COVERING SPACES and FUNDAMENTAL GROUPS

> Vikram T. Aithal Almora, December 2012

The Prototype

• The map $p:\mathbb{R}\longrightarrow S^1$, which sends $t\mapsto e^{2\pi i t}$

The Prototype

• The map $p: \mathbb{R} \longrightarrow S^1$, which sends $t \mapsto e^{2\pi i t}$

• This map has some interesting properties.

For every point on the circle, there is an open arc ${\boldsymbol{U}}$ such that :

p⁻¹(U) = □_{i∈I} U_i, where for every i ∈ I, U_i ⊆ ℝ is an open interval

For every point on the circle, there is an open arc \boldsymbol{U} such that :

- p⁻¹(U) = □_{i∈I} U_i, where for every i ∈ I, U_i ⊆ ℝ is an open interval
- $p|_{U_i}: U_i \longrightarrow U$ is a homeomorphism.

Let X, \widetilde{X} be topological spaces. A map $p : \widetilde{X} \longrightarrow X$ is said to be a *covering map* if for every $x \in X$, there is an open neighbourhood $U \ni x$ such that,

p⁻¹(U) = □_{i∈I} U_i, where for every i ∈ I, U_i ⊆ ℝ is an open set.

Let X, \widetilde{X} be topological spaces. A map $p : \widetilde{X} \longrightarrow X$ is said to be a *covering map* if for every $x \in X$, there is an open neighbourhood $U \ni x$ such that,

- p⁻¹(U) = □_{i∈I} U_i, where for every i ∈ I, U_i ⊆ ℝ is an open set.
- $p|_{U_i}: U_i \longrightarrow U$ is a homeomorphism.

In the above definition, it is not assumed that the map p: X̃ → X is surjective, but it is!

- In the above definition, it is not assumed that the map p: X̃ → X is surjective, but it is!
- \widetilde{X} is said to cover X.

- In the above definition, it is not assumed that the map p: X̃ → X is surjective, but it is!
- \widetilde{X} is said to cover X.
- The open set U ⊆ X defined above is called an evenly covered neighbourhood of x.

- In the above definition, it is not assumed that the map p: X̃ → X is surjective, but it is!
- \tilde{X} is said to cover X.
- The open set *U* ⊆ *X* defined above is called an *evenly covered* neighbourhood of *x*.
- The map $p: \mathbb{R} \longrightarrow S^1$, $t \longrightarrow e^{2\pi i t}$ is a covering map.

• Let $p_n: S^1 \longrightarrow S^1$ be such that $p_n: z \mapsto z^n$.

- Let $p_n: S^1 \longrightarrow S^1$ be such that $p_n: z \mapsto z^n$.
- p_n is a covering map.

• Let $\widetilde{X} := \{ (x, y) | 0 < x < 1 \text{ and } y = 1, 2, 3, 4 \}$ and $X := \{ (x, 0) | 0 < x < 1 \}$

• Let
$$\widetilde{X} := \{ (x, y) | 0 < x < 1 \text{ and } y = 1, 2, 3, 4 \}$$
 and $X := \{ (x, 0) | 0 < x < 1 \}$

• Define $p: \widetilde{X} \longrightarrow X$ as p((x, y)) = (x, 0).

- Let $\widetilde{X} := \{ (x, y) | 0 < x < 1 \text{ and } y = 1, 2, 3, 4 \}$ and $X := \{ (x, 0) | 0 < x < 1 \}$
- Define $p: \widetilde{X} \longrightarrow X$ as p((x, y)) = (x, 0).
- p is a covering map.

• Let $\widetilde{X} := S^1 imes \mathbb{R}$ and X := Möbius strip

- Let $\widetilde{X} := S^1 imes \mathbb{R}$ and X := Möbius strip
- Consider the map $\widetilde{p} : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, $(x, y, z) \mapsto (-x, -y, -z)$.

- Let $\widetilde{X} := S^1 imes \mathbb{R}$ and X := Möbius strip
- Consider the map $\widetilde{p} : \mathbb{R}^3 \longrightarrow \mathbb{R}^3$, $(x, y, z) \mapsto (-x, -y, -z)$.
- This induces a map p : X̃ → X which is a covering map.

