Introduction to Theory and Numerics of
Partial Differential Equations I:
Introduction and ODEs

Sascha Husa
ICTS Summer School on Numerical Relativity
Bangalore, June 2013

1

Plan for these lectures

Lecture 1: Introduction and ODEs
® Basic theory of ODEs

@ solving ODEs with Runge Kufta methods, convergence and error

Lecture 2: Mathematical concepts of PDEs

@ Focus on initial value problems, well posedness and the concept of
hyperbolicity

Lecture 3: Properties and Stability of Finite Difference
Schemes

Lecture 4: Wave equation and Einstein equations in 1+1
dimensions

Lecture 5: Capturing radiation and infinite domains
Lab sessions (Python, Fortran 90, Matlab, Mathematica examples):

@ toy model ODEs -> PN binary inspiral -> wave equation ->
GR in spherical symmetry. 2

Goals of these lectures

@ Understand the basic problems one faces in solving the
Einstein equations as partial differential equations, and the
basic ideas of how some of these problems have been
solved.

@ Be ready to get details from the literature.

@ Start to play with some code, be able o solve ODE
systems, PDEs in one space dimension.

Lab goals for today

@ Write a code than can solve systems of ODEs, using
the forward Euler, RK2 and RK4 methods.

y = Af=Raii it =i y'(t) = sin(t)

@ Use it on simple ODEs first, check convergence and
quantify the numerical error:

@ How large can you make the time step? What happens
when the time step is foo large?

@ Does the solution converge to the exact solution?
@ Is roundoff error a problem?

@ Optional: TOV

Computational infrastructure for NR

e No need to reinvent the wheel - software exists for many of the algorithms/tasks
of interest to NR - from specialized libraries to full 3D application suites.

e Before getting deeper into NR, start with your own home-grown 1D
code!

e Choice of programming language”? C, C++, Fortran > 90 for ultimate speed.
Basis for current 3D infrastructures.

e Alternatively consider working with Matlab, Python (NumPy, SciPy, ...),
Mathematica, or consider to only write numerically intensive Kernels in C, ...

e | earn a general purpose computing environment: e.g. Matlab, Mathematica,
Python. Same for data analysis!

¢ suite of standardized testbeds for NR: www.ApplesWithApples.org

e XAct suite of tensor computer algebra Mathematica packages,
http://www.xact.es (J. M. Martin Garcia @ Wolfram)

e \isualisation: Gnuplot, ygraph, VIK programming environment and VTK-based
tools such as Vislt highly popular (and free).

Computational infrastructure for NR

e Cactus Computational Toolkit: “Framework” for MPI/OpenMP/GPU
parallelization, based on user-defined modules called “thorns”, since ~1996.

e Lorene: LORENE is a set of C++ classes to solve various problems arising in
NR, and more generally in computational astrophysics. It provides tools to solve
partial differential equations by means of multi-domain spectral methods. [http://
www.lorene.obspm.fr/]

e Einstein Toolkit, [http://einsteintoolkit.org],
e collection of open source code for NR, essentially built on Cactus framework.
e HAD: open source distributed AMR infrastructure for PDEs [http://had.liu.edu]

e SPEC - Spectral Einstein Code [http://www.black-holes.org/] infrastructure for
solving PDEs using multi-domain spectral methods. Used by Caltech-Cornell-
CITA-Pullman collaboration (SXS), private with many collaborators

e BAM.: finite difference moving punctures code developed by Jena+, originally
started by Brugmann @ AEI, private with many collaborators

e GR1D - A New Open-Source Spherically-Symmetric Code for Stellar Collapse to
Neutron Stars and Black Holes [http://www.stellarcollapse.org/codes.html]

Solving Einsteins equations

1 c - a
Rab - iRc 8ab = 8Tk Tab[gcda @A]a Rbd =R bad

I—‘?Jd,c o I_.ta)c.d + rbmdrzvc o r?crfndﬂ [vat vb] Ve = Rsabvdt

1 im
ig (gmk.[,'. + 8mb .k — gké’,m)-

@ In a coordinate system EEs become set of complicated coupled
nonlinear PDEs - need fo fix coordinates to fix PDEs, EEs do not
correspond fo a fixed type of PDE (e.g. hyperbolic).

