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Definition: A Complex Kleinian Group is a discrete subgroup of
PSL(n + 1,C) acting on Pn

C with non empty region of discontinuity.
We restrict our attention to complex Kleinian subgroups of PSL(3,C).
There are two natural sources of complex Kleinian groups: Discrete
subgroups of PU(2, 1) and discrete subgroups of Aff (C2).
It is difficult to decide when a discrete subgroup of PSL(3,C) is
complex Kleinian group, and Kulkarni limit set provides a valuable
tool for the solution of this problem.



Definition [Groups with Domains of Discontinuity,
R. Kulkarni, 1978]

Let X be a locally compact Hausdorff Space and G be a group acting by
homeomorphisms on X .

L0(G) is the closure of the set of points in X with infinite isotropy
group
L1(G) is the closure of the set of cluster points of {g(z) : g ∈ G}
where z runs over X − L0(G).
L2(G) is the closure of the set of cluster points {g(K ) : g ∈ G} where
K runs over compact subsets of X − (L0(G) ∪ L1(G)).

The Kulkarni Limit Set is

Λ(G) = L0(G) ∪ L1(G) ∪ L2(G)



Kulkarni Domain of Discontinuity

The domain of discontinuity of Γ is defined as the set

Ω(G) = X − Λ(G).

G is said to have the Kleinian Property if Ω(G) 6= ∅.



Kulkarni’s Theorem

Definition. Let X be a locally compact Hausdorff space and G be a group
acting on X by homeomorphisms. The action of G is properly
discontinuous on a G-invariant subset Ω of X if for any two compact C
and D of Ω, g(C) ∩ D 6= ∅ only for finitely many g ∈ G .

Theorem[Kulkarni,1978] Let X and G be as above where G is equipped
with the compact open topology. Then L0, L1, L2, Λ, Ω are G-invariant
and G acts properly discontinuously on Ω. If G has the Kleinian property
then it is discrete. If X has a countable base for its topology then G is
countable.



Remarks

We remark that the usual limit set and Kulkarni limit set agree for
classical Kleinian groups. In fact L0 = L1 = L2 = Λ.
On the other hand when working in complex projective geometry, the
sets L0, L1, L2 can be quite different amongst them.



Example

γ =

 λ1 0 0
0 λ2 0
0 0 λ3

 , |λ1| < |λ2| < |λ3|

If e1 = [1 : 0 : 0], e2 = [0 : 1 : 0] and e3 = [0 : 0 : 1], then

L0(γ) = {e1, e2, e3}
L1(γ) = {e1, e2, e3}
L2(γ) = (e1e2) ∪ (e2e3).



Loxodromic dynamic

e1

e2 e3



More remarks

Ω(G) is not always the maximal open set where the group acts proper
and discontinuosly.
If H ≤ G not necessarily Λ(H) ⊂ Λ(G).
If G is an infinite discrete subgroup of PSL(3,C), then Λ(G) consists
of one complex projective line, one complex projective line and one
point, two complex projective lines, three complex projective lines or a
union of infinitely many complex projective lines.



It is also important to know the maximum number of complex
projectives lines in general position in Λ. It is known that this number
is equal 1,2, 3 , 4 or ∞.
Suspensions provide examples with many complex projectives lines in
Λ but at most two in general position.
There is a classification of those subgroups of PSL(3,C) such that
the maximum number of complex projectives lines in Λ is equal to
four(Barrera-Cano-Navarrete).



PURPOSE
To construct complex Kleinian groups not conjugate to any subgroup of
PU(2, 1) nor to any subgroup of Aff (C2) with rich dynamics and with
infinitely many projectives lines in general position in its Kulkarni limit set.



Pappus Theorem
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Box operations

A box consists of four points p, q, r , s in general position in P2
C, called the

vertices of the box, plus two points t and b, in the complex lines pq and
rs, respectively, such that:

p 6= t 6= q, t 6= (pq)(rs),
r 6= b 6= s, b 6= (pq)(rs).

