then by lemma, $C(\delta^{-1})^t C^{-1}$ and $C(\epsilon^{-1})^t C^{-1}$ are elements in PU(2,1), so Γ_1^* is conjugate to a subgroup of PU(2,1), which contradicts above proposition.