@ All about Einsteins equations -> Baumgarte lecture

Keys to understand numerics: Conditioning

® Consider model problem F(x,y) = O
® How sensitive is the dependence y(x)?

@ condition number K: worst possible effect on y when x is

perfurbed.
® consider perturbed eq. F(x + 0x, y + 0y) = 0,
@ define K:Sllp 5y / Y
s¢ |lox||7lke
@ K small: well conditioned, K large: ill conditioned,

® K=00: ill-posed, unstable; K finite: well-posed

@ NR: find well-posed PDE problem and for a given problem a
gauge that makes K small!

ODEs in a nutshell

s> Dont try to understand PDEs without understanding systems of
ODEs.

Can write ODE systems in first order differential form as a
"normal form”: yi'(1) = Fi(t,y;)

@ For higher differential order systems, introduce new variables,
e.q. vy (B)=Frv=y - {y =V Vi=F}

» Standard result of ODE theory:
The ODE initial value problem is “well-posed”: Given initial data

vi(t=t0), a unique solution yi(t) exists at least for some finite time
T > 10,

- A global solution, i.e. for t->c0 may or may not exist.

ODEs in a nutshell

@ For nonlinear ODEs, solutions may
blow up in finite time:

e YU
s 1

y =% y0) =y — y(t)

@ Einstein equations: strong fields ->
singularity formation in finite fime!

@ ODEs may be chaotic in nature,
e.g. Lorenz equations (model
atmospheric convection, simplified
models for lasers, electric circuits,
chemical reactions, ...)

@ Lorenz equations are deterministic,
but small changes to inifial data
have a large effect - system is ill
conditioned but not ill posed.

ODE boundary value problems

@ ODE boundary value problem: e.g. stationary solution in spherical
symmetry (singular problem)

@ shooting and matching, boundary value problem, eigenvalue
problem

11

Linear systems of ODEs

@ consider constant coefficient linear ODE systems: for nonlinear
equations, we can consider perturbations (can be stable or unstable),
coefficients can be considered constant for a short time.

@ constant coefficient linear ODE systems can be solved explicitly:

y; — Aijyj TP yz(t) = €Aijtyj (O)

@ Compute matrix exponential by fransforming A to Jordan form:

l=n—1
. . . | Lol
PAP_l ST L]\]'7 Nn 25 Y e'LAkt 3 eszteszt e eszt E NZT
=0 '

@ We can understand the behavior of the solutions in terms of the
eigenvalues and eigenvectors of the matrix A.

@ Real part of eigenvalues negative: solutions relax to stable steady
state.

12

Numerical Integration of ODEs

Various techniques are available to obtain exact solutions for
certain families/types of ODEs, but general problems, in
particular nonlinear ones, have to be solved numerically.

Consider a simple single ODE: y'(t) = F(t,y)

Replace derivative by a difference expression,
y(t+h) —ylt) 1

(1) = L2 (W5 O(h?)

Rearrange to obtain the “forward” (explicit) Euler method:

h
Yn+1 = Yn T+ h F(tna yn) o §y”(t) Tk O(hz)

, Alternative: backward Euler method - implicit (use e._g. Newton-
Raphson to solve equations)

Un+1 = Yn T hF(tha yn+1>

13

Local truncation order

@ Error term in the Euler method is first order - we must be
able to do better! Use higher order approximations (Taylor)!

@ But does Euler actually work? Does the numerical
approximation converge? We are only inferested in the
continuum solution!