This box is denoted by Θ = (p, q, r , s; t, b) and the box operations are
defined as follows:

i(Θ) = (s, r , p, q; b, t),

τ1(Θ) = (p, q, (bq)(rt), (bp)(st); t, (qs)(pr)),

τ2(Θ) = ((bq)(rt), (bp)(st), r , s; (qs)(pr), b).



Operation τ1 and τ2

p

q

s

r

t

b

(bp)(st) (pr)(qs)

(bq)(rt)



Operation i
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Box operations II

It is not hard to verify that the following relations are satisfied

i4 = 1, τ1i3τ2 = i , τ2iτ1 = i3, τ1iτ1 = i2τ2, τ2i3τ2 = τ1

These relations show that the operations on a box Θ form a group, and
this group is generated by

α = i and β = iτ1

Moreover
α4 = 1 = β6



Box Operations III

If g ∈ PSL(3,C) and Θ = (p, q, r , s; t, b) is a box, then

g Θ = (g(p), g(q), g(r), g(s); g(t), g(b)).

This action commutes with the box operations i , τ1, τ2.

We want to find projective transformations A,T1,T2 ∈ PSL(3,C)
(depending on Θ) such that:

a) τ1(Θ) = T1 Θ,

b) τ2(Θ) = T2 Θ,

c) i(Θ) = A Θ.



Good box
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Lemma

There exists T1 ∈ PSL(3,C) such that τ1(Θ) = T1 Θ, if and only if,
Θ is a good box.
There exists T2 ∈ PSL(3,C) such that τ2(Θ) = T2 Θ, if and only if,
Θ is a good box.
There exists A ∈ PSL(3,C) such that i(Θ) = A Θ, if and only if, Θ is
a good box.

Remark
Let g ∈ PSL(3,C) be a projective transformation. It is not hard to see
that Θ is a good box, if and only if, g Θ is a good box. It follows that
the orbit of a good box Θ by box operations consists of good boxes.



Theorem
If p, q, r , s in P2

C are four points in general position, then there exist
two unique points t and b such that the group generated by the
operations in the box Θ = (p, q, r , s; t, b) can be represented as a
subgroup of PSL(3,C).
This group is conjugate in PSL(3,C) to a group such that every
element has a lift to SL(3,C) of the form 1 0 0

0 a b
0 c d

 ,
where (

a b
c d

)
is an element in SL(2,Z).
Moreover, its Kulkarni limit set is the union of those concurrent
complex lines determined by the common intersection point (pq)(rs),
and the points in the real projective line tb.



The group of a good box

Now we show that PSL(3,Z) is a discrete subgroup of PSL(3,C) acting on
P2
C in such way that its Kulkarni limit set is all of P2

C.
The plan is as follows:

We introduce a new operation on good boxes that together with
τ1, τ2 and i generate a group of operations on good boxes which may
be represented as a group of projective transformations of P2

C called
the group of the a good box, and denoted P.
It is shown that the group of the good box contains a discrete
subgroup, denoted P2, which is also a subgroup of PSL(3,Z) and
whose Kulkarni limit set is all of P2

C.
It is proved that the P2 orbit of any point in P2

R ⊂ P2
C has a dense

orbit in P2
R. In other words, the action of P2 on P2

R is minimal.



Theorem

[Barrera-Cano-Navarrete] Let Γ ⊂ PSL(3,C) be an infinite discrete
subgroup, without fixed points nor invariant complex lines. Let E(Γ) be
the subset of (P2

C)∗ consisting of all the complex lines l for which there
exists an element γ ∈ Γ such that l ⊂ Λ(γ).

a)
Λ(Γ) =

⋃
l∈E(Γ)

l =
⋃

l∈E(Γ)

l =
⋃
γ∈Γ

Λ(γ)

is
b) If E(Γ) contains more than three complex lines, then E(Γ) ⊂ (P2

C)∗ is
a perfect set. Also, it is the minimal closed Γ-invariant subset of
(P2

C)∗.



Definition

The side operation λ is defined as follows: If Θ = (p, q, r , s; t, b) is a box,
then

λ(Θ) = (q, r , s, p ; L(t), L(b)),

where L is the only projective transformation satisfying

L(p) = q, L(q) = r , L(r) = s, L(s) = p.

