$\mathbb{C}P^1$ -structures, grafting and Teichmüller rays

Subhojoy Gupta Center for Quantum Geometry of Moduli Spaces (QGM), Aarhus

Groups, Geometry and Dynamics Almora December 14, 2012

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

1 $\mathbb{C}P^1$ -STRUCTURES

- Background
- The density result

2 GRAFTING

- Laminations
- Conformal grafting
- Grafting rays
- **3** TEICHMÜLLER DYNAMICS
 - Teichmüller metric
 - Teichmüller rays
- 4 Asymptoticity result
 - Statement
 - Idea of proof

5 Further questions

Definition

Let S be a closed oriented surface of genus $g \ge 2$.

Definition

A complex projective structure on S is a maximal atlas of charts to $\mathbb{C}P^1$ with transition maps being restrictions of elements of $Aut(\mathbb{C}P^1) = PSL_2(\mathbb{C}).$

 $\psi \circ \phi^{-1}$ is a Möbius map $z \mapsto \frac{az+b}{cz+d}$

$\mathbb{C}P^1$ structure: a "global" definition

A complex projective structure is specified by:

- A *developing map* that is an immersion from the universal cover $f: \widetilde{S} \to \mathbb{C}P^1$.
- A holonomy representation $\rho : \pi_1(S) \to PSL_2(\mathbb{C})$ that is compatible:

$$f \circ \gamma = \rho(\gamma) \circ f$$
 for all $\gamma \in \pi_1(S)$.

Examples: hyperbolic structures

Definition

A hyperbolic structure on S is a collection of charts to the hyperbolic plane \mathbb{H}^2 with transition maps in $PSL_2(\mathbb{R}) = Isom^+(\mathbb{H}^2)$.

This is a special case of a complex-projective structure:

- Can identify \mathbb{H}^2 with the *upper hemisphere* on $\mathbb{C}P^1$.
- The holonomy representation is Fuchsian, $PSL_2(\mathbb{R}) \hookrightarrow PSL_2(\mathbb{C})$.

Uniformization theorem: any Riemann surface has a hyperbolic structure.

A bundle picture

Conversely, a $\mathbb{C}P^1$ -structure defines a complex structure on S since the transition maps are conformal.

where \mathcal{T}_g is Teichmüller space and \mathcal{M}_g is the moduli space of Riemann surfaces.

・ロト・日本・モート モー うへぐ

$$\begin{aligned} \mathcal{T}_g &= \{ \text{marked conformal/hyperbolic structures on } S \} / \sim \\ &= \{ (f, \Sigma) | f : S_{g,n} \to \Sigma \text{ a homeomorphism} \} / \sim \\ \text{where} \end{aligned}$$

• \mathcal{M}_g is the quotient by the action of the mapping class group

$$\begin{aligned} \mathcal{T}_g &= \{ \text{marked conformal/hyperbolic structures on } S \} / \sim \\ &= \{ (f, \Sigma) | f : S_{g,n} \to \Sigma \text{ a homeomorphism} \} / \sim \\ \text{where} \end{aligned}$$

• $\mathcal{T}_g \cong \mathbb{R}^{6g-6}$

 $\blacksquare \ \mathcal{M}_g$ is the quotient by the action of the mapping class group

$$dim(\mathcal{P}_g) = 2dim(\mathcal{T}_g)$$

• $p^{-1}(X) \cong Q(X) = \{$ holomorphic quadratic differentials on $X \}$ These are (2,0)-tensors, locally $q(z)dz^2$

Bundle picture

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Bundle picture

 $P_{
ho} \neq \emptyset$ for a generic representation. (Gallo-Kapovich-Marden)

 hol is a local homeomorphism, but not a covering map. (Hejhal, Earle, Hubbard)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- *hol* is a local homeomorphism, but not a covering map. (Hejhal, Earle, Hubbard)
- For ρ Fuchsian, P_{ρ} is infinite. (Goldman, conjectured by Faltings)

- hol is a local homeomorphism, but not a covering map. (Hejhal, Earle, Hubbard)
- For ρ Fuchsian, P_{ρ} is infinite. (Goldman, conjectured by Faltings)

• P_{ρ} is infinite for generic ρ . (Baba)

- hol is a local homeomorphism, but not a covering map. (Hejhal, Earle, Hubbard)
- For ρ Fuchsian, P_{ρ} is infinite. (Goldman, conjectured by Faltings)
- P_{ρ} is infinite for generic ρ . (Baba)

Theorem (G.)

