"Non- Uniform Random Geometric Graphs with Location Dependent Radii"

Srikanth K. Iyer
Department of Mathematics
Indian Institute of Science
Bangalore

We propose a $\{\backslash$ it distribution free\} approach to the study of random geometric graphs. The distribution of vertices follows a Poisson point process with intensity function $\$ \mathrm{nf}(\backslash \operatorname{cdot}) \$$, where $\$ \mathrm{n} \backslash$ in $\backslash \mathrm{mN} \$$, and $\$ \mathrm{f} \$$ is a probability density function on $\$ \backslash \mathrm{mR} \wedge \mathrm{d} \$$. A vertex located at $\$ x \$$ connects via directed edges to other vertices that are within a $\left\{\backslash\right.$ it cut-off\} distance $\$ \mathrm{r} _\mathrm{n}(\mathrm{x}) \$$. We prove strong law results for, (i) the critical cutoff function so that almost surely, the graph does not contain any node with out-degree zero for sufficiently large $\$ \mathrm{n} \$$, (ii) the maximum and minimum vertex degrees. We also provide a characterization of the cut-off function for which the number of nodes with out-degree zero converges in distribution to a Poisson random variable. We illustrate this result for a class of densities with compact support that have at most polynomial rates of decay to zero. Finally, we state a sufficient condition for an enhanced version of the above graph to be almost surely connected eventually.