@ Local truncation order: difference between exact and
numerical solution in 1 step:

Ynili= R(tn§ Yn+1s Yn, {yn—k} h>

Ont1 = B(tni Y1, Y(tn), y({tn-r})i k) = y(tn+1)

@ The method is consistent if e A

]
hlg%) h

@ Method is convergent of order p if 5 1 = O(hp+1)

@ Euler methods are consistent and of order 1.
14

Global truncation order

Local error is relatively easy to conirol, but we need to know
the global error - the error accumulated in all the steps one
needs to reach a fixed time t.

In the limit h-> O we need infinitely many steps, we can suspect
that a "bad method” will not let us carry out this limit.

In an unstable scheme, making a tiny error in each step will
diverge in the limit.

The global error of a p-th order scheme will be O(hP).

15

Roundoff error

@ Truncation error of a finite difference scheme is not the only
source of error on a digital computer!

@ We are using numbers with a finite precision, usually we are
using double precision numbers as implemented in the machine
hardware:

e Single precision, called "float" in the C language family, and "real" or "real*4" in Fortran. This is a

binary format that occupies 32 bits (4 bytes) and its significand has a precision of 24 bits (about 7
decimal digits).

e Double precision, called "double" in the C language family, and "double precision" or "real*8" in
Fortran. This is a binary format that occupies 64 bits (8 bytes) and its significand has a precision of 53
bits (about 16 decimal digits).

@ Undefined values: INF or NAN (not a number) - exception
handling tends to slow down computations.

@ Don't use single prec. unless you really know what you are doing.

@ Sometimes quadruple precision comes in handy, expect an order

of magnitude slowdown.
16

Numerical stability of ODEs and stiffness

@ Solve a simple linear model equation with Eulers method:

y =M, y0) =y = y(t) =yoe

Yn+1 = Yn T+ hy;;, =Yn+hAyn = |Ynsal/lynl = [1 + BN
@ A > 0: analytical and numerical solutions grow exponentially.

@ A < O: analytical solution decreases exponentially, numerical
solution only does this for hA > -2 (h>0).

@ For larger fime steps the numerical solution exhibits
exponential growth, algorithm is unstable!

@ Problem is more serious for ODE systems which exhibit very
different decay rates: "stiff“-> very small time steps required.

@ [see example codes in Python and Mathematica -> lab session]

17

Higher order infegration schemes

@ Basic idea is simple: approximate y more accurately, e.g. through
a higher order polynomial, compute coefficients with Taylor
expansion.

@ Standard class of methods: explicit Runge Kufta schemes,
3 S'l'CngSZ Yn+1 = Yn T+ Z bikir

=1

where

kl w— hf(tn.- yn,)

ko = hf(t, + coh,y, + as k)
ks = h'f(tn + c3h, Yn + az ky + 0321\'2)-

ks — h‘f(tn . & Cshr Un . a'slkl -+ a’SQkQ g $ ¥ e a's,s—lks—l)-
i—1
@ Method is consistent if: [N OEE DN

1

18

RK?2

& Runge Kutta 2 - “midpoint method” EEEESIEEILJCRITINGEIE
n=len(u)

up=np.zeros(n)

1 | |
Yn4+1 — Yn T hf (tn - ._h'_~ YUn T §hf(tn.~ yn))

2 up=u + dt*rhs(u, t)
@ Stability: consider y' = A y return up

Yn+1 = Q(h)‘)yn

@ Q(z) is polynomial for RK-methods,

def RK2Step(u,t,dt,rhs):

: n=Len(u)
for order p: .
A5 g kl=np.zeros(n)
70(Z) A 62: C)(ZJ)) k2=np.zeros(n)
@ solution decays (stable) if kl = dt*rhs(u,t)
Q(hAN)] < 1 k2 = dt*rhsCu + k1, t + dt)

@ “Standard” p-th order RK:

up = u + 0.5*Ckl + k2)

5 i
Q = Z 4 return up
!

