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• The map p : R −→ S1, which sends t 7→ e2πit

• This map has some interesting properties.
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For every point on the circle, there is an open arc U
such that :

• p−1(U) =
⊔

i∈I Ui , where for every i ∈ I , Ui ⊆ R is
an open interval

• p|Ui
: Ui −→ U is a homeomorphism.
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Remarks

• In the above definition, it is not assumed that the
map p : X̃ −→ X is surjective, but it is!

• X̃ is said to cover X .

• The open set U ⊆ X defined above is called an
evenly covered neighbourhood of x .

• The map p : R −→ S1, t −→ e2πit is a covering
map.
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• Let X̃ := { (x , y) | 0 < x < 1 and y = 1, 2, 3, 4 } and
X := { (x , 0) | 0 < x < 1 }

• Define p : X̃ −→ X as p((x , y)) = (x , 0).

• p is a covering map.
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• Let X̃ := S1 × R and X := Möbius strip

• Consider the map p̃ : R3 −→ R3,
(x , y , z) 7→ (−x ,−y ,−z).

• This induces a map p : X̃ −→ X which is a
covering map.
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• Let X̃ = S2 with the equivalence relation x ∼ −x .

• Let X = S2/ ∼ with the quotient topology.

• Then the quotient map p : S2 −→ S2/ ∼ is a
covering.

• Note that S2/ ∼ ∼= RP2
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Even Group Actions

• Let X̃ be a topological space and G a group acting
on X̃ .

• G is said to act evenly on X̃ if :

• Given any x̃ ∈ X̃ , there is an open set Ũ 3 x̃ such
that { gŨ | g ∈ G } is a pairwise disjoint family, i.e.

for every g1, g2 ∈ G , g1Ũ ∩ g2Ũ = φ.
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• Exercise : Let G be a finite group acting on a
Hausdorff space X̃ . Assume the action of G on X̃ is
free, i.e. if for any g ∈ G , there exists x such that
g · x = x , then g = e. Then show that G acts
evenly on X̃ .

• Let G act evenly on X̃ . Consider the quotient map
p : X̃ −→ G\X̃ =: X

• Exercise : Show that p : X̃ −→ X is a covering
map.

• Note that Z\R ∼= S1, Z2\R2 ∼= T2 · · · .
• Most of the examples we considered above were of

this form!
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Properties of Covering Maps

• A covering map p : X̃ −→ X is a local
homeomorphism.

• Every surjective, local homeomorphism need not be
a covering map.

• Consider the map f : (0, 3) −→ S1, f (t) := e2πit

• Exercise : Assume X̃ ,X to be connected, Hausdorff.
Assume X̃ is compact. Show that any surjective
local-homeomorphism p : X̃ −→ X is a covering
map.
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Properties of Covering Maps

• A covering map p : X̃ −→ X is an open map.

• Assumption : X̃ and X are connected, (locally
path-connected, locally-compact,· · · ) Hausdorff
spaces.

• The following property characterises covering maps :

• Theorem Let p : X̃ −→ X be a covering map. Let
c : [0, 1] −→ X be a curve. Let x̃ ∈ p−1{c(0)} be
given. Then, there exists a unique curve
c̃ : [0, 1] −→ X̃ such that c̃(0) = x̃ and p ◦ c̃ ≡ c .
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• Let f0, f1 : Y −→ X be continuous maps.

• f0 and f1 are said to be homotopic if there exists a
continuous map H : Y × [0, 1] −→ X such that :

• H(y , 0) = f0(y) and H(y , 1) = f1(y) for every
y ∈ Y
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• For x̃ ∈ X̃ , a loop based at x̃ is a curve
c : [0, 1] −→ X̃ such that c(0) = x̃ = c(1).

• A connected space X̃ is said to be simply connected
if for any x̃ ∈ X̃ we have : every loop
γ : [0, 1] −→ X̃ based at x̃ is homotopic to the
constant loop α ≡ x̃
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• Theorem Let X be a connected, locally
path-connected, semi-locally simply connected
topological space. Then there exists a covering
p : X̃ −→ X such that X̃ is simply connected.

• X̃ is called the universal cover of X .

• Let f : Y −→ X be a continuous map. Let
p : X̃ −→ X be any covering map. Assume Y is
simply connected. Then there exists a map
f̃ : Y −→ X̃ such that p ◦ f̃ ≡ f .
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• Let x0 ∈ X be given. Let α : [0, 1] −→ X be a loop
based at x0

• [α] := { c : [0, 1] −→
X | c is a loop based at x0; c is homotopic to α }

• π1(X , x0) := { [α] | α is a loop based at x0 }
• π1(X , x0) is called the fundamental group of X with

basepoint x0
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• If X is path connected, then for any x1, x2 ∈ X ,
π1(X , x1) ∼= π1(X , x2).

• We have assumed all spaces are “nice”.

• If X̃ is simply connected, then π1(X̃ , ∗) is trivial.
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•
π1(S1, ∗) ∼= Z

•
π1(T2, ∗) ∼= Z⊕ Z

•
π1(RP2, ∗) ∼= Z2

• Let X be a compact, orientable surface of genus g ,
then

•

π1(X , ∗) ∼=

〈
a1, b1, · · · ag , bg |

g∏
1=1

[ai , bi ] = 1

〉
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• If p : Y −→ X is any covering, then
π1(Y , ∗) ≤ π1(X , ∗).

• Let p : X̃ −→ X be a covering such that X̃ is
simply connected. (X connected). For every
subgroup H ≤ π1(X , ∗) there is a connected
covering q : Y −→ X such that π1(Y , ∗) ∼= H .

• 

{1} ↔ X̃

↓ ... ↓
H ↔ Y

↓ ... ↓
π1(X , ∗) ↔ X


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