OMITTED VALUES AND HERMAN RINGS WITH SMALL PERIODS

Tarakanta Nayak
IIT Bhubaneswar, India

Plan of Presentation

1. Introduction
2. Omitted Values
3. Motivation
4. Results: f is general meromorphic and has at least an omitted value.

- All the poles are multiple \Longrightarrow No Herman ring.
- Herman ring of period one or two does not exist.
- At least two poles, one of which is omitted \Longrightarrow No Herman ring.
- 3-periodic Herman rings have only ONE configuration.
- For $p=3,4$, at most one p-cycle of Herman rings.

The Fatou and Julia set

Let $f: \mathbb{C} \rightarrow \widehat{\mathbb{C}}$ be a meromorphic function.
Normal Family: Each sequence contains a subsequence that converges uniformly on every compact subset of the domain, the limit allowed to be ∞.

- Fatou Set of $f(z)$
$\mathcal{F}(f)=\left\{z \in \widehat{\mathbb{C}}\right.$: The sequence of iterates $\left\{f^{n}\right\}$ is defined and normal in some neighborhood of $z\}$
- Julia Set/ Chaotic set of $f(z), \mathcal{J}(f)=\widehat{\mathbb{C}} \backslash \mathcal{F}(f)$

Fatou component:A maximal open connected subset U of $\mathcal{F}(f)$.
Periodic: U is periodic if $f^{p}(U) \subset U$. The smallest p is called the period.

Periodic Fatou components are of five kinds

$U p$-periodic and $S=f^{p}$.

1. Attracting domain: \exists an attracting p-periodic point z_{0} in U and $\lim _{k \rightarrow \infty} S^{k}(z)=z_{0} \forall z \in U$.
2. Parabolic domain or Leau domain: \exists a neutral (parabolic) p periodic point z_{0} in ∂U and $\lim _{k \rightarrow \infty} S^{k}(z)=z_{0} \forall z \in U$.
3. Siegel disk: \exists an analytic homeomorphism $\phi: U \rightarrow\{z \in \mathbb{C}:|z|=1\}$ such that $\phi\left(S\left(\phi^{-1}(z)\right)\right)=e^{2 \pi i \alpha} z$ for some $\alpha \in \mathbb{R} \backslash \mathbb{Q}$.
4. Herman ring or Arnold's ring: \exists an analytic homeomorphism $\phi: U \rightarrow\{z: 1<|z|<r\}$ such that $\phi\left(S\left(\phi^{-1}(z)\right)\right)=e^{2 \pi i \alpha} z$ for some $\alpha \in \mathbb{R} \backslash \mathbb{Q}$.
5. Baker domain or Domain at infinity: $\exists z_{0} \in \partial U$ such that $\lim _{k \rightarrow \infty} S^{k}(z)=z_{0} \forall z \in U$, but $S\left(z_{0}\right)$ is not defined.

In the cases 3-4, under a conformal change of co-ordinates $\left.S\right|_{U}$ is a rotation: Non-constant limit functions.

Singular values dominate dynamics

$a \in \widehat{\mathbb{C}}, r>0, D_{r}(a)$ is a disc (in spherical metric $\frac{d z}{1+|z|^{2}}$), Choose a component U_{r} of $f^{-1}\left(D_{r}(a)\right)$ for $r>0$ in such a way that $U_{r_{1}} \subset U_{r_{2}}$ for $r_{1}<r_{2}$.

1. $\bigcap_{r>0} U_{r}=\{z\}$ for $z \in \mathbb{C}: f(z)=a$.

- z is an ordinary point if $a \in \mathbb{C}$ and $f^{\prime}(z) \neq 0$, or $a=\infty$ and z is a simple pole.
- z is a critical point if $a \in \mathbb{C}$ and $f^{\prime}(z)=0$, or $a=\infty$ and z is a multiple pole, a is a critical value. An algebraic singularity lies over a.

2. $\bigcap_{r>0} U_{r}=\emptyset:$ The choice $r \rightarrow U_{r}$ defines a transcendental singularity of f^{-1}. We say U lies over a. a is an asymptotic value $\Longleftrightarrow \exists$ a singularity lying over a.
a is omitted \Longleftrightarrow it is not an ordinary point and each singularity lying over it, is transcendental.

Omitted values: transcendental yet simple

Possibly the simplest kind of transcendental singularities

- Rational functions: No omitted value.
- Transcendental functions: Essential singularity at ∞
- Entire : ∞ is omitted. At most another one e.g. e^{z}.
- Meromorphic with exactly one pole w which is an omitted value : w and ∞ are only omitted.
- General meromorphic(M): Meromorphic functions with atleast two poles or has exactly one pole which is not an omitted value. ∞ is not omitted. At most two omitted values e.g. $\tan z$

STANDING ASSUMPTION:

$$
f \in M_{o}=\{f \in M: f \text { has at least one omitted value }\}
$$

Omitted values and Herman rings

- Herman rings:
- Doubly connected.
- Consists of disjoint Jordan curves that are f^{p}-invariant.
- Always have a bounded complementary component.
- The map is one-one on each Herman ring.
- May contain a singular value but NEVER an omitted value.

Omitted value controls Herman rings.

Motivation

\& Polynomials and transcendental entire maps have no Herman ring.
\& Analytic self maps of \mathbb{C}^{*} have no Herman ring.
\& $f \in M_{o}$

- No invariant Herman ring
$-f$ has only one pole \Longrightarrow No Herman ring of period 2 .
\& Def. V is SCH if $c(V)>1 \Longrightarrow c\left(V_{n}\right)>1$ for all n and $V_{\bar{n}}$ is an Herman ring for some $\bar{n} \in \mathbb{N}$. Clearly, U is SCH and $c(U)>1 \Longrightarrow U_{1}$ is SCH.