19 7=

"Classical Runge-Kutta” - RK4
— S, oY
S (t"‘l + %,f"‘l + %h)

S (tn-—l s %’fn——l 4+ ng)

2
S(t" '+ At, f*7 + Atks)

At
= "7+ - (ku + 2k + 2ks + ka) + O(AE)

Compute max time steps for y'=-y for Euler, RK2, RK4 = 2, 2,
2.785...

Computational cost/time step = 1,2,4 RHS evaluations.

» For given number of fime steps RK4 is the most expensive, for
given small global error RK4 is the cheapest.

In the next lecture we will iind out that we can use RK4 for
PDEs, but not RK2 or explicit Euler.

20

Other Iintegration schemes

Higher order Runge Kutta methods can be constructed, tuned
toward efficieny, large time steps, ..

- Runge-Kutta methods are one-step methods. Multistep: reuse
information from previous steps (e.g. Adams-Bashforth)

- Efficient solution of many problems requires a variable step size

- Hamiltonian systems (classical mechanics): can exploit properties
of such systems and construct integrators fo e.g. preserve
energy. Geometric integrators (e.g. symplectic integrators)
correspond to canonical transformations.

21

ODE Examples

@ Point-particle mechanics
@ GR: post-Newtonian approximation of the Einstein equations:

@ expand Einstein equations in powers of v/c - for small
velocities this will be an excellent approximation, e.g. solar
system, Hulse Taylor binary pulsar, ...

@ In PN, we describe a binary system of e.g. black holes,
emitting gravitational waves by a point-particle Hamiltonian
and an energy-loss term (GW flux). Point-particle description
breaks down before merger.

@ Simplest case: adiabatic inspiral - neglect radial velocity in
the source terms.

22

post-Newtonian black holes

Start with energy, e.g. as function of separation R or orbital
frequency w: E(R), E(w). Kepler: wé R?* = G M.

PN expansion:

w?(R) = C;{]\j <1+f1() (%)2 + f2(R) (%)4+>

Compute energy loss P=-dE/dt to some order in v/c, e.g. at
leading order quadrupole formula (see GR text books like Wald)

 To compute the rate of change of any quantity X (e.g. X=w, R)
we write

dE
aX _ ‘@
dFE
dt ~ 4B

23

post-Newtonian black holes

@ To lowest (Newtonian/quadrupole)order:

n M
E(R) = SN
() 1 —|—m2 o R :
N ((Mw)®\?
B)es —ile .
(w) = mq1 + mo 3 (= >
dE S ron 10
— = -] (1+0®*)+...
dt 5c5n(c> S R,
@ Here v is the velocity parameter, N the symmetric mass ratio:
U= (G]W(,u)l/3 n = st bl
(m1 +ma)? J
@ For GW science, we also need the phase _gb 5

@ Tomorrows lab exercise: compute ®(t), w(t), R(t) - and error

bars!
24

Newton+quadrupole radiation
exact solution

25

Convergence example

@ We are ultimately only interested in the continuum solution! Is a
discretized problem converging to the correct continuum solution?
What is the numerical error?

@ .. numerical algorithms can be considered as discrete dynamical
systems around critical points. (equilibria).” [internet pick, http://
www 2.de.unifi.it/anum/trigiante/rodid.pdf]

@ convergence:

X(Aaj) = XO —|— GAIn _|— O(Awn+1) EMNS: ¢[¥4] FD6 convergence test

72-80/Cf5.7 (low-med)

80-96 (med-high)

® 3 resolutions determine
Xo, e, n

error estimate (Richardson 5.7)

o consistency: check n

o then compute Xo

Convergence example
e.g. choose Ax = h, h/2, h/4.

X (A= e AzT - Of X7

derive:

X (b KAL) o I — [s
X(h/2)) 5, (3): 00

check that ratio of differences approximates 2"

The better the resolution, the better the theoretical ratio should be
approximated.

2 reasons for why that may not work:
o algorithm is not what you think it is - converges at different order

® h not yet small enough