• Consider the quotient map $p: \mathbb{R}^2 \longrightarrow \mathbb{R}^2/\mathbb{Z}^2$

- Consider the quotient map $p: \mathbb{R}^2 \longrightarrow \mathbb{R}^2 / \mathbb{Z}^2$
- This is a covering map.

 In fact, after making the appropriate identifications, we get a covering map p : ℝ² → T².

 In fact, after making the appropriate identifications, we get a covering map p : ℝ² → T².

• This can also be realised as $p((s, t)) = (e^{2\pi i s}, e^{2\pi i t})$

• Let $\widetilde{X} = S^2$ with the equivalence relation $x \sim -x$.

- Let $\widetilde{X} = S^2$ with the equivalence relation $x \sim -x$.
- Let $X = S^2 / \sim$ with the quotient topology.

- Let $\widetilde{X} = S^2$ with the equivalence relation $x \sim -x$.
- Let $X = S^2 / \sim$ with the quotient topology.
- Then the quotient map $p:S^2\longrightarrow S^2/\sim$ is a covering.

- Let $\widetilde{X} = S^2$ with the equivalence relation $x \sim -x$.
- Let $X = S^2 / \sim$ with the quotient topology.
- Then the quotient map $p:S^2\longrightarrow S^2/\sim$ is a covering.
- Note that $S^2/\sim \cong \mathbb{RP}^2$

Even Group Actions

 Let X̃ be a topological space and G a group acting on X̃.

Even Group Actions

- Let X be a topological space and G a group acting on X.
- G is said to act evenly on \widetilde{X} if :

Even Group Actions

- Let X̃ be a topological space and G a group acting on X̃.
- G is said to act evenly on \widetilde{X} if :
- Given any x̃ ∈ X̃, there is an open set Ũ ∋ x̃ such that { gŨ | g ∈ G } is a pairwise disjoint family, i.e. for every g₁, g₂ ∈ G, g₁Ũ ∩ g₂Ũ = φ.

Exercise : Let G be a finite group acting on a Hausdorff space X̃. Assume the action of G on X̃ is free, i.e. if for any g ∈ G, there exists x such that g ⋅ x = x, then g = e. Then show that G acts evenly on X̃.

- Exercise : Let G be a finite group acting on a Hausdorff space X̃. Assume the action of G on X̃ is free, i.e. if for any g ∈ G, there exists x such that g ⋅ x = x, then g = e. Then show that G acts evenly on X̃.
- Let G act evenly on X. Consider the quotient map $p: \widetilde{X} \longrightarrow G \setminus \widetilde{X} =: X$

- Exercise : Let G be a finite group acting on a Hausdorff space X̃. Assume the action of G on X̃ is free, i.e. if for any g ∈ G, there exists x such that g ⋅ x = x, then g = e. Then show that G acts evenly on X̃.
- Let G act evenly on X. Consider the quotient map $p: \widetilde{X} \longrightarrow G \setminus \widetilde{X} =: X$
- Exercise : Show that $p: \widetilde{X} \longrightarrow X$ is a covering map.

- Exercise : Let G be a finite group acting on a Hausdorff space X̃. Assume the action of G on X̃ is free, i.e. if for any g ∈ G, there exists x such that g ⋅ x = x, then g = e. Then show that G acts evenly on X̃.
- Let G act evenly on X. Consider the quotient map $p: \widetilde{X} \longrightarrow G \setminus \widetilde{X} =: X$
- Exercise : Show that $p: \widetilde{X} \longrightarrow X$ is a covering map.
- Note that $\mathbb{Z} \setminus \mathbb{R} \cong S^1$, $\mathbb{Z}^2 \setminus \mathbb{R}^2 \cong \mathbb{T}^2 \cdots$.

- Exercise : Let G be a finite group acting on a Hausdorff space X̃. Assume the action of G on X̃ is free, i.e. if for any g ∈ G, there exists x such that g ⋅ x = x, then g = e. Then show that G acts evenly on X̃.
- Let G act evenly on X. Consider the quotient map $p: \widetilde{X} \longrightarrow G \setminus \widetilde{X} =: X$
- Exercise : Show that $p: \widetilde{X} \longrightarrow X$ is a covering map.
- Note that $\mathbb{Z}\backslash\mathbb{R}\cong S^1$, $\mathbb{Z}^2\backslash\mathbb{R}^2\cong\mathbb{T}^2\cdots$.
- Most of the examples we considered above were of this form!

