

Extracting Science from the Planck Mission

Sanjit Mitra IUCAA, Pune, India

Temperature Power Spectrum

Temperature Power Spectrum

Extracting Science from the Planck Mission

How well WMAP and Planck rule out n_s=1

Extracting Science from the Planck Mission

P/D

Planck: Parameters Goal

• 3-10 x improvement in cosmological parameters

Timeline

- Launched with Hercshel
 - 14 May 2009
- First Light Survey
 - 13-27 Aug 2009
- Early release
 - 11 Jan 2011
- First cosmology release
 - 21 Mar 2013

Coolest Satellite in Space!

- H₂ Sorption cooler
 - LFI FPU to < 20K
 - pre-cool lower stages
- ⁴He J-T cooler
 - HFI FPU and LFI reference loads to < 5K
 - only moving part
- Dilution cooler
 - HFI bolometers to 0.1K

Cool and Stable

Extracting Science from the Planck Mission

Sanjit Mitra, IUCAA 16 Apr 2013, ICTS, Bangalore

Planck Focal Plane

Credit: ESA, HFI & LFI consortia

Níne Frequency All Sky Survey

Extracting Science from the Planck Mission

Sanjit Mitra, IUCAA 16 Apr 2013, ICTS, Bangalore

Níne Frequency All Sky Survey

Extracting Science from the Planck Mission

Sanjit Mitra, IUCAA 16 Apr 2013, ICTS, Bangalore

Scanning Strategy

White Noise Level

• SMICA noise map, RMS noise is ~17µK

Analysis in a Nutshell

Extracting Science from the Planck Mission

Extended Analyses

- Non-Gaussianity of CMB anisotropy
- Statistical anisotropy of CMB
- Reconstruction of Primordial power spectrum
- Reconstruction of lensing potential
- Possibly more to follow...

Redundancy in Analyses

- Redundancy in observation
 - detectors visit each direction at different times
- Multiplicity of methods
- Comparison of LFI and HFI
 - a big plus point for Planck
- Simulations
 - realistic simulations to track systematic effects
 - total 250,000 maps simulated, largest in CMB analyses!

\otimes

Map Making

• Linear convolution equation with Gaussian noise $\mathbf{d} = \mathbf{K} \cdot \mathbf{m} + \mathbf{n}$

• Log-Likelihood $\ln[\mathfrak{P}(\mathbf{d}|\mathbf{m})] = -\frac{1}{2} \left((\mathbf{d} - \mathbf{K} \cdot \mathbf{m})^T \cdot \mathbf{N}^{-1} \cdot (\mathbf{d} - \mathbf{K} \cdot \mathbf{m}) + \operatorname{Tr}[\ln \mathbf{N}] \right)$ • Maximum Likelihood Solution $\hat{\mathbf{m}} = \left(\mathbf{K}^T \, \mathbf{N}^{-1} \, \mathbf{K} \right)^{-1} \, \mathbf{K}^T \, \mathbf{N}^{-1} \cdot \mathbf{d}$ • Final noise covariance matrix of the solution

$$\mathbf{\Sigma} \;=\; \left(\mathbf{K}^T \, \mathbf{N}^{-1} \, \mathbf{K}
ight)^{-1}$$

Map Making

- Optimal (a Generalized Least Square solution)
 - computationally expensive
- Destriping
 - cleverly remove 1/f noise "offsets"

http://www.helsinki.fi/~tfo_cosm/destriping.html

HEALPix

• Hierarchical Equal Area isoLatitude Pixelization

http://healpix.jpl.nasa.gov/

Gorski et al. (2005)

Planck Maps

Planck_2013 353 GHz

Inter-frequency Cor

 -10^{3} -10^{2} -10 -10 1 10 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} 30-353 GHz: $\delta T [\mu K_{CMB}]$; 545 and 857 GHz: surface brightness [kJy/sr]

100GHz - 70GHz

Gain factor required to match 143GHz for two multipole ranges

> Sanjit Mitra, IUCAA 16 Apr 2013, ICTS, Bangalore

Component Separation

	Channels used	Components modelled	Resources and runtime
COMMANDER	WMAP, PLANCK 30–353 GHz,	CMB, dust, sync, FF, mono-, dipoles	1000 CPU h, 2 day
CCA	PLANCK, Haslam 408 MHz	CMB, dust, sync, FF	70 CPU h, 1.5 day
GMCA	PLANCK, Haslam 408 MHz	CMB, SZ, sync., FF	1200 CPU h, 6 day
FastICA	143–353 GHz	Two components (CMB and dust)	21 CPU min, 20 s
FastMEM	PLANCK	CMB, SZ, dust, sync, FF	256 CPU h, 8 h
SEVEM	PLANCK	CMB	30 CPU h, 30 h
SMICA	PLANCK, WMAP	CMB, SZ, dust, total galaxy	8 CPU h, 4 h
WI-FIT	70–217 GHz	CMB	400 CPU h, 8 h

Extracting Science from the Planck Mission

Power Spectrum Estimation

Low multipoles

$$p(\mathbf{d}|C_{\ell}) = \frac{\exp[(-(1/2)\mathbf{d}^T \mathbf{C}^{-1}\mathbf{d}]}{\sqrt{\det \mathbf{C}}}$$
$$\mathbf{C}(C_{\ell}) = \mathbf{S}(C_{\ell}) + \mathbf{N}$$

- MCMC likelihood analysis
 - * can incorporate full noise covariance matrix (at low-res)
 - * also separates components at the same time
- Computationally expensive
- High multipoles
 - Pseudo-C_l estimator

$$C_l^{\text{obs}} := \frac{1}{2l+1} \sum_{m=-l}^l |a_{lm}^{\text{obs}}|^2$$

- * power spectra of harmonic transforms of observed CMB sky
- must account for systematic effects of beam

Extracting Science from the Planck Mission

Power Spectrum and Residual

Systematic Effects: Beam

- Precision is meaningful only if all the systematic effects are taken into account
 - Beam is the most important of all, because:

$$\Delta T^{\text{obs}}(\hat{\mathbf{q}}) = U(\hat{\mathbf{q}}) \int_{4\pi} d\Omega_{\hat{\mathbf{q}}'} B(\hat{\mathbf{q}}, \hat{\mathbf{q}}') \Delta T(\hat{\mathbf{q}}') + n(\hat{\mathbf{q}})$$
mask beam noise

• Two major tasks:

- beam fitting (& incorporate uncertainties in analyses)
- accounting for the effect of beam asymmetry

Beams are Asymmetric

Extracting Science from the Planck Mission

Sanjit Mitra, IUCAA 16 Apr 2013, ICTS, Bangalore

28

Planck Effective Beams

Mitra et al., ApJS 193, 5 (2011)

Extracting Science from the Planck Mission

variation of beam

30

1.0e + 02

Planck Collaboration (2013)

1.1e+02

Ellipticity - 100 GHz

Effective Beam Statistics

Extracting Science from the Planck Mission

Sanjit Mitra, IUCAA 16 Apr 2013, ICTS, Bangalore

31

Effect and Accuracy

Comparison with existing Planck simulations

Comparison of Angular Power Spectra for LFI 30GHz

- CMB observation is leading precision cosmology
- Planck produced ultimate temperature anisotropy maps & promises good polarization measurement
- Data analysis is challenging for small errorbars!
 - large volume of interconnected and correlated data
 - all systematics have to be accounted for
 - * beam asymmetry is important & we have taken care of it

• Look forward to the polarization results in 2014

Thank you!