Universe revealed by Planck: Simplicity or Duplicity

Planck Day ICTS, Bangalore (Apr 16, 2013) Tarun Souradeep I.U.C.A.A., Pune Planck HFI Core team

The Isotropic Universe Cosmic Microwave Background

Serendipitous discovery of the dominant Radiation content of the universe as an extremely isotropic, Black-body bath at temperature $T_0=2.725$ (+/-0.002)K.

"Clinching support for Hot Big Bang model"

`Standard' cosmological model: Geometry, Expansion & Matter

MAP990350

Cosmic "Super-IMAX" theater

Statistics of CMB

CMB Anisotropy Sky map => Spherical Harmonic decomposition

Statistical isotropic & Gaussian CMB anisotropy is completely specified by the *angular power spectrum*

$$\langle a_{lm} a^*_{l'm'} \rangle = C_l \delta_{ll'} \delta_{mm'}$$

Fig. M. White 1997

The Angular power spectrum of CMB anisotropy depends sensitively on Cosmological parameters

Hence, a **powerful tool** for constraining **cosmological parameters.**

Perturbed universe: superposition of random 'pings'

(Fig: Einsentein)

Ping the 'Cosmic drum'

(Fig: Einsentein)

More technically, the Green function

150 Mpc.

Dissected CMB Angular power spectrum

•Low multipole : Sachs-Wolfe plateau • Moderate multipole : Acoustic "Doppler" peaks • High multipole : Damping tail

COBE, Post-COBE Ground & Balloon Experiments

Interferometer)

Highlights of CMB Anisotropy Measurements (1992-2002)

The Cosmic Microwave Background as seen by Planck and WMAP

WMAP

Planck

OrE

WMAP: Angular power spectrum

Independent, self contained analysis of WMAP multi-frequency maps

Pre-Planck Angular power spectrum

Cosmic content post-Planck

Before Planck

After Planck

6-Parameter ΛCDM

	Planck+1	ensing+WP+highL	Planck+WP+highL+BAO		
Parameter	– Best fit	68% limits	Best fit	68% limits	
$100\Omega_{\rm b}h^2$ $\Omega_{\rm c}h^2$	0.022199	0.02218 ± 0.00026	0.022161	0.02214 ± 0.00024	
$10^9 A_s \ldots \ldots \ldots$	0.11847	0.1186 ± 0.0022	0.11889	0.1187 ± 0.0017	
$ au_{\mathrm{s}}$	1.04146	1.04144 ± 0.00061	1.04148	1.04147 ± 0.00056	
$100\theta_*$ Ω_{Λ}	0.0943	$0.090^{+0.013}_{-0.014}$	0.0952	0.092 ± 0.013	
H_0	0.9624	0.9614 ± 0.0063	0.9611	0.9608 ± 0.0054	

Limits on 1-parameter extensions to 6-p Λ CDM

	Planc	k+WP	Planck	+WP+BAO	Planck+	-WP+highL	Planck+V	WP+highL+BAO
Parameter	Best fit	95% limits	Best fit	95% limits	Best fit	95% limits	Best fit	95% limits
Ω_K	-0.0105 -	$-0.037^{+0.043}_{-0.049}$	0.0000	$0.0000^{+0.0066}_{-0.0067}$	-0.0111	$-0.042^{+0.043}_{-0.048}$	0.0009	$-0.0005^{+0.0065}_{-0.0066}$
Σm_{ν} [eV]	0.022	< 0.933	0.002	< 0.247	0.023	< 0.663	0.000	< 0.230
$N_{ m eff}$	3.08	$3.51^{\mathrm{+0.80}}_{\mathrm{-0.74}}$	3.08	$3.40^{+0.59}_{-0.57}$	3.23	$3.36^{+0.68}_{-0.64}$	3.22	$3.30_{-0.51}^{+0.54}$
Y_{P}	0.2583	$0.283^{+0.045}_{-0.048}$	0.2736	$0.283^{+0.043}_{-0.045}$	0.2612	$0.266^{+0.040}_{-0.042}$	0.2615	$0.267^{+0.038}_{-0.040}$
$dn_{\rm s}/d\ln k\ldots$	-0.0090 -	$-0.013^{+0.018}_{-0.018}$	-0.0102	$-0.013^{+0.018}_{-0.018}$	-0.0106	$-0.015^{+0.017}_{-0.017}$	-0.0103	$-0.014^{+0.016}_{-0.017}$
$r_{0.002}$	0.000	< 0.120	0.000	< 0.122	0.000	< 0.108	0.000	< 0.111
<i>w</i>	-1.20	$-1.49^{+0.65}_{-0.57}$	-1.076	$-1.13^{+0.24}_{-0.25}$	-1.20	$-1.51\substack{+0.62\\-0.53}$	-1.109	$-1.13^{+0.23}_{-0.25}$
4.8 4.0 3.2 2.4								
0.021 0.022 0.	023 0.11	0.12 0.13	0.14 0.9	3 0.96 0.99	1.02 45	60 75	90 0.60	0.75 0.90 1.05
$\Omega_{ m b} h^2$		$\Omega_{ m c} h^2$		11 ₅		H_0		08

Tarun Souradeep

Planck Collaboration: The Planck mission

CMB Maps at Planck Frequencies

Location of cold molecular clouds in our galaxy

Tarun Souradeep

Signature of star formation in the universe

Tarun Souradeep

Planck Focal Plane

🕑 esa 🐼

Gravitational Instability

Mildly Perturbed universe at z=1100

Present universe at z=0

Cosmic matter content

 ${f \Omega}_{tot} {f \Omega}_b$ $\mathbf{\Omega}_{DM}$ Ω_{Λ} H_0

(credit: Virgo simulations)

Gravitational Instability

expansion **>**

 $\Omega_{0m} = 0.3$

constant + ACDM cold dark matter

Standard cold dark matter

(fig: Virgo simulations)

Weak lensing: Light deflects due to gravity

Fig. 18. Fiducial lensing power spectrum estimates based on the 100, 143, and 217 GHz frequency reconstructions, as well as the minimum-variance reconstruction that forms the basis for the *Planck* lensing like-lihood.