Properties of Covering Maps

A covering map p : X̃ → X is a local homeomorphism.
- A covering map p : X̃ → X is a local homeomorphism.
- Every surjective, local homeomorphism need not be a covering map.

- A covering map p : X̃ → X is a local homeomorphism.
- Every surjective, local homeomorphism need not be a covering map.
- Consider the map $f:(0,3)\longrightarrow S^1$, $f(t):=e^{2\pi i t}$

- A covering map p : X̃ → X is a local homeomorphism.
- Every surjective, local homeomorphism need not be a covering map.
- Consider the map $f:(0,3)\longrightarrow S^1$, $f(t):=e^{2\pi i t}$
- Exercise : Assume X, X to be connected, Hausdorff. Assume X is compact. Show that any surjective local-homeomorphism p : X → X is a covering map.

• A covering map $p: \widetilde{X} \longrightarrow X$ is an open map.

- A covering map $p: \widetilde{X} \longrightarrow X$ is an open map.
- Assumption : X̃ and X are connected, (locally path-connected, locally-compact,...) Hausdorff spaces.

- A covering map $p: \widetilde{X} \longrightarrow X$ is an open map.
- Assumption : X and X are connected, (locally path-connected, locally-compact,...) Hausdorff spaces.
- The following property characterises covering maps :

- A covering map $p: \widetilde{X} \longrightarrow X$ is an open map.
- Assumption : X and X are connected, (locally path-connected, locally-compact,...) Hausdorff spaces.
- The following property characterises covering maps :
- **Theorem** Let $p: \widetilde{X} \longrightarrow X$ be a covering map. Let $c: [0,1] \longrightarrow X$ be a curve. Let $\widetilde{x} \in p^{-1}\{c(0)\}$ be given. Then, there exists a unique curve $\widetilde{c}: [0,1] \longrightarrow \widetilde{X}$ such that $\widetilde{c}(0) = \widetilde{x}$ and $p \circ \widetilde{c} \equiv c$.

• Let $f_0, f_1 : Y \longrightarrow X$ be continuous maps.

- Let $f_0, f_1 : Y \longrightarrow X$ be continuous maps.
- f₀ and f₁ are said to be homotopic if there exists a continuous map H : Y × [0, 1] → X such that :

- Let $f_0, f_1 : Y \longrightarrow X$ be continuous maps.
- f₀ and f₁ are said to be homotopic if there exists a continuous map H : Y × [0, 1] → X such that :
- $H(y,0) = f_0(y)$ and $H(y,1) = f_1(y)$ for every $y \in Y$

• We consider the case Y = [0, 1] and c_0, c_1 are curves.

- We consider the case Y = [0, 1] and c_0, c_1 are curves.
- The map H is called a homotopy joining c_0 and c_1

• We have the following characterisation of covering spaces :

- We have the following characterisation of covering spaces :
- Theorem Let p: X → X be a covering map. Let c₀, c₁: [0, 1] → X be two homotopic curves, with homotopy H: [0, 1] × [0, 1] → X. Let γ₀: [0, 1] → X be a lift of the curve c₀. Then there exists a map G: [0, 1] × [0, 1] → X, such that G(t, 0) = γ₀(t) and p ∘ G ≡ H.

• For $\widetilde{x} \in \widetilde{X}$, a loop based at \widetilde{x} is a curve $c : [0,1] \longrightarrow \widetilde{X}$ such that $c(0) = \widetilde{x} = c(1)$.

- For $\widetilde{x} \in \widetilde{X}$, a loop based at \widetilde{x} is a curve $c : [0,1] \longrightarrow \widetilde{X}$ such that $c(0) = \widetilde{x} = c(1)$.
- A connected space X̃ is said to be simply connected if for any x̃ ∈ X̃ we have : every loop γ : [0, 1] → X̃ based at x̃ is homotopic to the constant loop α ≡ x̃

Theorem Let X be a connected, locally path-connected, semi-locally simply connected topological space. Then there exists a covering p: X → X such that X is simply connected.

- Theorem Let X be a connected, locally path-connected, semi-locally simply connected topological space. Then there exists a covering p: X → X such that X is simply connected.
- \widetilde{X} is called the universal cover of X.

