

- 1. Introduction
- 2. Omitted Values
- 3. Motivation
- 4. Results: f is general meromorphic and has at least an omitted value.
 - All the poles are multiple \implies No Herman ring.
 - Herman ring of period one or two does not exist.
 - At least two poles, one of which is omitted \implies No Herman ring.
 - 3-periodic Herman rings have only ONE configuration.
 - For p = 3, 4, at most one *p*-cycle of Herman rings.

The Fatou and Julia set

Let $f : \mathbb{C} \to \widehat{\mathbb{C}}$ be a meromorphic function. Normal Family: Each sequence contains a subsequence that converges uniformly on every compact subset of the domain, the limit allowed to be ∞ .

- Fatou Set of f(z) $\mathfrak{F}(f) = \{z \in \widehat{\mathbb{C}} : \text{ The sequence of iterates } \{f^n\} \text{ is defined and normal in some neighborhood of } z\}$
- Julia Set/ Chaotic set of f(z), $\mathcal{J}(f) = \widehat{\mathbb{C}} \setminus \mathcal{F}(f)$

Fatou component: A maximal open connected subset U of $\mathcal{F}(f)$.

Periodic: U is periodic if $f^p(U) \subset U$. The smallest p is called the *period*.

Periodic Fatou components are of five kinds

U p-periodic and $S = f^p$.

- 1. Attracting domain: \exists an attracting *p*-periodic point z_0 in U and $\lim_{k\to\infty} S^k(z) = z_0 \ \forall \ z \in U$.
- 2. Parabolic domain or Leau domain: \exists a neutral (parabolic) *p*-periodic point z_0 in ∂U and $\lim_{k\to\infty} S^k(z) = z_0 \ \forall \ z \in U$.
- 3. Siegel disk: \exists an analytic homeomorphism $\phi : U \to \{z \in \mathbb{C} : |z| = 1\}$ such that $\phi(S(\phi^{-1}(z))) = e^{2\pi i \alpha} z$ for some $\alpha \in \mathbb{R} \setminus \mathbb{Q}$.
- 4. Herman ring or Arnold's ring: \exists an analytic homeomorphism $\phi: U \to \{z: 1 < |z| < r\}$ such that $\phi(S(\phi^{-1}(z))) = e^{2\pi i \alpha} z$ for some $\alpha \in \mathbb{R} \setminus \mathbb{Q}$.
- 5. Baker domain or Domain at infinity: $\exists z_0 \in \partial U$ such that $\lim_{k\to\infty} S^k(z) = z_0 \ \forall z \in U$, but $S(z_0)$ is not defined.
- In the cases 3-4, under a conformal change of co-ordinates $S|_U$ is a rotation: Non-constant limit functions.

Singular values dominate dynamics

 $a \in \widehat{\mathbb{C}}, r > 0, D_r(a)$ is a disc (in spherical metric $\frac{dz}{1+|z|^2}$), Choose a component U_r of $f^{-1}(D_r(a))$ for r > 0 in such a way that $U_{r_1} \subset U_{r_2}$ for $r_1 < r_2$.

1.
$$\underline{\bigcap_{r>0} U_r} = \{z\}$$
 for $z \in \mathbb{C}$: $f(z) = a$.

- z is an ordinary point if $a \in \mathbb{C}$ and $f'(z) \neq 0$, or $a = \infty$ and z is a simple pole.
- z is a critical point if $a \in \mathbb{C}$ and f'(z) = 0, or $a = \infty$ and z is a multiple pole, a is a critical value. An algebraic singularity lies over a.
- 2. $\underbrace{\bigcap_{r>0} U_r = \emptyset}_{f^{-1}}$. The choice $r \to U_r$ defines a transcendental singularity of f^{-1} . We say U lies over a. a is an asymptotic value $\iff \exists$ a singularity lying over a.
- a is omitted \iff it is not an ordinary point and each singularity lying over it, is transcendental.

Omitted values: transcendental yet simple

Possibly the simplest kind of transcendental singularities

- Rational functions: No omitted value.
- \bullet Transcendental functions: Essential singularity at ∞
 - Entire : ∞ is omitted. At most another one e.g. e^z .
 - Meromorphic with exactly one pole w which is an omitted value : w and ∞ are only omitted.
 - General meromorphic(M): Meromorphic functions with atleast two poles or has exactly one pole which is not an omitted value. ∞ is not omitted. At most two omitted values e.g. $\tan z$

STANDING ASSUMPTION:

 $f \in M_o = \{f \in M : f \text{ has at least one omitted value}\}$

Omitted values and Herman rings

• Herman rings:

- Doubly connected.
- Consists of disjoint Jordan curves that are f^p -invariant.
- Always have a bounded complementary component.
- The map is one-one on each Herman ring.
- $-\operatorname{May}$ contain a singular value but NEVER an omitted value.