For any Fuchsian representation ρ , the projection of P_{ρ} to \mathcal{M}_{g} is dense.

The density result

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The density result

(日)、

э

Grafting rays

Projective grafting gives deformations of $\mathbb{C}P^1$ -structures from a Fuchsian one. Grafting rays are the shadows of these deformations in Teichmüller space:

Given a hyperbolic surface X and a simple closed curve γ , one can deform by *bending*:

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Given a hyperbolic surface X and a simple closed curve γ , one can deform by *bending*:

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Given a hyperbolic surface X and a simple closed curve γ , one can deform by *bending*:

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

Given a hyperbolic surface X and a simple closed curve γ , one can deform by *bending*:

 2π -grafting along a multicurve preserves Fuchsian holonomy (Goldman)

A measured geodesic lamination λ is a closed set on a hyperbolic surface which is a union of a disjoint collection of simple geodesics, equipped with a transverse measure μ .

"multicurve"

A measured geodesic lamination λ is a closed set on a hyperbolic surface which is a union of a disjoint collection of simple geodesics, equipped with a transverse measure μ .

"minimal"

A measured geodesic lamination λ is a closed set on a hyperbolic surface which is a union of a disjoint collection of simple geodesics, equipped with a transverse measure μ .

"minimal"

A measured geodesic lamination λ is a closed set on a hyperbolic surface which is a union of a disjoint collection of simple geodesics, equipped with a transverse measure μ .

- Weighted s.c.c. are dense in *ML*.
- (*Thurston*) Projective grafting along measured laminations parametrize P_g:

 $\mathcal{T}_{g} imes \mathcal{ML} \cong \mathcal{P}_{g}$

 $\textit{gr}:\mathcal{T}_{g}\times\mathcal{ML}\rightarrow\mathcal{T}_{g}$

X a hyperbolic surface, $t\gamma$ a simple closed geodesic of weight t

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 $\textit{gr}: \mathcal{T}_{g} \times \mathcal{ML} \rightarrow \mathcal{T}_{g}$

X a hyperbolic surface, $t\gamma$ a simple closed geodesic of weight $t \implies gr_{t\gamma}X \in \mathcal{T}_g$ a *grafted* surface

Grafting along a simple closed γ inserts a euclidean annulus of width t.

 $\textit{gr}: \mathcal{T}_{g} \times \mathcal{ML} \rightarrow \mathcal{T}_{g}$

X a hyperbolic surface, $t\gamma$ a simple closed geodesic of weight $t \implies gr_{t\gamma}X \in \mathcal{T}_g$ a *grafted* surface

Grafting along a simple closed γ inserts a euclidean annulus of width t.

 $\textit{gr}: \mathcal{T}_{g} \times \mathcal{ML} \rightarrow \mathcal{T}_{g}$

Grafting introduces a euclidean region of width equal to the transverse measure.

Thurston metric

Grafting rays

Starting from a hyperbolic surface X, can graft (for time t) along a measured geodesic lamination. Grafting rays are the shadows of these deformations in Teichmüller space:

For $X, Y \in \mathcal{T}_g$ we can define the *Teichmüller distance*

$$d_{\mathcal{T}}(X,Y) = \frac{1}{2} \inf_{f} \ln K$$

where K is the dilatation of a quasiconformal map

$$f: X \to Y$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

For $X, Y \in \mathcal{T}_g$ we can define the *Teichmüller distance*

$$d_{\mathcal{T}}(X,Y) = \frac{1}{2} \inf_{f} \ln K$$

where K is the dilatation of a quasiconformal map

$$f: X \to Y$$

A *K*-quasiconformal map is a homeomorphism that takes infinitesimal circles to ellipses of eccentricity $\leq K$.

$$\underbrace{ \begin{array}{c} & & \\ &$$

Toy example: Rectangles R_1 and R_2 of different moduli.

 $d_{\mathcal{T}}(R_1, R_2) = \frac{1}{2} \ln L$, realized by the stretch map.

Toy example: Rectangles R_1 and R_2 of different moduli.

 $d_{\mathcal{T}}(R_1, R_2) = \frac{1}{2} \ln L$, realized by the stretch map.