- Theorem Let X be a connected, locally path-connected, semi-locally simply connected topological space. Then there exists a covering p: X → X such that X is simply connected.
- X is called the universal cover of X.
- Let f: Y → X be a continuous map. Let p: X̃ → X be any covering map. Assume Y is simply connected. Then there exists a map f̃: Y → X̃ such that p ∘ f̃ ≡ f.

• Let $x_0 \in X$ be given. Let $\alpha : [0,1] \longrightarrow X$ be a loop based at x_0

- Let x₀ ∈ X be given. Let α : [0, 1] → X be a loop based at x₀
- $[\alpha] := \{ c : [0, 1] \longrightarrow X \mid c \text{ is a loop based at } x_0; c \text{ is homotopic to } \alpha \}$

- Let x₀ ∈ X be given. Let α : [0, 1] → X be a loop based at x₀
- $[\alpha] := \{ c : [0, 1] \longrightarrow X \mid c \text{ is a loop based at } x_0; c \text{ is homotopic to } \alpha \}$
- $\pi_1(X, x_0) := \{ [\alpha] \mid \alpha \text{ is a loop based at } x_0 \}$

- Let x₀ ∈ X be given. Let α : [0, 1] → X be a loop based at x₀
- $[\alpha] := \{ c : [0, 1] \longrightarrow X \mid c \text{ is a loop based at } x_0; c \text{ is homotopic to } \alpha \}$
- $\pi_1(X, x_0) := \{ [\alpha] \mid \alpha \text{ is a loop based at } x_0 \}$
- π₁(X, x₀) is called the fundamental group of X with basepoint x₀

• If X is path connected, then for any $x_1, x_2 \in X$, $\pi_1(X, x_1) \cong \pi_1(X, x_2)$.

• If X is path connected, then for any $x_1, x_2 \in X$, $\pi_1(X, x_1) \cong \pi_1(X, x_2)$.

• We have assumed all spaces are "nice".

• If X is path connected, then for any $x_1, x_2 \in X$, $\pi_1(X, x_1) \cong \pi_1(X, x_2)$.

- We have assumed all spaces are "nice".
- If \widetilde{X} is simply connected, then $\pi_1(\widetilde{X}, *)$ is trivial.

$$\pi_1(S^1,*)\cong\mathbb{Z}$$

$$\pi_1(S^1,*)\cong\mathbb{Z}$$
. $\pi_1(\mathbb{T}^2,*)\cong\mathbb{Z}\oplus\mathbb{Z}$

$$\pi_1(\mathbb{RP}^2,*)\cong\mathbb{Z}^2$$

$$\pi_1(\mathbb{RP}^2,*)\cong\mathbb{Z}^2$$

• Let X be a compact, orientable surface of genus g, then

$$\pi_1(S^1,*)\cong\mathbb{Z}$$
 $\pi_1(\mathbb{T}^2,*)\cong\mathbb{Z}\oplus\mathbb{Z}$

$$\pi_1(\mathbb{RP}^2,*)\cong\mathbb{Z}^2$$

• Let X be a compact, orientable surface of genus g, then

$$\pi_1(X,*)\cong\left\langle a_1,b_1,\cdots a_g,b_g\mid \prod_{1=1}^g [a_i,b_i]=1
ight
angle$$

• If $p: Y \longrightarrow X$ is any covering, then $\pi_1(Y, *) \leq \pi_1(X, *)$.

- If $p: Y \longrightarrow X$ is any covering, then $\pi_1(Y, *) \leq \pi_1(X, *)$.
- Let p: X̃ → X be a covering such that X̃ is simply connected. (X connected). For every subgroup H ≤ π₁(X, *) there is a connected covering q: Y → X such that π₁(Y, *) ≅ H.
- If $p: Y \longrightarrow X$ is any covering, then $\pi_1(Y, *) \leq \pi_1(X, *)$.
- Let p: X̃ → X be a covering such that X̃ is simply connected. (X connected). For every subgroup H ≤ π₁(X, *) there is a connected covering q: Y → X such that π₁(Y, *) ≅ H.

$$\left\{egin{array}{cccc} \{1\} & \leftrightarrow & \widetilde{X} \ \downarrow & \vdots & \downarrow \ H & \leftrightarrow & Y \ \downarrow & \vdots & \downarrow \ \pi_1(X,*) & \leftrightarrow & X \end{array}
ight\}$$

THANK YOU