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CP1-structures

Background

Definition

Let S be a closed oriented surface of genus g ≥ 2.

Definition

A complex projective structure on S is a maximal atlas of charts to CP1

with transition maps being restrictions of elements of
Aut(CP1) = PSL2(C).

ψ ◦ φ−1 is a Möbius map z 7→ az+b
cz+d



CP1-structures

Background

CP1 structure: a “global” definition

A complex projective structure is specified by:

A developing map that is an immersion from the universal cover
f : S̃ → CP1.

A holonomy representation ρ : π1(S)→ PSL2(C) that is compatible:

f ◦ γ = ρ(γ) ◦ f for all γ ∈ π1(S).



CP1-structures

Background

Examples: hyperbolic structures

Definition

A hyperbolic structure on S is a collection of charts to the hyperbolic
plane H2 with transition maps in PSL2(R) = Isom+(H2).

This is a special case of a complex-projective structure:

Can identify H2 with the upper hemisphere on CP1.

The holonomy representation is Fuchsian, PSL2(R) ↪→ PSL2(C).

Uniformization theorem: any Riemann surface has a hyperbolic structure.



CP1-structures

Background

A bundle picture

Conversely, a CP1-structure defines a complex structure on S since the
transition maps are conformal.

Pg = {space of marked CP1-structures on Sg}

Pg

Tg

Mg

p

π

where Tg is Teichmüller space and Mg is the moduli space of Riemann
surfaces.



CP1-structures

Background

Facts

Tg = {marked conformal/hyperbolic structures on S}/ ∼
= {(f ,Σ)|f : Sg ,n → Σ a homeomorphism}/ ∼

where

Sg ,n

Σ1 Σ2

f2
f1

c

⇐⇒ (f ,Σ1) ∼ (g ,Σ2)

Tg ∼= R6g−6

Mg is the quotient by the action of the mapping class group

dim(Pg ) = 2dim(Tg )

p−1(X ) ∼= Q(X ) = {holomorphic quadratic differentials on X}
These are (2, 0)-tensors, locally q(z)dz2
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CP1-structures

Background

Bundle picture

Pρ 6= ∅ for a generic representation. (Gallo-Kapovich-Marden)



CP1-structures

The density result

Results known

hol is a local homeomorphism, but not a covering map. (Hejhal,
Earle, Hubbard)

For ρ Fuchsian, Pρ is infinite. (Goldman, conjectured by Faltings)

Pρ is infinite for generic ρ. (Baba)

Theorem (G.)

For any Fuchsian representation ρ, the projection of Pρ to Mg is dense.
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Grafting

Grafting rays

Projective grafting gives deformations of CP1-structures from a Fuchsian
one. Grafting rays are the shadows of these deformations in Teichmüller
space:



Grafting

Projective grafting

Given a hyperbolic surface X and a simple closed curve γ, one can
deform by bending :
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Grafting

Projective grafting

Given a hyperbolic surface X and a simple closed curve γ, one can
deform by bending :

2π-grafting along a multicurve preserves Fuchsian holonomy (Goldman)



Grafting

Laminations

Measured geodesic laminations

A measured geodesic lamination λ is a closed set on a hyperbolic surface
which is a union of a disjoint collection of simple geodesics, equipped
with a transverse measure µ.

“multicurve”
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Grafting

Laminations

Measured geodesic laminations

A measured geodesic lamination λ is a closed set on a hyperbolic surface
which is a union of a disjoint collection of simple geodesics, equipped
with a transverse measure µ.

Weighted s.c.c. are dense in ML.

(Thurston) Projective grafting along measured laminations
parametrize Pg :

Tg ×ML ∼= Pg



Grafting

Conformal grafting

Conformal grafting

gr : Tg ×ML → Tg

X a hyperbolic surface, tγ a simple closed geodesic of weight t

=⇒ grtγX ∈ Tg a grafted surface

Grafting along a simple closed γ inserts a euclidean annulus of width t.

Grafting introduces a euclidean region of width equal to the transverse
measure.

Thurston metric
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Conformal grafting

gr : Tg ×ML → Tg

=⇒ grtγX ∈ Tg a grafted surface
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Grafting

Grafting rays

Grafting rays

Starting from a hyperbolic surface X , can graft (for time t) along a
measured geodesic lamination. Grafting rays are the shadows of these
deformations in Teichmüller space:



Teichmüller dynamics

Teichmüller metric

Teichmüller metric

For X ,Y ∈ Tg we can define the Teichmüller distance

dT (X ,Y ) =
1

2
inf
f

ln K

where K is the dilatation of a quasiconformal map

f : X → Y

A K -quasiconformal map is a homeomorphism that takes infinitesimal
circles to ellipses of eccentricity ≤ K .
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Teichmüller dynamics

Teichmüller metric

Teichmüller metric

Toy example: Rectangles R1 and R2 of different moduli.

dT (R1,R2) = 1
2 ln L, realized by the stretch map.

dT is a complete metric.

dT is the Finsler metric given by the L1-norm on Q(X ).

