APPLICATION OF ACCELERATORS AND PARALLEL COMPUTING TO SEQUENCING DATA

Wen-mei W. Hwu University of Illinois at Urbana-Champaign

With Deming Chen and Jian Ma

Blue Waters Computing System Fully Operational at Illinois since 3/2013

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

Blue Waters and Titan Computing Systems

	System Attribute	NCSA Blue Waters	ORNL Titan	
	Vendors Processors	Cray/AMD/NVIDIA Interlagos/Kepler	Cray/AMD/NVIDIA Interlagos/Kepler	
	Total Peak Performance (PF) Total Peak Performance (CPU/GPU	11.1 J) 7.1/4	27.1 2.6/24.5	
	Number of CPU Chips Number of GPU Chips	48,352 3,072	18,688 18,688	
	Amount of CPU Memory (TB)	1511	584	
	Interconnect	3D Torus	3D Torus	
T	Amount of On-line Disk Storage (PB) Sustained Disk Transfer (TB/sec) Amount of Archival Storage Sustained Tape Transfer (GB/sec)	26 >1 300 100	13.6 0.4-0.7 15-30 7	
367	UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN			

TM

Science Area	Number of Teams	Codes	Struct Grids	Unstruct Grids	Dense Matrix	Sparse Matrix	N- Body	Monte Carlo	FFT	PIC	Sig I/O	
Climate and Weather	3	CESM, GCRM, CM1/WRF, HOMME	X	X		Х		X			X	
Plasmas/ Magnetosphere	2	H3D(M),VPIC, OSIRIS, Magtail/UPIC	Х				Х		X		X	
Stellar Atmospheres and Supernovae	5	PPM, MAESTRO, CASTRO, SEDONA, ChaNGa, MS-FLUKSS	X			Х	X	X		X	X	
Cosmology	2	Enzo, pGADGET	Χ			X	X					
Combustion/ Turbulence	2	PSDNS, DISTUF	X						X			
General Relativity	2	Cactus, Harm3D, LazEV	X			X						
Molecular Dynamics	4	AMBER, Gromacs, NAMD, LAMMPS				X	X		X			
Quantum Chemistry	2	SIAL, GAMESS, NWChem			X	X	X	X			Χ	
Material Science	3	NEMOS, OMEN, GW, QMCPACK			X	X	X	X				
Earthquakes/ Seismology	2	AWP-ODC, HERCULES, PLSQR, SPECFEM3D	X	X			X				X	
Quantum Chromo Dynamics	1	Chroma, MILC, USQCD	X		X	X						
Social Networks	1	EPISIMDEMICS										
Evolution	1	Eve										
Engineering/System of Systems	1	GRIPS,Revisit						X				
Computer Science	1			X	X	X			X		Χ	

Initial Production Use Results

NAMD

- 100 million atom benchmark with Langevin dynamics and PME once every 4 steps, from launch to finish, all I/O included
- 768 nodes, Kepler+Interlagos is 1.8X faster over Interlagos+Interlogs
- Chroma
 - Lattice QCD parameters: grid size of 48³ x 512 running at the physical values of the quark masses
 - 768 nodes, Kepler+Interlagos is 2.4X faster over Interlagos+Interlogos
- QMCPACK
 - Full run Graphite 4x4x1 (256 electrons), QMC followed by VMC
 - 700 nodes, Kepler+Interlagos is 2.7X faster over Interlagos+Interlogos

Cost per Raw Megabase of DNA Sequence

CompGen NGS Sequence Data Workflow

Scalability for all critical steps of the workflow

ERROR CORRECTION

8

Challenges in Error Correction for Genome Data

- Large memory usage
- Hard-to-handle repeats in genomes

Multiplicity ACGC: 1

The erroneous pattern ACGC needs to be modified. Which one is the right correction? ACGA? ACGT?

Our Approach in a Nutshell

• Use a Bloom filter for memory reduction

All the solid *k*-mers are programmed into a Bloom filter

- Determine whether a k-mer is solid without saving k-mers and their multiplicities
- Increase *k*-mer length without increasing memory usage for better repeats handling
- Use adjacent *k*-mers and quality scores to make better corrections in repeats

Correcting Errors at the Ends of Reads

Is changing ACGC to ACGT always right? \rightarrow No, ACGT may be

1) an erroneous pattern with a high multiplicity.

2) an false positive from a Bloom filter.

What if an error exists at the end of a read?

Check the multiplicity of CGCT, GCTA, and CTAG for lowering the probability of false correction.

Solution:

Extend the read to the right. Check the multiplicity of CGTA, CGTC, CGTG, and CGTT.

Repeat this a certain number of times.

Experimental Results: Memory Usage

Data Sat	Memory Usage (MB)									
Dala Sel	BLESS	DecGPU	ECHO	HITEC	Musket	Quake	Reptile			
S. Aureus	11	1,556	6,063	2,127	362	644	2,184			
E. Coli	14	2,171	N/A	14,096	347	8,339	1,008			
Human Chr. 14	150	2,223	N/A	N/A	3,763	2,126	12,928			
Human Chr. 1	372	2,473	N/A	N/A	7,815	8,863	20,041			

Average : 2.7%

Worst case: 14.9% ¹²

Experimental Results: Accuracy

 $Gain = \frac{(\# of corrected errors) - (\# of newly introduced errors)}{(\# of errors in the original reads)}$

Data Sat	Gain									
Dala Sel	BLESS	DecGPU	ECHO	HITEC	Musket	Quake	Reptile			
S. Aureus	0.894	0.002	0.707	0.838	0.703	0.144	0.175			
E. Coli	0.967	-0.028	N/A	0.880	0.926	0.837	0.724			
Human Chr. 14	0.644	-0.058	N/A	N/A	0.537	0.126	0.379			
Human Chr. 1	0.870	-0.017	N/A	N/A	0.866	0.539	0.560			