Omitted value controls Herman rings.

QUESTION

Does \exists a function in $f \in M_o$ having a Herman ring?

2. If a pole of f is an omitted value then it has no Herman ring of any period.

Arrangement of Herman rings

 \boldsymbol{H} is called

- Nested if $\exists j$ such that $H_i \subset B(H_j)$ for all i
- Strictly Nested if for each $i \neq j$, either $H_i \subset B(H_j)$ or $H_j \subset B(H_i)$.
- strictly non-nested if $B(H_i) \bigcap B(H_j) = \emptyset$ for all $i \neq j$.

Each Herman ring of period $2 \ \mbox{is nested}$ or strictly non-nested

Proof

- Nested: Suppose that $H_i \subset B(H_0)$ for all i > 0. Then
 - 1. \exists a pole in $B(H_0)$ & $O_f \subset B(H_1)$.
 - 2. $f(B(H_0))$ is the unbounded component of $\widehat{\mathbb{C}} \setminus H_1$

 $\bigcup_{i=1}^{p-1} H_i \subset B(H_0) \Longrightarrow \bigcup_{i=2}^{p-1} H_i \bigcup H_0 \subset f(B(H_0)): H_1 \text{ is inner.}$ No component of $f^{-1}(H_j)$ in $B(H_1) \Longrightarrow f(B(H_1))$ contains no $H_j, j \ge 0$.

-f has a pole in $B(H_1) \Longrightarrow H_2 = H_0$. -f is analytic in $B(H_1) \Longrightarrow H_2$ is inner. Note: $f(H_{inner})$ is inner or $= H_0$, $f(H_0)$ is inner.

$$j^* = \min\{j > 0 : H_j = H_0\}$$

 $\implies H_j, 0 < j < j^*$ is inner, H_{j^*-1} encloses a pole and $H_{j^*} = H_0$

Proof (contd.)

- Take an f^p -invariant Jordan curve γ_0 in H_0 &
- Consider the region A bounded by $\gamma = \bigcup_{i=0}^{j^*-1} f^i(\gamma_0)$.
- No pole in A $\therefore f : B(H_0) \to \mathbb{C}$ is univalent and $B(H_{j^*-1})$ contains a pole.

Thus f is conformal in A & f(A) = A because $f(\partial A) = f(\gamma) = \gamma$ $\implies f^n(A) = A$ for all n: Not possible as A intersects the Julia set.

• Strictly Nested: Suppose H_0 is strictly non-nested $B(H_0)$ contains a pole of f. $\implies O_f \subset B(H_1)$ There is a ring H_i , i > 1 containing a pole. Therefore $O_f \subset B(H_{i+1})$. $B(H_1) \subseteq B(H_{i+1})$ or $B(H_{i+1}) \subset B(H_1)$: Not possible as H_0 is strictly non-nested.

IIT Bhubaneswar

Herman rings of period 3 and 4

Similar arguments proves:

- 3-periodic Herman rings have only ONE configuration.
- For p = 3, 4, at most one *p*-cycle of Herman rings.

Reference

[1] W. Bergweiler, *Iteration of meromorphic functions*, Bull. Amer. Math. Soc. **29** (1993), no. 2, 151–188.

[2] L. Keen and J. Kotus, *Dynamics of the family* $\lambda tanz$, Conform. Geom.. Dyn **1** (1997), 28–57.

[3] T. Nayak and Z. Jian Hua, *Omitted values and dynamics of meromorphic functions*, J. London Math. Society **83** 1 (2011), 121–136.

[4] S. Morosowa and Y. Nishimura and M. Taniguchi and T. Ueda, *Holomorphic Dynamics*, Cambridge University Press (2000).

[5] L. Carleson and T. W. Gamelin, *Complex Dynamics*, Springer (1993).

[6] J. Milnor, *Dynamics in One Complex Variable*, Friedrick Vieweg and Son (2000).

[7] A. F. Beardon, *Iteration of Rational Functions*, Springer-Verlag (1991).