OPLANCK

SZ clusters from Planck

Planck SZ catalog

Simple... yet, an exotic universe

- 95% of the energy of the universe is in some exotic form
- Dark Matter: we cannot see it directly, only via its gravitational affect.
- Dark Energy: smooth form of energy which acts repulsively under gravity.
- Some new Ultra-high energy (possibly, fundamental) physics for generating primordial perturbations.

Early Universe in CMB

- **The Background universe** • Homogeneous & isotropic space: *Cosmological principle* • Flat (Euclidean) Geometry ... but global topology? The nature of initial/primordial perturbations Power spectrum : 'Nearly' Scale invariant /scale free form ... but are there features ? Spin characteristics: (Scalar) Density perturbation ... cosmic (Tensor) Gravity waves 🖌 • Type of scalar perturbation: Adiabatic row entropy fluctuations
 - Underlying statistics: Gaussian

Pre-Planck status of CMB Spectra

CMB Polarization spectra

Table 10. Separable template-fitting estimates of primordial f_{NL} for 0.25 local, equilateral, orthogonal shapes, as obtained from SMICA foreground cleaned maps, after marginalizing over the Poissonian pointsource bispectrum contribution and subtracting the ISW-lensing bias. hL Tensor-to-Scalar Ratio (r) Uncertainties are 1σ . 0 $f_{\rm NL}$)n Equilateral Orthogonal Local -42 ± 75 -25 ± 39 2.7 ± 5.8 0.05 $V \propto \phi$ $V \propto \phi^3$ 0.00 0.936 0.944 0.952 0.960 0.968 0.976 0.984 0.992 1.000 Primordial Tilt (n_s)

Spectral index of perturbations

Room for improved fit?

Tarun Souradeep

Statistics of CMB

CMB Anisotropy Sky map => Spherical Harmonic decomposition

Gaussian CMB anisotropy completely specified by the *angular power spectrum* IF

Statistical isotropy

$$\langle a_{lm} a^*_{l'm'} \rangle = C_l \delta_{ll'} \delta_{mm'}$$

=>Correlation function $C(n, n') = <\Delta T(n) \Delta T(n')>$

is Rotationally Invariant

Hemispherical asymmetry

Beyond C_l : Patterns in CMB

Biposh: Natural generalization of
$$C_{\ell}$$
 with the second seco

Tarun Souradeep

C

BipoSH : Natural generalization of C_{ℓ} Bipolar Spherical Harmonic representationajian & Souradeep 2003 A complete representation of two-point correlation \blacktriangleright Modulation of CMB sky $\Delta T(\hat{n}) = [1 + M(\hat{n})] \Delta T^{SI}(\hat{n})$ > non-uniform variance (e.g., inhomo. noise, anomaly in XXIII) $\mathcal{R}_{LM} = \sum_{l_1 l_2} A_{l_1 l_2}^{LM} \frac{\Pi_{l_1} \Pi_{l_2}}{\sqrt{4\pi} \Pi_L} \mathcal{C}_{l_1 0 l_2 0}^{L0}$ $\langle \Delta T(\hat{n})^2 \rangle = \mathcal{R}(\hat{n}) = \sum \mathcal{R}_{LM} Y_{LM}(\hat{n})$ Weak lensing $A_{\ell\ell\prime}^{(+)LM} = \phi_{LM} \left[C_{\ell} G_{\ell\ell\prime}^L + (\ell \leftrightarrow \ell\prime) \right]$ Scalar & Tensor lens $A_{\ell\ell\ell}^{(-)LM} = \Omega_{LM} \left[C_{\ell} G_{\ell\ell'}^L - (\ell \leftrightarrow \ell') \right]$ Books, Kamionkowski, TS 2012 - Weak lensing of non-SI map affects C_{ℓ} $A_{l_1 l_2}^{L0} = \sum_{l'} C_{l'} \sum_{L_1 L_2} B_{l_1 l'}^{L_1 0} B_{l_2 l'}^{L_2 0} (-1)^{l_1 + L_1}$ Beam non-circularity Joshi, Das, Rotti, Mitra, TS 2012 $\sqrt{(2L_1+1)(2L_2+1)}C^{L0}_{L_10L_20}\begin{pmatrix} l' & l_2 & L_2\\ L & L_1 & l_1 \end{pmatrix}$

Cosmic topology, Magnetic fields , Lorentz violation...

Ŀ

Fig. 33. The CMB multipole dependence of the BipoSH (modulation)

Scale dependent dipole modulation.

BIPOLAR measurements by WMAP-7 team (Bennet et al. 2010)

Image Credit: NASA / WMAP Science Team

- Non-circular beam induces off-diagonal correlations in the covariance matrix.
- BipoSH allows WMAP beam non-circularity to be detected at 9- σ !!!

(Nidhi Joshi, Santanu Das, Aditya Rotti, Sanjit Mitra, TS : arXiv:1210.7318)

Non-SI by eye (a very subtle effect !!!)

Non-SI map generation for given BipoSH: Suvodip Mukherjee

Quadrupolar BipoSH anomaly in WMAP-7

- This cosmos is exotic enough DM, DE, quantum origin of structure !!!
- Possible surprise from unexpected quarter -

As Pollution Worsens in China, Once Few, Women Hold More Power in Sena