It follows that L Θ = λ(Θ), and Θ = (p, q, r , s; t, b) is a good box, if and
only if, λ(Θ) is a good box.



Let p = [1 : 0 : 0], q = [0 : 1 : 0], r = [0 : 0 : 1], s = [1 : 1 : 1], and
Θ = (p, q, r , s; t, b) a good box, then

L =

 0 0 1
−1 0 1
0 −1 1

 .

P = 〈A,T1, L〉 (the group of a good box).
P2 = 〈A,T 2

1 ,T 2
2 , L〉 ⊂ PSL(3,Z).



Lemma

Let M2 be the group 〈A2,T 2
1 ,T 2

2 〉, acting on P2
C, then M2 is conjugate

(in PSL(3,C)) to a double covering group of the classical Kleinian group
Mod(2) and its limit set according to Kulkarni Λ(M2) ⊂ Λ(P2), is the
union of those concurrent complex projective lines determined by the
common point y = (pq)(rs) and those points on the real projective line
bt. In other words,

Λ(M2) =
⋃

w∈(bt)R

(wy)C.



Theorem

The groups P and P2 acting on P2
C are not complex Kleinian. In fact,

Λ(P) = Λ(P2) = P2
C.

The complete pencil of projective real lines with vertex y is contained
in the Kulkarni limit set Λ(P2).
Since L ∈ P2, it follows that the complete pencil of projective real
lines with vertex x is contained in Λ(P2).
Moving this pencil along the real projective tb with the action of
Mod(2), we obtain that every real projective line is contained in
Λ(P2).
And finally it can be proved that Λ(P2) = P2

C.



Corollaries

The Kulkarni limit set of the group PSL(3,Z) acting on P2
C is all of

P2
C.

The group P2 acts minimally on the space of real projective lines of
P2
R. In other words, the P2-orbit of every real projective line in P2

R is
dense in the space of real projective lines in P2

R.
The P2-orbit of any point in P2

R is dense in P2
R.



Groups with more than five lines: Construction
Now we construct a family of examples of groups Γ ⊂ SL(3,R), such that:

i) Γ is a free group not conjugate, in PSL(3,C), to any subgroup of
PU(2, 1) nor conjugate to any subgroup of Aff (C2).

ii) Γ, acting on P2
C, is a complex Kleinian group. In other words, its

Kulkarni discontinuity region, Ω(Γ) ⊂ P2
C, is not empty.

iii) Γ∗ = {(γt)−1 : γ ∈ Γ} can be realized as a group of operations on
good boxes and it is a group of Schottky type.

iv) Λ(Γ) contains at least five lines in general position.



Group of Schottky type (Conze and Guivarch,Tits)

Definition.
Let (X , δ) be a complete metric space.
p a point in X .
Σ a finite set of homeomorphisms of X which is symmetric (namely,
a−1 ∈ Σ for all a ∈ Σ).
Let {Ca}a∈Σ be a family of compact subsets of X such that
p /∈ ∪a∈ΣCa and a(p) ∈ Ca for all a ∈ Σ.

Assume the following conditions are sastified
(1) If a, b ∈ Σ are two distinct elements, then Ca ∩ Cb = ∅.
(2) If a, b ∈ Σ and a 6= b−1, then a(Cb) ⊂ Int(Ca).
(3) For all sequences {an} such that an 6= a−1

n+1 for all n ≥ 1, the diameter
of a1 . . . anCan+1 goes to 0 as n→∞.



Remarks I

The compact sets Ca are not necessarily circles.
In the case of a classical Schottky group acting on the Riemann
sphere, the common exterior of the circumferences is a fundamental
domain. However, this is no longer valid for a group of Schottky type.
In the construction of a classical Schottky group one requires that the
circles (the compact sets) bound a domain D and gm(D) ∩D = ∅ for
all m = 1, . . . , n which implies that the group is free and discrete.
Analogously, in the case of a group of Schottky type one requires the
existence of a point p /∈

⋃
a∈Σ Ca such that a(p) ∈ Ca for all a ∈ Σ,

and this condition together with condition (2) assures that the group
is free and discrete.
The condition (3) is not deduced from (1) and (2), since the
conformal properties of Möbius transformations are no longer valid.
However, in the real projective space Pn

R, if the sets Ca are convex
then conditions (1) and (2) do imply condition (3)



Remarks II

A closed subset C of P2
R is called convex if it is contained in the

complement of a real projective line ` and it is convex as a subset of
P2
R − `.