Co-tangent space T ∗XTg ∼= Q(X ) = { holomorphic quadratic
differentials}
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Teichmüller dynamics

Teichmüller rays

Teichmüller rays

A Teichmüller ray with basepoint X in the direction of q ∈ Q(X ):

q determines a singular flat metric |q(z)||dz |2 on X together with a
vertical measured foliation Fv and a horizontal measured foliation Fh.

Stretch in the horizontal direction by a factor of e2t .

This ray is geodesic in the Teichmüller metric.
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Teichmüller dynamics

Teichmüller rays

Facts

A Teichmüller ray can be thought of as determined by the pair (X ,Fv ):

Theorem (Hubbard-Masur)

Q(X ) ∼=MF via the map q 7→ Fv (q).

Theorem (Masur, Veech)

The Teichmüller geodesic flow in T 1Mg is ergodic.

Comparison of grafting and Teichmüller rays: Diaz-Kim,
Choi-Dumas-Rafi
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Asymptoticity result

Statement

The asymptoticity result

Theorem (G.)

Let (X , λ) ∈ Tg ×ML. Then there exists a Y ∈ Tg such that the
grafting ray determined by (X , λ) is strongly asymptotic to the
Teichmüller ray determined by (Y , λ), that is,

dT (gretλX ,TeichtλY )→ 0

as t →∞.

Corollary

Almost every grafting ray projects to a dense set in moduli space Mg .
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Statement

Density of integer graftings

Theorem (G.)

Let X ∈ Tg . Then the set

S = {gr2πγX | γ is a multicurve }

projects to a dense set in moduli space Mg .

Corollary

Complex projective surfaces with any fixed Fuchsian holonomy are dense
in moduli space.
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Asymptoticity result

Idea of proof

Idea of the proof (Arational case)

Let λ be an arational (maximal and minimal) measured lamination.

F the horocyclic foliation, lengthens along the grafting ray.

Singular flat surfaces obtained by collapsing the hyperbolic part along F
lie along a common Teichmüller ray.
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Idea of proof

Mapping the surface

Decompose the surface into truncated ideal triangles and long, thin
rectangles:

To construct the map

we use the transverse foliation:

This is almost-conformal wherever the hyperbolic part is thin.
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Idea of proof

Mapping the surface

For t sufficiently large, the map is almost-conformal for most of the
time-t grafted surface. (Problem: central region of the ideal triangles)

It remains to adjust this to a map that is almost-conformal everywhere.
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Mapping the surface

For t sufficiently large, the map is almost-conformal for most of the
time-t grafted surface. (Problem: central region of the ideal triangles)

It remains to adjust this to a map that is almost-conformal everywhere.



Asymptoticity result

Idea of proof

A quasiconformal extension lemma

Lemma

For any ε > 0 sufficiently small and any 0 ≤ r ≤ ε if f : D→ D satisfies
(1) f is a quasiconformal map
(2) The quasiconformal distortion is (1 + ε) on D \ Br

then there exists a (1 + Cε)-quasiconformal map g : D→ D such that
f|∂D = g|∂D. (Here C is a universal constant)



Asymptoticity result

Idea of proof

Idea of proof (multicurve case)

Consider the conformal limit of the grafting ray.
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Idea of proof

Idea of proof (multicurve case)

Obtain Y∞ by specifying a meromorphic quadratic differential.(Strebel)
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Idea of proof

Idea of proof (multicurve case)

Adjust g to an almost-conformal map that takes circles to circles.
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Idea of proof

Idea of proof (multicurve case)

Truncating along those circles and gluing gives the required map.
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Idea of proof

Idea of proof (general case)

“Minimal, non-filling” case:

Corresponding limit of the Teichmüller ray is given by a half-plane
differential, a meromorphic quadratic differential with higher order poles
and a “half-plane structure”.

(Generalization of Strebel’s result)
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Further questions

How uniform is this asymptoticity over X and λ?

Motivating analogy:
Teichmüller horocycle flow ←→ Earthquake flow (Mirzakhani)
Teichmüller geodesic flow ←→ ?

Do the integer graftings equidistribute in Mg?

For a generic ρ ∈ Rep(π1(S),PSL2(C)), does the holonomy level set
Pρ project to a dense set in Mg?
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