SCH means simply connected or ultimately Herman ring $f \in M_{o} \Longrightarrow$ Most Fatou components are SCH

QUESTION

Does \exists a function in $f \in M_{o}$ having a Herman ring?

No Herman rings (in certain situations)

If $f \in M_{o}$ then f has no Herman ring which is nested or strictly non-nested.

Corollary

1. It has no Herman ring of period one or two.
2. If a pole of f is an omitted value then it has no Herman ring of any period.

Fatou components surround omitted values

Lemma 1

$$
\text { Let } f \in M
$$

V be a multiply connected Fatou component γ is a closed curve in V with $B(\gamma) \bigcap \mathcal{J}(f) \neq \emptyset$ $\Longrightarrow \exists n \in \mathbb{N} \bigcup\{0\}$ and $\gamma_{n} \subseteq f^{n}(\gamma) \subset V_{n}$ s.t. $B\left(\gamma_{n}\right)$ contains a pole. If $O_{f} \neq \emptyset$ then $O_{f} \subset B\left(\gamma_{n+1}\right)$ for some closed curve $\gamma_{n+1} \subset f\left(\gamma_{n}\right)$.

Lemma $2 H$ is a Herman ring of $f \in M_{o} \Longrightarrow f: B(H) \rightarrow \widehat{\mathbb{C}}$ is one-one.

Lemma $2 \Longrightarrow$ If all poles are multiple then no Herman rings exist.

Arrangement of Herman rings

H is called

- Nested if $\exists j$ such that $H_{i} \subset B\left(H_{j}\right)$ for all i
- Strictly Nested if for each $i \neq j$, either $H_{i} \subset B\left(H_{j}\right)$ or $H_{j} \subset B\left(H_{i}\right)$.
- strictly non-nested if $B\left(H_{i}\right) \bigcap B\left(H_{j}\right)=\emptyset$ for all $i \neq j$.

Each Herman ring of period 2 is nested or strictly non-nested

Proof

- Nested: Suppose that $H_{i} \subset B\left(H_{0}\right)$ for all $i>0$. Then

1. \exists a pole in $B\left(H_{0}\right) \& O_{f} \subset B\left(H_{1}\right)$.
2. $f\left(B\left(H_{0}\right)\right)$ is the unbounded component of $\widehat{\mathbb{C}} \backslash H_{1}$
$\bigcup_{i=1}^{p-1} H_{i} \subset B\left(H_{0}\right) \Longrightarrow \bigcup_{i=2}^{p-1} H_{i} \bigcup H_{0} \subset f\left(B\left(H_{0}\right)\right): H_{1}$ is inner.
No component of $f^{-1}\left(H_{j}\right)$ in $B\left(H_{1}\right) \Longrightarrow f\left(B\left(H_{1}\right)\right)$ contains no $H_{j}, j \geq 0$.
$-f$ has a pole in $B\left(H_{1}\right) \Longrightarrow H_{2}=H_{0}$.
$-f$ is analytic in $B\left(H_{1}\right) \Longrightarrow H_{2}$ is inner.
Note: $f\left(H_{\text {inner }}\right)$ is inner or $=H_{0}, f\left(H_{0}\right)$ is inner.
$j^{*}=\min \left\{j>0: \quad H_{j}=H_{0}\right\}$
$\Longrightarrow H_{j}, 0<j<j *$ is inner, $H_{j *-1}$ encloses a pole and $H_{j^{*}}=H_{0}$

Proof (contd.)

- Take an f^{p}-invariant Jordan curve γ_{0} in H_{0} \&
- Consider the region A bounded by $\gamma=\bigcup_{i=0}^{j^{*}-1} f^{i}\left(\gamma_{0}\right)$.
- No pole in $A \quad \because f: B\left(H_{0}\right) \rightarrow \mathbb{C}$ is univalent and $B\left(H_{j^{*}-1}\right)$ contains a pole.

Thus f is conformal in $A \& f(A)=A$ because $f(\partial A)=f(\gamma)=\gamma$
$\Longrightarrow f^{n}(A)=A$ for all n : Not possible as A intersects the Julia set.

- Strictly Nested: Suppose H_{0} is strictly non-nested
$B\left(H_{0}\right)$ contains a pole of f.
$\Longrightarrow O_{f} \subset B\left(H_{1}\right)$
There is a ring $H_{i}, i>1$ containing a pole.
Therefore $O_{f} \subset B\left(H_{i+1}\right)$.
$B\left(H_{1}\right) \subseteq B\left(H_{i+1}\right)$ or $B\left(H_{i+1}\right) \subset B\left(H_{1}\right)$: Not possible as H_{0} is strictly non-nested.

Herman rings of period 3 and 4

Similar arguments proves:

- 3-periodic Herman rings have only ONE configuration.
- For $p=3,4$, at most one p-cycle of Herman rings.

Reference

[1] W. Bergweiler, Iteration of meromorphic functions, Bull. Amer. Math. Soc. 29 (1993), no. 2, 151-188.
[2] L. Keen and J. Kotus, Dynamics of the family λ tanz, Conform. Geom.. Dyn 1 (1997), 28-57.
[3] T. Nayak and Z. Jian Hua, Omitted values and dynamics of meromorphic functions, J. London Math. Society 831 (2011), 121-136.
[4] S. Morosowa and Y. Nishimura and M. Taniguchi and T. Ueda, Holomorphic Dynamics, Cambridge University Press (2000).
[5] L. Carleson and T. W. Gamelin, Complex Dynamics, Springer (1993).
[6] J. Milnor, Dynamics in One Complex Variable, Friedrick Vieweg and Son (2000).
[7] A. F. Beardon, Iteration of Rational Functions, Springer-Verlag (1991).
and...

Thank You All