- $d_{\mathcal{T}}$ is a complete metric.
- $d_{\mathcal{T}}$ is the Finsler metric given by the L^1 -norm on $\mathcal{Q}(X)$.
- Co-tangent space T^{*}_XT^g ≅ Q(X) = { holomorphic quadratic differentials}

Teichmüller rays

A Teichmüller ray with basepoint X in the direction of $q \in Q(X)$:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A Teichmüller ray with basepoint X in the direction of $q \in Q(X)$:

q determines a singular flat metric $|q(z)||dz|^2$ on X together with a vertical measured foliation \mathcal{F}_v and a horizontal measured foliation \mathcal{F}_h .

A Teichmüller ray with basepoint X in the direction of $q \in Q(X)$:

q determines a singular flat metric $|q(z)||dz|^2$ on X together with a vertical measured foliation \mathcal{F}_v and a horizontal measured foliation \mathcal{F}_h .

Stretch in the horizontal direction by a factor of e^{2t} .

- 日本 - 1 日本 - 日本 - 日本

A Teichmüller ray with basepoint X in the direction of $q \in Q(X)$:

q determines a singular flat metric $|q(z)||dz|^2$ on X together with a vertical measured foliation \mathcal{F}_v and a horizontal measured foliation \mathcal{F}_h .

Stretch in the horizontal direction by a factor of e^{2t} .

This ray is geodesic in the Teichmüller metric.

A Teichmüller ray can be thought of as determined by the pair (X, \mathcal{F}_v) :

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Theorem (Hubbard-Masur)

 $Q(X) \cong \mathcal{MF}$ via the map $q \mapsto \mathcal{F}_{v}(q)$.

A Teichmüller ray can be thought of as determined by the pair (X, \mathcal{F}_v) or by the pair (X, λ) , via the identification $\mathcal{MF} \cong \mathcal{ML}$.

Theorem (Hubbard-Masur)

 $Q(X) \cong \mathcal{MF}$ via the map $q \mapsto \mathcal{F}_{v}(q)$.

A Teichmüller ray can be thought of as determined by the pair (X, \mathcal{F}_v) or by the pair (X, λ) , via the identification $\mathcal{MF} \cong \mathcal{ML}$.

Theorem (Hubbard-Masur)

 $Q(X) \cong \mathcal{MF}$ via the map $q \mapsto \mathcal{F}_{v}(q)$.

Theorem (Masur, Veech)

The Teichmüller geodesic flow in $T^1\mathcal{M}_g$ is ergodic.

A Teichmüller ray can be thought of as determined by the pair (X, \mathcal{F}_v) or by the pair (X, λ) , via the identification $\mathcal{MF} \cong \mathcal{ML}$.

Theorem (Hubbard-Masur)

 $Q(X) \cong \mathcal{MF}$ via the map $q \mapsto \mathcal{F}_{v}(q)$.

Theorem (Masur, Veech)

The Teichmüller geodesic flow in $T^1\mathcal{M}_g$ is ergodic.

Comparison of grafting and Teichmüller rays: Diaz-Kim, Choi-Dumas-Rafi

The asymptoticity result

Theorem (G.)

Let $(X, \lambda) \in \mathcal{T}_g \times \mathcal{ML}$. Then there exists a $Y \in \mathcal{T}_g$ such that the grafting ray determined by (X, λ) is strongly asymptotic to the Teichmüller ray determined by (Y, λ) , that is,

 $d_{\mathcal{T}}(gr_{e^t\lambda}X, Teich_{t\lambda}Y) \rightarrow 0$

as $t \to \infty$.

The asymptoticity result

Theorem (G.)

Let $(X, \lambda) \in \mathcal{T}_g \times \mathcal{ML}$. Then there exists a $Y \in \mathcal{T}_g$ such that the grafting ray determined by (X, λ) is strongly asymptotic to the Teichmüller ray determined by (Y, λ) , that is,

 $d_{\mathcal{T}}(gr_{e^t\lambda}X, Teich_{t\lambda}Y) \rightarrow 0$

as $t o \infty$.

Corollary

Almost every grafting ray projects to a dense set in moduli space \mathcal{M}_{g} .

Density of integer graftings

Theorem (G.)

Let $X \in \mathcal{T}_g$. Then the set

$$S = \{gr_{2\pi\gamma}X \mid \gamma \text{ is a multicurve }\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

projects to a dense set in moduli space \mathcal{M}_g .