A matrix a ∈ GL(3,R) is called loxodromic if it has an eigenvalue λ0
such that |λ0| > |λ| for all the others eigenvalues λ of γ (whether real
or complex). For such a matrix a, an eigenvector a+ ∈ R3

corresponding to the eigenvalue λ0 is called a dominant eigenvector of
γ.
The subset K (a) is defined as the projectivization of the set
{w ∈ R3 : λ−n

0 an(w)→ (0, 0, 0) as n→∞}.



Proposition
Σ̂ = {(a,Ca) | a ∈ Σ} a system, where Σ is a set of projective
transformations and Ca are compact convex sets. If Σ̂ satisfies
conditions (1) and (2) of definition of group of Schottky type, then
every element in Σ is loxodromic, with a+ ∈ Ca and K (b) ∩ Ca = ∅
for b 6= a−1.
Σ̂ = {(a,Ca) | a ∈ Σ} a system, where Ca are disjoint compact convex
sets and Σ is a set of loxodromic projective transformations with
a+ ∈ Ca and K (b) ∩ Ca = ∅ whenever b 6= a−1, then for all
sufficiently large n the system Σ̂n = {(an,Ca)|a ∈ Σ} satisfies
conditions (1) and (2) of definition group of Schottky type.



s = [0 : 0 : 1] r = [1 : 0 : 1]

q = [1 : 1 : 1]p = [0 : 1 : 1] t

b

t′b′

y

x



i τ2
1 τ2

2 λ

A T 2
1 T 2

2 L 1 1 −1
0 1 −1
0 2 −1


 1 −1 1

0 −1 2
0 −2 3


 1 1 0

0 1 0
0 2 1


 0 1 0
−1 0 1
0 0 1





Cδ

Cδ−1

Cǫ
Cǫ−1

Kδ−1

Kδ

Kǫ Kǫ−1



Let Γ1 = 〈δ, ε〉, where δ = T 2
2 T 2

1 T 2
2 and ε = LδL−1.

Let V = {p, q, r , s} be the set of vertices of the box Θ0.
The sets V , δ(V ), δ−1(V ), ε(V ) and ε−1(V ) are contained in
R2 = {[x : y : 1] ∈ P2

R}
Define Cδ, Cδ−1 , Cε, Cε−1 as the convex hull of the sets δ(V ),
δ−1(V ), ε(V ), ε−1(V ), respectively.
The point [0 : 1 : 1] = p /∈ Cδ ∪ Cδ−1 ∪ Cε ∪ Cε−1 , but
δ(p), δ−1(p), ε(p), ε−1(p) do belong to Cδ ∪ Cδ−1 ∪ Cε ∪ Cε−1 .
It is not hard to check that the compact convex sets
Cδ,Cδ−1 ,Cε,Cε−1 are disjoint.



Each one of the elements δ, δ−1, ε, ε−1 is loxodromic, and δ+ ∈ Cδ,
(δ−1)+ ∈ Cδ−1 , ε+ ∈ Cε, (ε−1)+ ∈ Cε−1 .
Moreover,

K (δ) ∩ Cδ = ∅, K (δ) ∩ Cε = ∅, K (δ) ∩ Cε−1 = ∅;

K (δ−1) ∩ Cδ−1 = ∅, K (δ−1) ∩ Cε = ∅, K (δ−1) ∩ Cε−1 = ∅;

K (ε) ∩ Cδ = ∅, K (ε) ∩ Cδ−1 = ∅, K (ε) ∩ Cε = ∅;

K (ε−1) ∩ Cδ = ∅, K (ε−1) ∩ Cδ−1 = ∅, K (ε−1) ∩ Cε−1 = ∅.