Best accuracy for all the inputs

Experimental Results: Alignment

Aligned Ratio = $\frac{\# of reads that can be exatly aligned to a unique point of the reference sequence}{\pi + 1}$

Total # of reads

	Aligned Ratio (%)											
Data Set	Uncorr.	Error- Free	BLESS	DecGP U	ECHO	HITEC	Musket	Quake	Reptile			
S. Aureus	19.5	N/A	75.1	36.6	53.6	70.1	66.9	58.1	31.6			
E. Coli	73.5	N/A	96.5	90.7	N/A	95.0	95.3	94.3	90.7			
Human Chr. 14	42.8	N/A	74.1	55.7	N/A	N/A	69.6	72.0	62.4			
Human Chr. 1	36.4	80.3	77.2	63.8	N/A	N/A	74.3	65.9	61.3			

Largest improvement in alignment

Experimental Results: Assembly

- Input: 10Mbp region of human chr.1
- Assembler: Velvet 1.2.09

Metric	Uncorr.	Error- Free	BLESS	DecGPU	ЕСНО	HITEC	Musket	Quake	Reptile
Corrected NG50	671	1,239.1	1,004.1	751.6	665.4	805.2	1,004.1	850.4	750.9
# of Errors	1,321	550	449	568	835	813	479	555	554
Genome Coverage	99.5	99.8	99.8	99.8	99.8	99.7	99.8	99.8	99.8

Largest improvement in assembly

DE NOVO ASSEMBLY

DE NOVO ASSEMBLY BASED ON K-MERS

Reads with 2x coverage

TOO MUCH INFORMATION CAN HURT

Schematic View of Tiger

E. COLI RANDOM READ DISTRIBUTION:

All reads are well distributed across the target genome.

E. COLI CLUSTERED READ DISTRIBUTION:

Y-axis increases by 10x.

Reads are clustered across the target genome.

ASSEMBLY RESULTS: CHROMOSOME 22

NG50 (bp)

ASSEMBLY RESULTS: CHROMOSOME 22

ACHIEVEMENTS: BETTER QUALITY RESULTS

• Results compared to two widely used assemblers, SOAPdenovo and Velvet.

	Chr. 14	Chr. 22	Orchid Bee	Longer
NG50/N50	$1.3x \sim 2.2x$	$1.3x \sim 6.0x$	7x/57x	Ilishau
Coverage Improvement	98.02% (+0.1%)	97.02% (+11.2%)	N/A	nigner
Errors Improvement	533 bp (-68 bp)	229 bp (+224 bp)	N/A	Similar

Software downloadable with a research license signed first: <u>http://impact.crhc.illinois.edu/Tiger/tiger.aspx</u>

ROBUST ALIGNMENT

OVERVIEW OF TIGER ALIGNER

Gene bank

- Approximate multi-genome sequence aligner
 - Genomes can be in various forms in terms of:
 - Evolutionary relationships
 - Sequence completeness
 - Two approaches: Bowtie-based & Word-based
 - Low-memory, fast alignment
 - Better mismatch tolerance, more information

• Software downloadable with a research license signed first: <u>http://impact.crhc.illinois.edu/Tiger/tiger.aspx</u>

26

WORD-BASED FEATURE EXTRACTION

WORD-BASED APPROACH

- Tree-based
- Good mismatch tolerance
- More information
- Rough alignment
- Higher memory requirement
- Slower than BWT-based methods

SIMILARITY EVALUATION EXAMPLE: COVERAGE CHECKING (CC)

Similarity Scores $_{CC}$ = (S + P \times (1+ α)) / (T \times (1+ α))

, where S is the number of aligned single reads, P is the number of aligned paired reads, T is the total number of (paired) reads, and α is the weight to add for paired alignment.

SIMILARITY EVALUATION EXAMPLE: EXISTENCE CHECKING (EC)

SIMULATED E.COLI READS W/ ERRORS AS DB AND QUERY SETS

		DB		Query		
	Read Set ID	1	2	3	4	5
	Error rate (%)	0	5	20	40	80
	Similarity scores	1.000	0.974	0.867	0.687	0.354
CC	% of aligned reads regardless single/paired	100.00	93.10	73.71	51.99	23.45
	% of aligned single reads	0.00	12.86	38.79	49.97	35.88
	% of aligned paired reads	100.00	86.67	54.32	27.00	5.51
EC	# of unique words in db.	4,530,123	Same	Same	Same	Same
	% of unique words aligned	100.00	100.00	100.00	100.00	99.88
	Mean word freq.	28.45	26.13	20.19	14.24	6.93
WC	SD word freq.	12.54	11.57	9.22	6.95	3.78
	Peak mean word freq.	43.53	40.16	32.07	23.65	12.99
	Peak SD word freq.	32.87	30.41	23.01	16.00	7.79

RUNTIME COMPARISON ON CHR. 14

Assembler	Velvet 61k	SOAPdenovo 55k	Tiger-Velvet- R 69i	Tiger-Soap-R 53i
Tiger aligner (Bowtie-based) CC scheme (4 tx)	0.11 hr	0.10 hr	0.09 hr	0.11 hr
Tiger aligner (Word-based) CC, EC, WC schemes (4 tx)	0.87 hr	1.03 hr	0.88 hr	0.87 hr
MUMmer (1 tx)	$5.27~\mathrm{hr}$	$1.42~\mathrm{hr}$	9.52 hr	10.09 hr
SOAPaligner (4 tx)	$0.53~\mathrm{hr}$	0.44 hr (Seg fault on library 2)	0.34 hr (Seg fault on library 2)	0.32 hr (Seg fault on library 2)

THANK YOU!

34