Density of integer graftings

Theorem (G.)

Let $X \in \mathcal{T}_g$. Then the set

$$\mathcal{S} = \{ gr_{2\pi\gamma}X \mid \gamma \text{ is a multicurve } \}$$

projects to a dense set in moduli space \mathcal{M}_{g} .

Corollary

Complex projective surfaces with any fixed Fuchsian holonomy are dense in moduli space.

Let λ be an *arational* (maximal and minimal) measured lamination.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 少へ⊙

Let λ be an arational (maximal and minimal) measured lamination. ${\cal F}$ the horocyclic foliation

Let λ be an *arational* (maximal and minimal) measured lamination. \mathcal{F} the horocyclic foliation, lengthens along the grafting ray.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Let λ be an *arational* (maximal and minimal) measured lamination. \mathcal{F} the horocyclic foliation, lengthens along the grafting ray.

Singular flat surfaces obtained by collapsing the hyperbolic part along \mathcal{F} lie along a common Teichmüller ray.

Let λ be an *arational* (maximal and minimal) measured lamination. \mathcal{F} the horocyclic foliation, lengthens along the grafting ray.

Singular flat surfaces obtained by collapsing the hyperbolic part along \mathcal{F} lie along a common Teichmüller ray.

Mapping the surface

Decompose the surface into *truncated ideal triangles* and *long, thin rectangles*:

To construct the map

Mapping the surface

Decompose the surface into *truncated ideal triangles* and *long, thin rectangles*:

To construct the map we use the transverse foliation:

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Mapping the surface

Decompose the surface into *truncated ideal triangles* and *long, thin rectangles*:

To construct the map we use the transverse foliation:

For *t* sufficiently large, the map is almost-conformal for *most* of the time-*t* grafted surface. (*Problem: central region of the ideal triangles*)

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト ・ ヨ

For *t* sufficiently large, the map is almost-conformal for *most* of the time-*t* grafted surface. (*Problem: central region of the ideal triangles*)

It remains to adjust this to a map that is almost-conformal everywhere.

A quasiconformal extension lemma

Lemma

For any $\epsilon > 0$ sufficiently small and any $0 \le r \le \epsilon$ if $f : \mathbb{D} \to \mathbb{D}$ satisfies (1) f is a quasiconformal map (2) The quasiconformal distortion is $(1 + \epsilon)$ on $\mathbb{D} \setminus B_r$ then there exists a $(1 + C\epsilon)$ -quasiconformal map $g : \mathbb{D} \to \mathbb{D}$ such that $f_{|\partial \mathbb{D}} = g_{|\partial \mathbb{D}}$. (Here C is a universal constant)

Consider the *conformal limit* of the grafting ray.

・ロト ・聞ト ・ヨト ・ヨト

æ

Obtain Y^{∞} by specifying a **meromorphic** quadratic differential. (*Strebel*)

▲ロト ▲圖 ト ▲ 臣 ト ▲ 臣 ト → 臣 → の � @

Adjust g to an *almost-conformal map* that takes circles to circles.

◆□> ◆□> ◆三> ◆三> ● 三 のへの

Truncating along those circles and gluing gives the required map.

◆□> ◆□> ◆三> ◆三> ・三 のへの

Idea of proof (general case)

"Minimal, non-filling" case:

Corresponding limit of the Teichmüller ray is given by a half-plane differential, a meromorphic quadratic differential with higher order poles and a "half-plane structure".

Idea of proof (general case)

"Minimal, non-filling" case:

Corresponding limit of the Teichmüller ray is given by a half-plane differential, a meromorphic quadratic differential with higher order poles and a "half-plane structure". (Generalization of Strebel's result)

イロト 不得 トイヨト イヨト

-

• How uniform is this asymptoticity over X and λ ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• How uniform is this asymptoticity over X and λ ?

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

• How uniform is this asymptoticity over X and λ ?

• Do the integer graftings equidistribute in \mathcal{M}_g ?

• How uniform is this asymptoticity over X and λ ?

• Do the integer graftings equidistribute in \mathcal{M}_g ?

For a generic $\rho \in \mathcal{R}ep(\pi_1(S), PSL_2(\mathbb{C}))$, does the holonomy level set \mathcal{P}_ρ project to a dense set in \mathcal{M}_g ?