For all sufficiently large n, the system

Σn = {(δn,Cδ), (δ−n,Cδ−1), (εn,Cε), (ε−n,Cε−1)}

satisfies conditions (1) , (2) and (3). Therefore, for all sufficiently
large n, the group Γn = 〈δn, εn〉 is of Schottky type.



The closure of the set of attracting fixed points of loxodromic
transformations in Γn is a closed minimal set for the action of Γn on
P2
R.

Given four arbitrary open sets Uδ,Uδ−1 ,Uε,Uε−1 neighborhoods of δ+,
(δ−1)+, ε+, (ε−1)+, respectively. We can choose n large enough in
such way that the closed minimal set of Γn is contained in the union
of these four arbitrary neighborhoods.



For every n ∈ N, we define Γ∗n = {(γt)−1 : γ ∈ Γn} ≤ SL(3,R) acting
on P2

C (the groups Γ∗n and Γn are isomorphic, but not necessarily
equal).
Γ∗n acts on P2

C without globally fixed points (because (δt)−1 and
(εt)−1 are loxodromic elements and they have no common fixed
point).
Γ∗n acts on P2

C without invariant complex projective lines (because δ
and ε are loxodromic elements and have no common fixed point).



The Kulkarni limit set, Λ(Γ∗n), contains at least four complex
projective lines in general position, because

Λ(Γ∗n) =
⋃
γ∈Γn

Λ((γt)−1) ⊃ Λ((δt)−n)∪Λ((εt)−n) = Λ((δt)−1)∪Λ((εt)−1),

and Λ((δt)−1) ∪ Λ((εt)−1) is equal to four complex projective lines in
general position.
It follows that Λ(Γ∗n) contains at least five complex projective lines in
general position. Therefore it contains infinitely many complex
projective lines in general position.



Let E(Γ∗n) be the set consisting of those complex projective lines ` for
which there exists γ ∈ Γn such that ` ⊂ Λ((γt)−1).
(Barrera-Cano-Navarrete) E(Γ∗n) is the minimal Γ∗n-invariant closed set
for the action of Γ∗n on (P2

C)∗.
But this action is precisely the natural action Γn on P2

C

Thus, for any n large enough, E(Γ∗n) is identified with the minimal
Γn-invariant closed set of the group of Schottky type Γn acting on P2

R,
because P2

R is a closed invariant set for the action of Γn on P2
C.



For sufficiently large n, this minimal closed set is contained in the
union of arbitrary neighborhoods (in (P2

C)∗) of the complex projective
lines δ+, (δ−1)+, ε+, (ε−1)+.
We denote these neighborhoods by Uδ,Uδ−1 ,Uε,Uε−1 , and we can
choose them in such way that( ⋃

`∈Uδ∪Uδ−1∪Uε∪Uε−1

`
)
( P2

C,

then
Λ(Γ∗n) =

⋃
`∈E(Γ∗n )

` ⊂
( ⋃
`∈Uδ∪Uδ−1∪Uε∪Uε−1

`
)
( P2

C.

In consequence, the region of discontinuity Ω(Γ∗n) = P2
C \ Λ(Γ∗n) is not

empty for all sufficiently large n.



Lemma. If g ∈ PSL(3,C) is conjugate to a loxodromic element of
PU(2, 1) and gn ∈ PU(2, 1) for some n ∈ Z \ {0}, then g ∈ PU(2, 1).
Proposition. The group Γ∗1 = 〈(δ−1)t , (ε−1)t〉 is not conjugate to
any subgroup of PU(2, 1).
Proposition
For every n ∈ N, the group Γ∗n = 〈(δ−n)t , (ε−n)t〉 is not conjugate to
any subgroup of PU(2, 1).
Proof
Let C be an element in PSL(3,C) such that

(C(δ−1)tC−1)n = C(δ−n)tC−1 ∈ PU(2, 1),

(C(ε−1)tC−1)n = C(ε−n)tC−1 ∈ PU(2, 1),

then by lemma, C(δ−1)tC−1 and C(ε−1)tC−1 are elements in
PU(2, 1), so Γ∗1 is conjugate to a subgroup of PU(2, 1), which
contradicts above proposition.
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